RU2674666C1 - Способ получения нанокапсул флорфеникола в альгинате натрия - Google Patents

Способ получения нанокапсул флорфеникола в альгинате натрия Download PDF

Info

Publication number
RU2674666C1
RU2674666C1 RU2018108745A RU2018108745A RU2674666C1 RU 2674666 C1 RU2674666 C1 RU 2674666C1 RU 2018108745 A RU2018108745 A RU 2018108745A RU 2018108745 A RU2018108745 A RU 2018108745A RU 2674666 C1 RU2674666 C1 RU 2674666C1
Authority
RU
Russia
Prior art keywords
sodium alginate
nanocapsules
florfenicol
suspension
added
Prior art date
Application number
RU2018108745A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2018108745A priority Critical patent/RU2674666C1/ru
Application granted granted Critical
Publication of RU2674666C1 publication Critical patent/RU2674666C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул флорфеникола в альгинате натрия характеризуется тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок флорфеникола, затем добавляют хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, или 1:1, или 1:2. 3 пр.

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009 /16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсули-рования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2076765 МПК B01D 9/02 Российская Федерация опубликован 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, t. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствовует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.
Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.
В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12 опубликован 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность и длительность процесса.
В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03. 2011 U S описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул флорфеникола в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул флорфеникола, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хладона-112.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул флорфеникола альгината натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хладона-112.
Результатом предлагаемого метода являются получение нанокапсул флорфеникола в альгинате натрия при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1 Получение нанокапсул флорфеникола в альгинате натрия, соотношение ядро : оболочка 1:3
В суспензию 0,6 г альгината натрия в петролейном эфире и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,2 г порошка флорфеникола. Затем по каплям добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 0,8 г белого порошка. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул флорфеникола в альгинате натрия, соотношение ядро : оболочка 1:1
В суспензию 0,5 г альгината натрия в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества, добавляют 0,5 г порошка флорфеникола. Затем по каплям добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 1 г белого порошка. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул флорфеникола в альгинате натрия, соотношение ядро : оболочка 1:2
В суспензию 1,6 г альгината натрия в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,8 г порошка флорфеникола. Затем по каплям добавляют 5 мл хладона-112. Полученную суспензию нанокапсул отфильтровывают и сушат.
Получено 2,4 г белого порошка. Выход составил 100%.

Claims (1)

  1. Способ получения нанокапсул флорфеникола в альгинате натрия, характеризующийся тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок флорфеникола, затем добавляют хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, или 1:1, или 1:2.
RU2018108745A 2018-03-12 2018-03-12 Способ получения нанокапсул флорфеникола в альгинате натрия RU2674666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018108745A RU2674666C1 (ru) 2018-03-12 2018-03-12 Способ получения нанокапсул флорфеникола в альгинате натрия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018108745A RU2674666C1 (ru) 2018-03-12 2018-03-12 Способ получения нанокапсул флорфеникола в альгинате натрия

Publications (1)

Publication Number Publication Date
RU2674666C1 true RU2674666C1 (ru) 2018-12-12

Family

ID=64753345

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018108745A RU2674666C1 (ru) 2018-03-12 2018-03-12 Способ получения нанокапсул флорфеникола в альгинате натрия

Country Status (1)

Country Link
RU (1) RU2674666C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802749C2 (ru) * 2021-07-05 2023-09-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный аграрный университет имени И.И. Иванова" Способ получения нанокапсул нуклеината натрия в альгинате натрия

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2598748C1 (ru) * 2015-05-15 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения нанокапсул адаптогенов в альгинате натрия

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2598748C1 (ru) * 2015-05-15 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения нанокапсул адаптогенов в альгинате натрия

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Солодовник В.Д. Микрокапсулирование, 1980, стр.136-137. Nagavarma B.V.N. Different techniques for preparation of polymeric nanoparticles / Asian Journal Pharm Clin Res, 2012, vol.5, suppl 3, pages 16-23. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802749C2 (ru) * 2021-07-05 2023-09-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный аграрный университет имени И.И. Иванова" Способ получения нанокапсул нуклеината натрия в альгинате натрия

Similar Documents

Publication Publication Date Title
RU2694776C1 (ru) Способ получения нанокапсул доксициклина в гуаровой камеди
RU2646482C2 (ru) Способ получения нанокапсул метронидазола в каррагинане
RU2569736C1 (ru) Способ получения нанокапсул аденина в альгинате натрия
RU2538695C1 (ru) Способ инкапсуляции креатина, обладающего супрамолекулярными свойствами
RU2613108C1 (ru) Способ получения нанокапсул метронидазола в конжаковой камеди
RU2631883C2 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в конжаковой камеди
RU2674666C1 (ru) Способ получения нанокапсул флорфеникола в альгинате натрия
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2731854C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2736049C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2611367C1 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия
RU2730452C1 (ru) Способ получения нанокапсул доксициклина
RU2736053C1 (ru) Способ получения нанокапсул хлорамфеникола (левомицетина)
RU2676677C1 (ru) Способ получения нанокапсул танина
RU2559571C1 (ru) Способ получения нанокапсул албендазола
RU2627580C2 (ru) Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
RU2730844C1 (ru) Способ получения нанокапсул доксициклина
RU2654229C1 (ru) Способ получения нанокапсул витаминов в пектине
RU2611368C1 (ru) Способ получения нанокапсул метронидазола в альгинате натрия
RU2556118C1 (ru) Способ получения нанокапсул сел-плекса, обладающих супрамолекулярными свойствами
RU2669353C1 (ru) Способ получения нанокапсул метронидазола в гуаровой камеди
RU2609824C1 (ru) Способ получения нанокапсул лекарственных препаратов группы пенициллинов в альгинате натрия
RU2691391C1 (ru) Способ получения нанокапсул метронидазола в каппа-каррагинане
RU2564896C2 (ru) Способ инкапсуляции танина
RU2714494C1 (ru) Способ получения нанокапсул циклотетраметилентетранитроамина (бета-октогена)