RU2673589C2 - СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Ti-Al - Google Patents

СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Ti-Al Download PDF

Info

Publication number
RU2673589C2
RU2673589C2 RU2017110549A RU2017110549A RU2673589C2 RU 2673589 C2 RU2673589 C2 RU 2673589C2 RU 2017110549 A RU2017110549 A RU 2017110549A RU 2017110549 A RU2017110549 A RU 2017110549A RU 2673589 C2 RU2673589 C2 RU 2673589C2
Authority
RU
Russia
Prior art keywords
alloy
melting
content
flux
oxygen
Prior art date
Application number
RU2017110549A
Other languages
English (en)
Other versions
RU2017110549A (ru
RU2017110549A3 (ru
Inventor
Фумиаки КУДО
Дайсуке МАЦУВАКА
Тецуси ДЕУРА
Коити САКАМОТО
Даики Такахаси
Хитоси Исида
Original Assignee
Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) filed Critical Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.)
Priority claimed from PCT/JP2015/074970 external-priority patent/WO2016035824A1/ja
Publication of RU2017110549A publication Critical patent/RU2017110549A/ru
Publication of RU2017110549A3 publication Critical patent/RU2017110549A3/ru
Application granted granted Critical
Publication of RU2673589C2 publication Critical patent/RU2673589C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при производстве сплава Ti-Al с низким содержанием кислорода. Способ осуществляют в охлаждаемом водой медном сосуде плавлением сплава Ti-Al, содержащего не меньше 40 мас.% Al и полученного с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, причем этот материал сплава содержит кислород в общем количестве 0,1 мас.% или больше, а раскисление осуществляют путем выдержки в атмосфере с давлением не менее 1,33 Па. Изобретение позволяет получить сплав на основе Ti-Al с низким содержанием кислорода при использовании исходного низкосортного титанового материала с высоким содержанием кислорода, даже не создавая высокого вакуума. 2 з.п. ф-лы, 3 ил., 5 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к способу раскисления сплава Ti-Al для удаления кислорода из сплава Ti-Al, произведенного с использованием материала сплава, который состоит из титанового материала и алюминиевого материала и содержит кислород в суммарном количестве 0,1 мас.% или больше.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[0002] В последние годы постоянно растет потребность в сплаве Ti-Al в качестве металлического материала для самолетов или автомобилей. При производстве титанового сплава, такого как сплав Ti-Al с главным компонентом - титаном, который является активным металлом, необходимо предотвращать загрязнение кислородом во время плавки, и для этого традиционно использовался такой способ плавки, как способ вакуумно-дугового переплава (ВДП), способ электронно-лучевой плавки (ЭЛП), способ плазменно-дуговой плавки (ПДП), способ вакуумно-индукционной плавки (ВИП) и способ индукционной плавки в холодном тигле (ИПХТ).
[0003] Среди этих способов плавки способы ВДП, ЭЛП и ВИП представляют собой способ плавки сплава в вакуумной среде, и когда такой способ плавки используется для плавки сплава Ti-Al, не только Al в качестве элемента сплава, но и Ti испаряются во время плавки, вызывая потерю элемента. Более конкретно, в настоящее время доведение сплава Ti-Al до целевого состава в промышленном процессе является очень трудным, что приводит к увеличению производственных затрат.
[0004] Для выплавки сплава Ti-Al с низким содержанием кислорода эффективно производить сплав Ti-Al с использованием высококачественного титанового материала с низким содержанием кислорода, но поскольку высококачественный титановый материал является дорогим и его цена имеет тенденцию к росту, особенно в последние годы, потребность в производстве сплава Ti-Al путем использования относительно низкосортного титанового материала, имеющего более высокое содержание кислорода, чем высококачественный титановый материал, но являющегося недорогим, такого как губчатый титан, металлолом и рутиловая руда (TiO2), увеличивается день за днем.
[0005] Ti представляет собой активный металл и имеет очень высокую силу связи с примесями, помимо прочих особенно с кислородом, присутствующим в плавильной атмосфере, и меры по уменьшению количества попадающего снаружи во время плавки кислорода и предотвращению загрязнения предпринимались и ранее. Однако очень трудно удалить кислород после того, как он растворился в твердом растворе в Ti, и хотя мало что известно в настоящее время об усилиях, предпринимавшихся непосредственно для этого, предшествующий уровень техники включает в себя следующие предложения.
[0006] Патентный документ 1 раскрывает изобретение, относящееся к способу производства сплава Ti-Al с низким содержанием кислорода и к самому сплаву Ti-Al с низким содержанием кислорода, и в его абзаце [0013] раскрывается, что, «когда Al принудительно удаляется в вакуумной среде с давлением выше чем 1×10-2 мм рт. ст., количество кислорода в расплавленном сплаве соответственно уменьшается, и путем принудительного удаления Al из расплавленного сплава, имеющего состав, содержащий большее количество Al, чем содержание Al в конечном целевом составе, становится возможно получить сплав Ti-Al с конечным целевым составом и уменьшить количество кислорода до 200 млн-1 или меньше».
[0007] Более конкретно, способ производства сплава Ti-Al с низким содержанием кислорода, описанный в патентном документе 1, представляет собой способ производства сплава Ti-Al с низким содержанием кислорода в атмосфере высокого вакуума при давлении ниже чем 1,33 Па (1×10-2 мм рт. ст.), но такая плавка в атмосфере высокого вакуума вызывает потери за счет испарения не только Al как элемента сплава, но и Ti, и хотя этот способ может быть эффективным в качестве способа производства сплава Ti-Al с низким содержанием кислорода, существует беспокойство по поводу увеличения производственных затрат, поскольку нужно добавлять избыточные количества Ti и Al.
[0008] Патентный документ 2 раскрывает изобретение, относящееся к сплаву Ti-Al с низким содержанием кислорода и к способу его производства, и в его абзаце [0010] раскрывается, что «настоящее изобретение было создано для того, чтобы решить вышеописанные проблемы, и задача настоящего изобретения состоит в том, чтобы предложить сплав Ti-Al высокой чистоты с низким содержанием кислорода за счет использования при выплавке сплава, содержащего Ti-Al в качестве главного компонента, раскисления сплава с помощью Ca, испарения/удаления избытка Ca и выполнения однородного плавления без загрязнений, а также способ его производства».
[0009] Этот способ может быть эффективным способом производства сплава Ti-Al с низким содержанием кислорода, но этот способ включает в себя множество стадий добавления и плавления металлического Ca, удаления металлического Ca и плавления для гомогенизации, представляет собой способ, в котором, поскольку металлический Ca растворяется в твердом растворе в титане, полное удаление остающегося Ca затруднительно, и представляет собой способ, страдающий увеличением производственных затрат и времени производства, загрязнением сплава Ti-Al остающимся Ca, который не может быть удален, а также изменением различных свойств.
[0010] Патентный документ 3 раскрывает изобретение, относящееся к способу производства слитка из сплава на основе TiAl, и в его абзаце [0017] раскрывается, что содержание кислорода может быть уменьшено во всех областях слитка. В дополнение к этому, пункт 1 формулы изобретения заявляет «способ производства слитка из сплава на основе TiAl, в котором содержание кислорода в Ti сырье составляет 800 млн-1 или меньше; содержание кислорода в Al сырье составляет 100 млн-1 или меньше; в том случае, когда другим компонентом сплава является Cr, V или Nb, содержание в нем кислорода составляет 2000 млн-1 или меньше; и в том случае, когда другим компонентом сплава является Mn, содержание в нем кислорода составляет 3000 млн-1 или меньше».
[0011] Способ производства слитка из сплава на основе TiAl, описанный в патентном документе 3, является эффективным способом, способным уменьшить содержание кислорода в слитке, но он является способом получения сплава на основе TiAl с низким содержанием кислорода путем использования высококачественного материала с низким содержанием кислорода, а не способом, использующим низкосортный Ti материал с относительно высоким содержанием кислорода. В дополнение к этому, в примерах описан только сплав TiAl с низким содержанием Al в 30 мас.%.
[0012] Патентный документ 4 раскрывает изобретение, относящееся к способу литья сплава титана-алюминия и описывает приготовление сплава титана-алюминия, содержащего заданные количества титана и алюминия, путем плавления губчатого титана в качестве сырья и добавления к расплавленному титану алюминия в качестве сырья, а также в пункте 2 формулы изобретения и в абзаце [0020] раскрывается, что содержание кислорода в губчатом титане составляет 350 млн-1 или меньше, и кроме того, в примерах указывается, что содержание кислорода в губчатом титане составляет 0,03 мас.%.
[0013] В описанном в патентном документе 4 способе литья сплава титана-алюминия в качестве сырья используется высококачественный губчатый титан с содержанием кислорода 350 млн-1 или меньше (что соответствует 0,035 мас.% или меньше), и он является способом получения отливки из сплава титана-алюминия с низким содержанием кислорода, а не способом, использующим низкосортный титановый материал с относительно высоким содержанием кислорода. В дополнение к этому, в примерах описано только литье из сплава титана-алюминия с низким содержанием Al в 34 мас.%.
ЛИТЕРАТУРА УРОВНЯ ТЕХНИКИ
[0014] ПАТЕНТНЫЕ ДОКУМЕНТЫ
Патентный документ 1: JP-A-H05-59466
Патентный документ 2: JP-A-H05-140669
Патентный документ 3: JP-A-2009-113060
Патентный документ 4: JP-A-H05-154642
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ПРОБЛЕМЫ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
[0015] Настоящее изобретение было создано для того, чтобы решить вышеописанные типичные проблемы, и задача настоящего изобретения состоит в том, чтобы предложить способ раскисления сплава Ti-Al, в котором сплав Ti-Al, имеющий целевой состав и низкое содержание кислорода, может быть легко получен при использовании низкосортного титанового материала с высоким содержанием кислорода даже в том случае, когда не создается высокий вакуум.
СРЕДСТВА РЕШЕНИЯ ПРОБЛЕМ
[0016] Способ раскисления сплава Ti-Al включает в себя плавление и выдержку сплава Ti-Al, содержащего 40 мас.% или больше Al, способом плавки с использованием охлаждаемого водой медного сосуда в атмосфере с давлением 1,33 Па или больше, уменьшая тем самым содержание кислорода в сплаве Ti-Al, производимом с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, причем этот материал сплава содержит кислород в суммарном количестве 0,1 мас.% или больше.
[0017] Предпочтительно, чтобы до или во время плавки сплава Ti-Al добавлялся флюс CaO-CaF2, приготовленный смешиванием от 35 до 95 мас.% фторида кальция с оксидом кальция.
[0018] Предпочтительно, чтобы способ плавки с использованием охлаждаемого водой медного сосуда являлся любым из способа дуговой плавки, способа плазменно-дуговой плавки и способа индукционной плавки.
ПРЕИМУЩЕСТВА НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0019] В соответствии со способом раскисления сплава Ti-Al по настоящему изобретению сплав Ti-Al, имеющий целевой состав и низкое содержание кислорода, может быть легко получен с небольшими потерями Al и Ti на испарение (по существу без уменьшения их содержания) при использовании низкосортного недорогого титанового материала, имеющего высокое содержание кислорода 0,1 мас.% или больше даже в том случае, когда не создается высокий вакуум.
[0020] При этом, когда сплав Ti-Al, имеющий содержание Al 40 мас.% или больше и низкое содержание кислорода, полученный способом раскисления сплава Ti-Al по настоящему изобретению, разбавляется титаном с низким содержанием кислорода, сплав Ti-Al, имеющий содержание Al менее 40 мас.% и низкое содержание кислорода, может быть относительно легко произведен с низкими затратами.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0021] [Фиг. 1] Фиг. 1 представляет собой график, иллюстрирующий соотношение между содержанием Al и содержанием кислорода в сплаве Ti-Al после плавки.
[Фиг. 2] Фиг. 2 представляет собой график, иллюстрирующий соотношение между смешиваемым количеством фторида кальция во флюсе CaO-CaF2 и содержанием кислорода в сплаве Ti-Al после плавки.
[Фиг. 3] Фиг. 3 представляет собой график, иллюстрирующий соотношение между временем плавки образца сплава Ti-Al и коэффициентом изменения массы в результате плавки.
[Фиг. 4] Фиг. 4 представляет собой график, иллюстрирующий соотношение между содержанием алюминия в образце сплава Ti-Al и коэффициентом изменения массы в результате плавки.
[Фиг. 5] Фиг. 5 представляет собой график, иллюстрирующий максимальное количество кислорода, растворенного в твердом растворе в сплаве Ti-Al.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0022] Авторы настоящего изобретения провели интенсивные исследования по поиску способа, позволяющего легко производить сплав Ti-Al, имеющий целевой состав и низкое содержание кислорода, с небольшими потерями Al и Ti на испарение (по существу без уменьшения их содержания) при использовании низкосортного титанового материала, содержащего большое количество кислорода, такого как низкосортный губчатый титан, металлолом и рутиловая руда (TiO2), даже в том случае, когда высокий вакуум не создается.
[0023] В соответствии с тройной фазовой диаграммой Ti-Al-O, проиллюстрированной в публикации X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. J. Van. Loo, Acta Metall. Mater., 40 {11} 3147-3157 (1992), максимальное количество кислорода, растворенного в твердом растворе в сплаве Ti-Al, предполагается соответствующим соотношению, обозначенному пунктирной линией на Фиг. 5. Основываясь на этом факте, авторы настоящего изобретения сосредоточили свое внимание на том явлении, что сплав Ti-Al, содержащий высокую концентрацию Al, показывает уменьшение концентрации растворенного кислорода. В результате было найдено, что несмотря на то, что сплав Ti-Al производится с использованием низкосортного титанового материала, при условии, что он представляет собой сплав Ti-Al, содержащий 40 мас.% или больше Al, реакция раскисления продолжается во время плавки с использованием охлаждаемого водой медного сосуда даже без высокого вакуума, и в дополнение к этому, сплав Ti-Al с низким содержанием кислорода, имеющий целевой состав, может быть легко получен с небольшими потерями Al и Ti на испарение (по существу без уменьшения их содержания). Настоящее изобретение было выполнено на основе этого открытия.
[0024] В результате далее продолженных исследований также было найдено, что когда в качестве ускорителя реакции раскисления до или во время плавки сплава Ti-Al добавляется флюс CaO-CaF2, не растворяющийся в твердом растворе в титане и имеющий конкретный компонентный состав, реакция раскисления протекает более надежно. Здесь реакция раскисления за счет добавления к сплаву Ti-Al флюса CaO-CaF2 представляет собой явление, происходящее, когда Al2O3 в качестве продукта раскисления сплава Ti-Al растворяется в твердом растворе в добавленном флюсе CaO-CaF2, и точка плавления флюса CaO-CaF2 должна быть не выше чем почти 1800 К, то есть не выше оценочной температуры плавления сплава Ti-Al.
[0025] Далее настоящее изобретение описывается более подробно на основе вариантов осуществления.
[0026] Способ раскисления сплава Ti-Al по настоящему изобретению представляет собой способ, в котором сплав Ti-Al, содержащий 40 мас.% или больше Al, произведенный с использованием материала сплава, состоящего из титанового материала и алюминиевого материала и содержащего кислород в общем количестве 0,1 мас.% или больше, плавят и выдерживают способом плавки с использованием охлаждаемого водой медного сосуда, таким как способ дуговой плавки, способ плазменно-дуговой плавки и способ индукционной плавки, в атмосфере с давлением 1,33 Па или больше, уменьшая тем самым содержание кислорода в сплаве Ti-Al. В качестве титанового сплава используются низкосортный губчатый титан, металлолом, рутиловая руда (TiO2) и т.д.
[0027] Причина, по которой титановый материал с высоким содержанием кислорода, такой как низкосортный губчатый титан, металлолом и рутиловая руда (TiO2), используется для производства сплава Ti-Al, заключается в том, что эти титановые материалы являются недорогими и простыми в получении. Причина, по которой общее содержание кислорода в материале сплава, состоящем из этого титанового материала и алюминиевого материала, устанавливается равным 0,1 мас.% или больше, заключается в том, что если общее содержание кислорода в материале сплава составляет менее 0,1 мас.%, содержание кислорода невысоко, и само раскисление не является необходимым. В настоящем изобретении верхний предел содержания кислорода не задан, но верхний предел общего содержания кислорода, фактически содержащегося в вышеописанном материале сплава, предположительно составляет примерно 25,0 мас.%.
[0028] Причина, по которой содержание Al в сплаве Ti-Al, производимом с использованием материал сплава, состоящего из титанового материала и алюминиевого материала, устанавливается равным 40 мас.% или больше, заключается в том, что когда содержание Al в сплаве Ti-Al составляет 40 мас.% или больше, реакция раскисления сплава Ti-Al протекает при способе плавки, использующем охлаждаемый водой медный сосуд, таком как способ дуговой плавки, способ плазменно-дуговой плавки и способ индукционной плавки, даже в атмосфере с давлением 1,33 Па или больше, а не в атмосфере высокого вакуума. Реакция раскисления представляет собой явление, происходящее, когда концентрация растворенного кислорода в сплаве Ti-Al, имеющем высокое содержание Al, уменьшается, и избыточный кислород объединяется с Al с образованием Al2O3. Таким образом, кислород удаляется из сплава Ti-Al в виде Al2O3. Когда содержание Al в сплаве Ti-Al составляет 40 мас.% или больше, реакция раскисления протекает при температуре не менее чем примерно 1800 К, при которой плавится сплав Ti-Al.
[0029] В настоящем изобретении верхний предел содержания Al в сплаве Ti-Al, производимом с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, конкретно не задан, но этот верхний предел предпочтительно составляет 70 мас.%, более предпочтительно 60 мас.%, а еще более предпочтительно 50 мас.%. Поскольку сплав Ti-Al содержит отличающийся от Al элемент сплава или примесь, такую как кислород, если содержание Al в качестве элемента сплава является слишком большим, доля Ti уменьшается, и сплав не может быть сплавом Ti-Al. Давление атмосферы устанавливается равным 1,33 Па или больше, и его верхний предел не задан, но фактический верхний предел оценочно может составлять примерно 5,33×105 Па. Нижний предел давления атмосферы предпочтительно составляет 10 Па, более предпочтительно 1,0×102 Па, и, принимая во внимание, например, легкость управления атмосферой, это давление еще более предпочтительно составляет 1,0×104 Па или больше.
[0030] Когда сплав Ti-Al раскисляется, добавляют флюс в качестве ускорителя реакции раскисления до или во время плавки сплава Ti-Al, посредством чего реакция раскисления может протекать более надежно. Флюс, добавляемый в качестве ускорителя реакции раскисления к сплаву Ti-Al, должен быть легкоплавким флюсом, имеющим более низкую температуру плавления, чем температура плавления сплава Ti-Al, и в настоящем изобретении из легкоплавких флюсов используется флюс CaO-CaF2, который был сочтен самым предпочтительным с учетом его характеристик, качества и стоимости.
[0031] В случае производства сплава Ti-Al с низким содержанием кислорода реакция раскисления больше ускоряется за счет добавления флюса CaO-CaF2 к сплаву Ti-Al, но, как было описано выше, реакция раскисления ускоряется, если температура плавления флюса CaO-CaF2 не превышает примерно 1800 К, что является температурой плавления сплава Ti-Al. Причина, по которой реакция раскисления ускоряется при добавлении флюса, заключается в том, что поскольку Al2O3, образующийся при реакции раскисления, абсорбируется флюсом, активность Al2O3 уменьшается, и вместе с ней уменьшается концентрация кислорода.
[0032] Реакция раскисления Al может быть представлена следующей формулой (1), а константа этой реакции может быть представлена формулой (2). В равновесном состоянии Al/Al2O3, создаваемом при реакции раскисления, значение K в соответствии с формулой (2) становится постоянным, но поскольку изменение aAl из-за реакции раскисления практически не происходит, когда aAl2O3 в следующей формуле (2) уменьшается (близко к нулю при абсорбции флюсом), PO2 (концентрация содержащегося кислорода) в формуле (2) соответственно уменьшается.
2Al(в Al)+3/2O2(в сплаве Ti-Al) = Al2O3... формула (1)
K = aAl2O3/(aAl2⋅PO2 3/2)... формула (2)
[0033] Если смешиваемое количество фторида кальция во флюсе CaO-CaF2 составляет меньше 35 мас.%, температура плавления флюса CaO-CaF2 превышает 1800 К, и активность по ускорению реакции раскисления за счет добавления флюса CaO-CaF2 не может быть получена. С другой стороны, если смешиваемое количество фторида кальция превышает 95 мас.%, образуется загрязнение фтором. Соответственно, в настоящем изобретении добавляется флюс CaO-CaF2, приготавливаемый смешиванием от 35 до 95 мас.% фторида кальция с оксидом кальция. Смешиваемое количество фторида кальция во флюсе CaO-CaF2 более предпочтительно составляет от 60 до 90 мас.%. Добавляемое количество флюса CaO-CaF2 предпочтительно составляет от 5 до 20 мас.% от массы сплава Ti-Al.
[0034] Способ раскисления сплава Ti-Al по настоящему изобретению был объяснен как способ уменьшения содержания кислорода в сплаве Ti-Al с небольшими потерями Al и Ti на испарение (по существу без уменьшения их содержания), и по существу допустимый коэффициент уменьшения содержания Al или Ti составляет 5,0% или меньше. Таким образом, «по существу» означает 5,0% или меньше.
ПРИМЕРЫ
[0035] Настоящее изобретение более подробно описывается ниже с использованием Примеров, но настоящее изобретение не ограничивается этими Примерами и может быть осуществлено при подходящем внесении изменений, при условии, что эти изменения соответствуют сути настоящего изобретения, и все такие изменения входят в техническую объем настоящего изобретения.
Соотношение между содержанием Al в сплаве Ti-Al и содержанием кислорода после плавки
● Способ плазменно-дуговой плавки, без добавления флюса
[0036] Раскисление сплава Ti-Al с содержанием кислорода 0,8 мас.%, произведенного с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, проводили путем плавления, а затем выдержки сплава в плазменно-дуговой печи мощностью 100 кВт с использованием охлаждаемого водой медного сосуда. Для изучения влияния содержания Al в сплаве Ti-Al на вызываемую плавкой реакцию раскисления подготовили образцы, произведенные с использованием сплавов Ti-Al, имеющих содержание Al в 10 мас.%, 20 мас.%, 30 мас.%, 40 мас.%, 50 мас.% и 60 мас.% соответственно. При этом масса каждого образца составляла 100 г, в качестве плазмообразующего газа использовался только аргон (Ar), а давление во время плавки составляло 1,20×105 Па. Фиг. 1 иллюстрирует соотношение между концентрацией Al (содержанием Al) в сплаве Ti-Al после плавления и выдержки, осуществленных в плазменно-дуговой печи мощностью 100 кВт, и концентрацией кислорода (содержанием кислорода) после плавки.
[0037] Как видно из Фиг. 1, содержание кислорода после плавки сплава Ti-Al составило около 0,8 мас.% и не менялось, когда содержание Al составляло от 10 до 30 мас.%, но в сплавах Ti-Al с содержанием Al 40 мас.% или больше содержание кислорода уменьшалось после плавки. На основании этого результата установлено, что когда содержание Al в сплаве Ti-Al составляет 40 мас.% или больше, при плавке протекает реакция раскисления.
● Способ плазменно-дуговой плавки, с добавлением флюса
[0038] В отношении сплавов Ti-Al с содержанием Al 30 мас.%, 40 мас.% и 60 мас.%, в которых содержание кислорода уменьшалось после плавки в вышеописанном испытании, для того, чтобы исследовать, как ускоряется реакция раскисления при добавлении флюса CaO-CaF2, раскисление сплава Ti-Al с помощью плазменно-дуговой плавки проводили при полностью тех же самых условиях, что и в случае без добавления флюса CaO-CaF2, за исключением собственно добавления флюса. Смешиваемое количество фторида кальция во флюсе CaO-CaF2 составляло 80 мас.%, и количество добавляемого флюса CaO-CaF2 было равно 5 г. Результаты проиллюстрированы на Фиг. 1.
[0039] Как видно из Фиг. 1, когда добавлялся флюс CaO-CaF2, для обоих случаев, когда содержание Al было равно 40 мас.% или 60 мас.%, раскисление ускорялось больше по сравнению с тем случаем, когда флюс CaO-CaF2 не добавлялся. Содержание кислорода (массовая доля, в дальнейшем содержание кислорода указывается в массовых долях) в сплаве Ti-Al после плавки в случае содержания Al 40 мас.% составило 5400 млн-1 без добавления флюса CaO-CaF2 и 2400 млн-1 с добавлением флюса CaO-CaF2, а в случае содержания Al 60 мас.% оно составило 280 млн-1 без добавления флюса CaO-CaF2 и 220 млн-1 с добавлением флюса CaO-CaF2.
● В случае использования титаноксидного материала в качестве титанового материала
[0040] Отдельно проводили раскисление сплава Ti-Al с содержанием кислорода 16,3 мас.%, произведенного с использованием материала сплава, состоящего из титаноксидного материала и алюминиевого материала, путем плавления, а затем выдержки сплава в плазменно-дуговой печи мощностью 100 кВт с использованием охлаждаемого водой медного сосуда. При этом содержание Al в сплаве Ti-Al было задано равным 60 мас.%, и раскисление проводили в обоих случаях - с добавлением и без добавления флюса CaO-CaF2. В качестве плазмообразующего газа использовался только Ar, давление во время плавки составляло 1,20×105 Па, смешиваемое количество фторида кальция во флюсе CaO-CaF2 было равно 80 мас.%, а количество добавленного флюса CaO-CaF2 составило 5 г.
[0041] Содержание кислорода в сплаве Ti-Al после плавления и выдержки составило примерно 540 млн-1 без добавления флюса CaO-CaF2, и даже в материале с содержанием кислорода более 10 мас.%, произведенном с использованием оксида титана в качестве сырья, эффект раскисления был достоверно проявлен. В случае добавления флюса CaO-CaF2 содержание кислорода в сплаве Ti-Al составило примерно 330 млн-1, и было подтверждено, что при добавлении флюса проявляется более сильный эффект раскисления.
● Способ индукционной плавки, без добавления флюса
[0042] Испытание по раскислению сплава Ti-Al с содержанием кислорода 0,8 мас.%, произведенного с использованием способа индукционной плавки в охлаждаемом водой медном сосуде вместо способа плазменно-дуговой плавки, проводили тем же самым образом, что и в случае способа плазменно-дуговой плавки. Для изучения влияния содержания Al в сплаве Ti-Al на реакцию раскисления были получены сплавы Ti-Al, имеющие содержание Al в 37 мас.%, 39 мас.% и 51 мас.%. При этом в каждой плавке расплавляемое количество составляло 20 кг, атмосферой в плавильной камере был Ar, а давление во время плавки составляло 7,0×104 Па. Фиг. 1 иллюстрирует соотношение между концентрацией Al (содержанием Al) и концентрацией кислорода (содержанием кислорода) в сплаве Ti-Al после плавления и выдержки, осуществленных с использованием индукционной плавильной печи, вместе с аналогичными данными для случая использования способа плазменно-дуговой плавки.
[0043] Как видно из Фиг. 1, аналогично случаю использования способа плазменно-дуговой плавки, содержание кислорода после плавки уменьшалось в окрестности области, где содержание Al превышало 40 мас.%. На основании этого результата установлено, что аналогично способу плазменно-дуговой плавки, когда содержание Al в сплаве Ti-Al составляет 40 мас.% или больше, реакция раскисления при плавлении протекает также и в случае способа индукционной плавки.
● Способ индукционной плавки, с добавлением флюса
[0044] В отношении сплавов Ti-Al с содержанием Al 40 мас.%, 48 мас.% и 59 мас.% для изучения того, как реакция раскисления ускоряется при добавлении флюса CaO-CaF2, проводили раскисление сплава Ti-Al способом индукционной плавки с использованием охлаждаемого водой медного сосуда. В данном случае при каждой плавке атмосферой в плавильной камере был Ar, давление во время плавки составляло 7,0×104 Па, смешиваемое количество фторида кальция во флюсе CaO-CaF2 было равно 80 мас.%, а количество добавленного флюса CaO-CaF2 составляло 10% от массы металла. Результаты показаны на Фиг. 1.
[0045] Как видно из Фиг. 1, даже при использовании способа индукционной плавки в охлаждаемом водой медном сосуде, в случае добавления флюса CaO-CaF2, раскисление было ускорено больше во всех случаях, где содержание Al составляло 40 мас.%, 48 мас.% и 59 мас.%, по сравнению со случаем без добавления флюса CaO-CaF2.
Смешиваемое количество фторида кальция во флюсе CaO-CaF2
[0046] Раскисление сплава Ti-Al проводили плазменно-дуговой плавкой с использованием плазменно-дуговой печи мощностью 100 кВт при тех же самых условиях, что и в вышеприведенных Примерах, за исключением того, что использовали сплав Ti-Al с содержанием Al 40 мас.% и изменяли смешиваемое количество фторида кальция в добавляемом флюсе CaO-CaF2. Флюс CaO-CaF2 предварительно распределяли по сплаву Ti-Al перед плавкой. Результаты показаны на Фиг. 2.
[0047] Исходя из 5400 млн-1 содержания кислорода после плавки, когда флюс CaO-CaF2 не добавлялся, была проверена степень эффекта ускорения реакции раскисления за счет добавления флюса CaO-CaF2. Как видно из Фиг. 2, наиболее заметный эффект ускорения реакции раскисления был получен, когда добавляли флюс CaO-CaF2, приготовленный смешиванием от 60 до 90 мас.% фторида кальция с оксидом кальция, но высокий эффект ускорения реакции раскисления наблюдался также и тогда, когда добавляли 40 мас.% или более фторида кальция. На основании этого результата испытания установлено, что эффект раскисления получается при добавлении флюса CaO-CaF2, приготовленного смешиванием от 35 до 95 мас.% фторида кальция с оксидом кальция. Как видно из Фиг. 2, когда был добавлен флюс CaO-CaF2, приготовленный смешиванием 30 мас.% фторида кальция с оксидом кальция, раскисление не ускорялось. Причина этого заключается в том, что флюс CaO-CaF2 не плавился из-за его слишком высокой температуры плавления.
Изменения массы и содержания Al в сплаве Ti-Al до и после плавки
[0048] Выход материала, на который влияет испарение при плавлении сплава Ti-Al с использованием плазменно-дуговой печи мощностью 100 кВт, оценивали путем измерения изменений в массе и содержании Al для каждого из вышеописанных образцов между моментами до и после плавки. При этом в качестве плазмообразующего газа использовался только Ar, а давление во время плавки было равно 1,20×105 Па.
[0049] Фиг. 3 иллюстрирует соотношение между временем плавки и коэффициентом изменения массы образца между моментами до и после плавки. Как видно из Фиг. 3, изменение массы образца между моментами до и после плавки (т.е. в результате плавки) практически не наблюдалось. Фиг. 4 иллюстрирует соотношение между концентрацией (содержанием) Al в образце и коэффициентом изменения массы в результате плавки. Как видно из Фиг. 4, изменение массы образца в результате плавки почти не наблюдалось, что означает, что Al не испарялся при плавке с использованием плазменно-дуговой печи мощностью 100 кВт. Из этих результатов установлено, что при плавке с использованием плазменно-дуговой печи, которая является примером плавки с использованием охлаждаемого водой медного сосуда, Al в качестве элемента сплава и кроме того Ti не испаряются во время плавки сплава Ti-Al.
[0050] Хотя настоящее изобретение было подробно описано со ссылками на конкретные варианты его осуществления, специалисту в данной области техники будет очевидно, что в нем могут быть проделаны различные изменения и модификации без отступлений от сути и объема настоящего изобретения.
Настоящая заявка основана на японской патентной заявке № 2014-180431, поданной 4 сентября 2014 г., японской патентной заявке № 2014-180432, поданной 4 сентября 2014 г., японской патентной заявке № 2015-6764, поданной 16 января 2015 г., японской патентной заявке № 2015-6765, поданной 16 января 2015 г., и японской патентной заявке № 2015-131029, поданной 30 июня 2015 г., содержания которых включены в настоящий документ посредством ссылки.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
[0051] В соответствии с настоящим изобретением сплав Ti-Al с низким содержанием кислорода может быть получен с низкими затратами, и этот способ является полезным в качестве способа производства металлического материала для самолетов или автомобилей.

Claims (3)

1. Способ производства сплава Ti-Al с низким содержанием кислорода, отличающийся тем, что в охлаждаемом водой медном сосуде осуществляют плавление сплава Ti-Al, содержащего не меньше 40 мас.% Al и полученного с использованием материала сплава, состоящего из титанового материала и алюминиевого материала, причем упомянутый материал сплава содержит кислород в общем количестве 0,1 мас.% или больше, и раскисление путем выдержки в атмосфере с давлением не менее 1,33 Па.
2. Способ по п. 1, отличающийся тем, что до или во время плавки сплава Ti-Al добавляют флюс CaO-CaF2, приготовленный смешиванием от 35 до 95 мас.% фторида кальция с оксидом кальция.
3. Способ по п. 1 или 2, отличающийся тем, что используют дуговую плавку, плазменно-дуговую плавку или индукционную плавку.
RU2017110549A 2014-09-04 2015-09-02 СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Ti-Al RU2673589C2 (ru)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2014180432 2014-09-04
JP2014-180432 2014-09-04
JP2014180431 2014-09-04
JP2014-180431 2014-09-04
JP2015006764 2015-01-16
JP2015006765 2015-01-16
JP2015-006765 2015-01-16
JP2015-006764 2015-01-16
JP2015131029A JP6392179B2 (ja) 2014-09-04 2015-06-30 Ti−Al系合金の脱酸方法
JP2015-131029 2015-06-30
PCT/JP2015/074970 WO2016035824A1 (ja) 2014-09-04 2015-09-02 Ti-Al系合金の脱酸方法

Publications (3)

Publication Number Publication Date
RU2017110549A RU2017110549A (ru) 2018-10-08
RU2017110549A3 RU2017110549A3 (ru) 2018-10-08
RU2673589C2 true RU2673589C2 (ru) 2018-11-28

Family

ID=56512486

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017110549A RU2673589C2 (ru) 2014-09-04 2015-09-02 СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Ti-Al

Country Status (6)

Country Link
US (1) US20170283906A1 (ru)
EP (1) EP3190196B1 (ru)
JP (1) JP6392179B2 (ru)
CN (1) CN106661670B (ru)
AU (1) AU2015312896B2 (ru)
RU (1) RU2673589C2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072434A1 (ja) 2014-11-04 2016-05-12 株式会社神戸製鋼所 Al-Nb-Ti系合金の脱酸方法
US11377714B2 (en) 2017-02-23 2022-07-05 Kobe Steel, Ltd. Method for producing Ti-Al alloy
JP7412197B2 (ja) * 2020-02-03 2024-01-12 株式会社神戸製鋼所 Ti-Al系合金の製造方法
CN112809013B (zh) * 2020-12-30 2022-05-27 中国科学院过程工程研究所 一种Ti-6Al-4V合金粉的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559466A (ja) * 1991-08-30 1993-03-09 Kobe Steel Ltd 低酸素Ti−Al系合金の製造方法および低酸素Ti−Al系合金
JPH05140669A (ja) * 1991-11-15 1993-06-08 Kobe Steel Ltd 低酸素Ti−Al系合金およびその製造方法
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
RU2269584C1 (ru) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Сплав на основе титана
RU2463365C2 (ru) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711039B2 (ja) * 1990-08-24 1995-02-08 京都大学長 金属間化合物Al▲下3▼Tiの製造方法
JP3046349B2 (ja) * 1990-11-14 2000-05-29 ゼネラル・エレクトリック・カンパニイ クロミウム及びニオビウムで改良したチタニウム−アルミニウムの処理方法
US5102450A (en) * 1991-08-01 1992-04-07 General Electric Company Method for melting titanium aluminide alloys in ceramic crucible
JP3125393B2 (ja) * 1991-12-06 2001-01-15 日本鋼管株式会社 チタン−アルミニウム合金鋳造物の鋳造方法
US6004368A (en) * 1998-02-09 1999-12-21 Hitchiner Manufacturing Co., Inc. Melting of reactive metallic materials
CN1158397C (zh) * 2001-11-21 2004-07-21 中国科学院金属研究所 一种钛铝合金真空感应熔炼技术
JP5048222B2 (ja) * 2005-04-01 2012-10-17 株式会社神戸製鋼所 活性高融点金属合金の長尺鋳塊製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559466A (ja) * 1991-08-30 1993-03-09 Kobe Steel Ltd 低酸素Ti−Al系合金の製造方法および低酸素Ti−Al系合金
JPH05140669A (ja) * 1991-11-15 1993-06-08 Kobe Steel Ltd 低酸素Ti−Al系合金およびその製造方法
US5332545A (en) * 1993-03-30 1994-07-26 Rmi Titanium Company Method of making low cost Ti-6A1-4V ballistic alloy
RU2269584C1 (ru) * 2004-07-30 2006-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Сплав на основе титана
RU2463365C2 (ru) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr

Also Published As

Publication number Publication date
AU2015312896B2 (en) 2018-10-18
EP3190196A4 (en) 2018-03-28
RU2017110549A (ru) 2018-10-08
RU2017110549A3 (ru) 2018-10-08
JP6392179B2 (ja) 2018-09-19
US20170283906A1 (en) 2017-10-05
CN106661670B (zh) 2018-05-04
EP3190196B1 (en) 2019-05-01
CN106661670A (zh) 2017-05-10
EP3190196A1 (en) 2017-07-12
AU2015312896A1 (en) 2017-03-30
JP2016135907A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
RU2673589C2 (ru) СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Ti-Al
CN107587012B (zh) 一种轻质铸造Al-Si-Li合金材料及其制备方法
CN107675038B (zh) 一种轻质铸造Al-Si-Li-Cu合金材料及其制备方法
WO2016035824A1 (ja) Ti-Al系合金の脱酸方法
TWI518183B (zh) Corrosion resistant high nickel alloy and its manufacturing method
JPS63100150A (ja) チタン合金製造用マスター合金とこのマスター合金の製造方法
CN107699747B (zh) 一种高Cu含量Al-Si-Li-Cu铸造合金及其制备方法
EP3192883B1 (en) Ai alloy containing cu and c and its manufacturing method
KR101488195B1 (ko) 페로바나듐을 활용한 티타늄 합금의 제조방법 및 이에 의해 제조된 티타늄 합금
JP6513530B2 (ja) Ti−Si系合金の脱酸方法
JPH05140669A (ja) 低酸素Ti−Al系合金およびその製造方法
RU2665654C1 (ru) СПОСОБ РАСКИСЛЕНИЯ СПЛАВА Al-Nb-Ti
US11319614B2 (en) Method for deoxidizing Al—Nb—Ti alloy
CN112853129A (zh) 一种含铝钛合金的短流程制备方法
JP2021519389A (ja) ケイ素系合金、その製造方法、及びこのような合金の使用
JP6544638B2 (ja) Ti含有マルエージング鋼の製造方法及びそのプリフォームの製造方法
JPH04120225A (ja) Ti―Al系合金の製造方法
RU2557438C1 (ru) Жаропрочный сплав на основе хрома и способ выплавки сплава на основе хрома
LU504446B1 (en) Method for preparing rare earth steel
JPH0559466A (ja) 低酸素Ti−Al系合金の製造方法および低酸素Ti−Al系合金
Wei et al. Effects of small addition of In on the structure of the rapidly cooled Sn–Ag–Zn solder
Matsuwaka et al. Deoxygenation of liquid titanium with aluminum addition
Min et al. Technology for the Production of High-Melting-Point Metal Master Alloys and their Testing in the Melting of Foundry Heat-Resistant Nickel Alloys
ČEGAN et al. Effect of annealing on microstructure and properties of yttrium alloyed intermetallics Ti-47Al
JPS59153824A (ja) マルエ−ジング鋼の製造法