RU2673421C1 - Способ автономного управления строем космических аппаратов - Google Patents

Способ автономного управления строем космических аппаратов Download PDF

Info

Publication number
RU2673421C1
RU2673421C1 RU2017118680A RU2017118680A RU2673421C1 RU 2673421 C1 RU2673421 C1 RU 2673421C1 RU 2017118680 A RU2017118680 A RU 2017118680A RU 2017118680 A RU2017118680 A RU 2017118680A RU 2673421 C1 RU2673421 C1 RU 2673421C1
Authority
RU
Russia
Prior art keywords
spacecraft
signals
leading
psr
received
Prior art date
Application number
RU2017118680A
Other languages
English (en)
Inventor
Михаил Викторович Яковлев
Дмитрий Михайлович Яковлев
Original Assignee
Михаил Викторович Яковлев
Дмитрий Михайлович Яковлев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Михаил Викторович Яковлев, Дмитрий Михайлович Яковлев filed Critical Михаил Викторович Яковлев
Priority to RU2017118680A priority Critical patent/RU2673421C1/ru
Application granted granted Critical
Publication of RU2673421C1 publication Critical patent/RU2673421C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение относится к управлению групповым полетом космических аппаратов (КА) с использованием чувствительных элементов. Согласно способу на КА устанавливают приемно-передающие радиотехнические устройства, лазерные излучатели и приемники оптических сигналов. На ведущем КА размещают позиционно-чувствительный приемник (ПЧП) сигналов в виде набора плоских детекторов, расположенных на поверхности сферы. Ориентируют лазерные излучатели ведомых КА на ПЧП ведущего КА. Оптические сигналы принимаются ПЧП и одновременно отражаются от плоских детекторов ПЧП и принимаются на ведомых КА. По параметрам этих сигналов регулируют, посредством радиокоманд с ведущего КА на ведомые КА, относительное движение и положение КА в составе строя. Технический результат состоит в обеспечении автономного управления группой КА без привлечения спутниковых навигационных систем и наземных комплексов управления.

Description

Изобретение относится к области средств наблюдения или слежения за полетом космических аппаратов (КА) и может быть использовано для автономного управления строем космических аппаратов. Примером таких ситуаций может служить формирование и практическое использование распределенных в пространстве упорядоченных структур космических аппаратов для решения задач дистанционного зондирования Земли с использованием оптических средств или средств радиолокации.
Известно защищенное патентом изобретение - аналог: заявка №2012104591/11, МПК B64G, 2012 год «Метод точного позиционирования и мониторинга подвижных объектов» (В. Заренков, Д. Заренков, В. Дикарев, Б. Койнаш). Метод основан на использовании спутниковой навигации, позволяет определять мобильные координаты объекта и управлять объектом в полете. Метод реализуется с использованием системы технических средств, включающей навигационные космические аппараты, станции коррекции, аппаратные средства телевизионного центра, аппаратные средства космической связи, аппаратные средства контролируемого подвижного объекта и станции контроля за космическим полетом. Все перечисленные средства функционируют одновременно с использованием специально разработанных алгоритмов. Технический результат - высокая надежность и точность дискретных сигналов, которыми обмениваются телевизионные центры и космические объекты, что, в свою очередь, обеспечивает высокую точность позиционирования и мониторинга подвижных объектов. К недостаткам метода следует отнести высокую сложность его реализации.
Известно защищенное патентом изобретение - аналог: заявка №2008133984/09, МПК B64G 4/00, 2008 год «Устройство контроля относительного(ых) положения(ий) путем измерений мощности для космического аппарата группы космических аппаратов при полете строем» (Френкиель Ролан (FR), Мелен Кристиан (FR)), предназначенное для управления космическими аппаратами при их перемещении строем. Устройство осуществляет контроль относительных положений космических аппаратов по отношению друг к другу и содержит:
- комплекс, по меньшей мере, из трех приемоизлучающих антенн, установленных на, по меньшей мере, трех сторонах разного направления относительно данного космического аппарата, и способных излучать/принимать радиочастотные сигналы;
- средства измерения, предназначенные для определения мощности сигналов, принимаемых каждой из антенн, и выдачи совокупностей мощностей, каждая из которых связана с одним из космических аппаратов группы, расположенных вокруг данного космического аппарата;
- запоминающие средства, предназначенные для хранения совокупностей картографических данных, каждая из которых характеризует нормализованные мощности сигналов, принятых каждой из антенн в зависимости от выбранных направлений передачи;
- средства обработки, предназначенные для сравнения каждой совокупности мощностей, выдаваемой средствами измерения, с совокупностями хранящихся картографических данных.
В результате работы устройства определяется каждое из направлений передачи сигналов, излучаемых другими космическими аппаратами группы по отношению к системе координат, привязанной к данному космическому аппарату. Техническим результатом использования рассматриваемого способа является обеспечение позиционирования группы космических аппаратов относительно друг друга с точностью, необходимой для совместного выполнения задания. К недостаткам устройства следует отнести необходимость размещения на борту КА радиопередающей аппаратуры, что увеличивает массу и габаритные характеристики космического аппарата и требует дополнительных затрат бортовой энергетики.
Известно защищенное патентом изобретение - аналог: заявка №2013136260/11, патент №2558959, МПК B64G 1/10, 1/24, 2013 год «Способ мониторинговой коллокации на геостационарной орбите» (Афанасьев С.М., Анкудинов А.В., Мухин В.А., Юксеев В.А.), предназначенный для управления движением группы (кластера) КА, преимущественно геостационарных спутников Земли. Согласно способу линии узлов и линии апсид орбит мониторингового КА (МКА) и смежных КА (СКА) поддерживают ортогональными. Сумма эксцентриситетов орбит должна составлять ~ 0,0004, а наклонение орбиты МКА относительно орбиты СКА - не менее (14-15) угловых секунд. С этой целью проводят регулярные коррекции для удержания концов (фазовых) векторов наклонения и эксцентриситета в требуемых областях прицеливания. Кроме того, корректируют долготы (периоды обращения) так, чтобы начало осей координат (отклонений вдоль орбиты и по радиусу-вектору) совпадало в заданных пределах с центром эллипса дистанцирования от СКА. Переопределяют центры областей прицеливания при корректировке стратегии управления движением центра масс СКА. При снижении уровня приема на МКА излучения антенн, установленных на СКА, переходят в режим приема информации для СКА с наземных антенн. В случае уверенного приема на МКА сигналов указанных антенн СКА осуществляют непосредственный круглосуточный мониторинг СКА двумя МКА. Данные МКА установлены на диаметрально противоположных сторонах указанного эллипса дистанцирования. Техническим результатом изобретения является удержание КА на рабочей позиции без помех другим КА и мониторингу СКА. Недостатком способа является необходимость перехода в режим приема информации для СКА с антенн наземных комплексов управления (НКУ) при снижении уровня приема на МКА излучения антенн, установленных на СКА, что исключает возможность работы группы КА в автономном режиме.
Известно изобретение - аналог: патент №2619168, МПК B64G 3/00, 2015 год, «Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому принимают сигналы, излучаемые приближающимся активным объектом, измеряют амплитуду и выполняют обработку принимаемых сигналов. Для приема сигналов применяют детекторы плоской формы. Детекторы располагают на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал - поглотитель излучения. Направление на активный приближающийся объект определяют по радиус-вектору, направленному на детектор с максимальной амплитудой регистрируемого сигнала. Недостатком способа является невозможность определения расстояния до источника оптических сигналов.
Известен защищенный патентом на изобретение - прототип: патент №2600039, заявка №2015121470/11, МПК B64G 1/36, 21/00, 2015 год «Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления» (Бронников С.В., Рожков А.С., Поздняков П.А., Рулев Д.Н., Волоховский Д.А., Привалов Ю.А., Набок А.А.). В данном способе определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют измерение параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения. По измеренным значениям параметров определяют значения координат местоположений излучателей в базовой системе координат. Система определения положения объекта включает оптические системы, блоки задания параметров оптических систем, определения параметров положения объекта, средства сопряжения радиоустройств с блоками излучателей инфракрасных сигналов, блоки позиционно-чувствительных детекторов инфракрасного излучения, блоки формирования данных приема инфракрасных сигналов, средства сопряжения радиоустройств с блоками формирования данных приема инфракрасных сигналов, радиоприемо-передающие устройства, блок формирования команд управления излучением и приемом инфракрасных сигналов. Техническим результатом группы изобретений является обеспечение определения положения объекта с подвижными частями. Недостатком способа-прототипа является невозможность его использования для управления строем космических аппаратов, что следует из отсутствия в формуле изобретения признаков воздействия на движение декларируемых в изобретении объектов до достижения ими пространственной структуры с заданными характеристиками.
Целью предполагаемого изобретения является автономное управление строем космических аппаратов.
Указанная цель достигается в заявляемом способе автономного управления строем космических аппаратов, согласно которому на космических аппаратах устанавливают приемно-передающие радиотехнические устройства, излучатели и приемники оптических сигналов, позиционно-чувствительный приемник оптических сигналов ведущего космического аппарата выполняют в виде набора плоских детекторов, расположенных на поверхности сферической оболочки, измеряют, запоминают и обрабатывают оптические сигналы. Ориентируют лазерные излучатели ведомых космических аппаратов на позиционно-чувствительный приемник ведущего космического аппарата. По показаниям сигналов оптического излучения, принятого позиционно-чувствительным приемником на борту ведущего космического аппарата и одновременно отраженного от поверхности плоских детекторов и принятого на борту ведомых космических аппаратов, регулируют относительное движение и положение ведомых космических аппаратов в составе строя. По радиокомандам ведущего космического аппарата корректируют расстояние между ведущим космическим аппаратом и ведомыми космическими аппаратами до достижения требуемых характеристик строя.
Обоснование реализуемости и практической значимости заявляемого способа заключается в следующем.
Термин «позиционно-чувствительный» связан с особенностями конструкции приемника, в котором детекторы расположены на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Каждый из детекторов регистрирует излучение в пределах телесного угла 2π, при этом амплитуда сигнала пропорциональна косинусу угла падения луча на поверхность детектора. Поэтому нормаль к поверхности детектора с максимальной амплитудой сигнала указывает направление на источник излучения. Погрешность измерений определяется величиной телесного угла, равного отношению площади детектора к квадрату радиуса сферической оболочки, на которой он расположен.
Оптическим сигналам присваивают характерный признак ведомого КА, что обеспечивает их распознавание позиционно-чувствительным приемником и последующую раздельную обработку вычислительными средствами ведущего КА. Положение позиционно-чувствительного приемника фиксируют по отношению к собственной системе координат ведущего КА. Излучатели и приемники оптических сигналов ведомых КА монтируют совместно на поворотных шарнирных устройствах, обеспечивающих изменение направления лазерного излучения в пределах угла 2π стерадиан. Расположение поворотных шарнирных устройств в конструкции ведомых КА определяют с учетом технологии разведения КА в процессе выведения на заданную орбиту и требований к геометрии строя КА для выполнения целевых задач.
В начале функционирования методом сканирования ориентируют лазерные излучатели ведомых КА на позиционно-чувствительный приемник ведущего КА из условия регистрации максимума сигнала оптического излучения, отраженного от поверхности плоских детекторов и принятого на борту ведомых КА. Для повышения оперативности поиска варьируют углом расходимости лазерного пучка.
По сигналам оптического излучения, принятого на ведущем КА и одновременно отраженного от поверхности плоских детекторов и принятого на ведомых КА, управляют относительным движением ведомых КА в составе строя и одновременно регулируют ориентацию установленных на них лазерных излучателей.
По командам вычислительного устройства ведущего КА, передаваемым по радиоканалу, формируют заданное пространственное расположение ведомых КА путем изменения состава детекторов позиционно-чувствительного приемника, регистрирующих максимальную амплитуду сигнала оптического излучения от ведомых КА. Указанный процесс продолжают до появления максимальной амплитуды сигнала в детекторах позиционно-чувствительного приемника, ориентация которых отвечает заданным направлениям на ведомые КА в составе строя. Далее по сигналам оптического излучения, отраженного от поверхности плоских детекторов и принимаемого на борту ведомых КА, и радиокомандам ведущего КА корректируют расстояние между ведущим КА и ведомыми КА до значений, заданных в требованиях по характеристикам строя.
Заявляемый способ обеспечивает автономное управление группой КА без привлечения спутниковых навигационных систем и наземных комплексов управления, что определяет его преимущества и практическую значимость по сравнению с заявками-аналогами №№2012104591/11, 2013136260/11. Излучатели зондирующих сигналов и позиционно-чувствительный приемник работают в оптическом диапазоне спектра, что обеспечивает снижение весогабаритных характеристик бортовой аппаратуры в сравнении с радиотехническими системами в заявке №2008133984/09.
Таким образом, техническая возможность реализации заявляемого способа автономного управления строем космических аппаратов и его практическая значимость не вызывают сомнений.

Claims (1)

  1. Способ автономного управления строем космических аппаратов, согласно которому на космических аппаратах устанавливают приемно-передающие радиотехнические устройства, излучатели и приемники оптических сигналов, позиционно-чувствительный приемник оптических сигналов ведущего космического аппарата выполняют в виде набора плоских детекторов, расположенных на поверхности сферической оболочки, измеряют, запоминают и обрабатывают оптические сигналы, причем ориентируют лазерные излучатели ведомых космических аппаратов на позиционно-чувствительный приемник ведущего космического аппарата, по показаниям сигналов оптического излучения, принятого на ведущем космическом аппарате и одновременно отраженного от поверхности плоских детекторов и принятого на ведомых космических аппаратах, регулируют относительное движение и положение ведомых космических аппаратов в составе строя, по радиокомандам ведущего космического аппарата корректируют расстояние между ведущим космическим аппаратом и ведомыми космическими аппаратами до достижения требуемых характеристик строя.
RU2017118680A 2017-05-29 2017-05-29 Способ автономного управления строем космических аппаратов RU2673421C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017118680A RU2673421C1 (ru) 2017-05-29 2017-05-29 Способ автономного управления строем космических аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017118680A RU2673421C1 (ru) 2017-05-29 2017-05-29 Способ автономного управления строем космических аппаратов

Publications (1)

Publication Number Publication Date
RU2673421C1 true RU2673421C1 (ru) 2018-11-26

Family

ID=64556415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118680A RU2673421C1 (ru) 2017-05-29 2017-05-29 Способ автономного управления строем космических аппаратов

Country Status (1)

Country Link
RU (1) RU2673421C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720856C1 (ru) * 2019-11-07 2020-05-13 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2047911C1 (ru) * 1992-07-09 1995-11-10 Геннадий Александрович Долгополов Способ представления световых изображений на небесной сфере
US6866232B1 (en) * 2002-10-18 2005-03-15 Lockheed Martin Corporation Automated docking of space vehicle
RU2542820C2 (ru) * 2013-04-16 2015-02-27 Николай Васильевич Симкин Способ посадки летательного аппарата
US20150346355A1 (en) * 2010-08-18 2015-12-03 Savannah River Nuclear Solutions, Llc Position and orientation determination system and method
RU2600039C1 (ru) * 2015-06-04 2016-10-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления
RU2619168C1 (ru) * 2015-12-07 2017-05-12 Михаил Викторович Яковлев Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2047911C1 (ru) * 1992-07-09 1995-11-10 Геннадий Александрович Долгополов Способ представления световых изображений на небесной сфере
US6866232B1 (en) * 2002-10-18 2005-03-15 Lockheed Martin Corporation Automated docking of space vehicle
US20150346355A1 (en) * 2010-08-18 2015-12-03 Savannah River Nuclear Solutions, Llc Position and orientation determination system and method
RU2542820C2 (ru) * 2013-04-16 2015-02-27 Николай Васильевич Симкин Способ посадки летательного аппарата
RU2600039C1 (ru) * 2015-06-04 2016-10-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления
RU2619168C1 (ru) * 2015-12-07 2017-05-12 Михаил Викторович Яковлев Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720856C1 (ru) * 2019-11-07 2020-05-13 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи

Similar Documents

Publication Publication Date Title
US11353290B2 (en) Systems, methods and computer-readable media for improving platform guidance or navigation using uniquely coded signals
US10209342B2 (en) Electromagnetic radiation source locating system
CA2965312C (en) Systems, methods and computer-readable media for improving platform guidance or navigation using uniquely coded signals
KR101057917B1 (ko) 시분할 다중 액세스(tdma) 위치 네트워크에서 신호대잡음비의 개선과 다중경로의 완화를 위한 시스템과 방법
US6631871B2 (en) High altitude platform control system
EP3482268B1 (en) Object sense and avoid system for autonomous vehicles
US8775078B1 (en) Vehicle navigation using cellular networks
RU2619168C1 (ru) Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом
EP3770616A1 (en) Radio wave measurement system and wireless power transmission device
US9279876B2 (en) System for orienting and positioning an electromagnetic receiver
US20170370678A1 (en) Systems, Methods and Computer-Readable Media for Improving Platform Guidance or Navigation Using Uniquely Coded Signals
RU2303229C1 (ru) Способ формирования сигналов стабилизации и самонаведения подвижного носителя и бортовая система самонаведения для его осуществления
US6216983B1 (en) Ephemeris/attitude reference determination using communications links
RU2673421C1 (ru) Способ автономного управления строем космических аппаратов
CN116711324A (zh) 万向节稳定系统
US11018705B1 (en) Interference mitigation, target detection, location and measurement using separable waveforms transmitted from spatially separated antennas
KR20190141282A (ko) 비행체용 무선 전력 송신장치 및 그 제어방법
JPS63271182A (ja) アンテナビ−ム方向の自動制御装置
US6219593B1 (en) Method and apparatus for attitude determination in a multi-nodal system
RU2704712C1 (ru) Способ автономного управления строем космических аппаратов
JP7388442B2 (ja) 伝搬特性測定システム及び伝搬特性測定方法
Dewberry et al. Indoor aerial vehicle navigation using ultra wideband active two-way ranging
CN114935339A (zh) 一种无人机作业导航定位系统与方法
CN113251994A (zh) 动中通相控阵天线发射指向检测装置及其检测方法
RU2712365C1 (ru) Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190530