RU2671702C1 - Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния - Google Patents

Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния Download PDF

Info

Publication number
RU2671702C1
RU2671702C1 RU2017143712A RU2017143712A RU2671702C1 RU 2671702 C1 RU2671702 C1 RU 2671702C1 RU 2017143712 A RU2017143712 A RU 2017143712A RU 2017143712 A RU2017143712 A RU 2017143712A RU 2671702 C1 RU2671702 C1 RU 2671702C1
Authority
RU
Russia
Prior art keywords
cellulose
silicon
composite material
nanocrystalline
silicon nanoparticles
Prior art date
Application number
RU2017143712A
Other languages
English (en)
Inventor
Валерий Алексеевич Гуртов
Виталий Борисович Пикулев
Светлана Владимировна Логинова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет"
Priority to RU2017143712A priority Critical patent/RU2671702C1/ru
Application granted granted Critical
Publication of RU2671702C1 publication Critical patent/RU2671702C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

Предложено новое вещество - композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния, обладающее эффективной люминесценцией в видимой области спектра при ультрафиолетовом возбуждении и высокой деградационной стойкостью люминесцентного сигнала. Данное вещество возможно использовать в качестве скрытой люминесцентной метки для идентификации изделий, содержащих целлюлозную матрицу, таких как бумага, ткань, таблетки и др. Полученный композитный материал является экологически чистым, синтезируется из широко распространенных в природе веществ, производственные издержки при этом весьма малы. 1 ил.

Description

Область техники
Изобретение относится к композитным материалам, способным люминесцировать в видимой области спектра, состоящим из органических и неорганических наноструктурированных компонентов, и может применяться в целлюлозно-бумажном, текстильном производстве и в полиграфии.
Уровень техники
В настоящее время широко развита индустрия органических люминофоров, среди которых можно выделить класс материалов, способных переизлучать в видимую область спектра под воздействием ультрафиолетового излучения. Такие вещества используются в качестве красителей для целлюлозы, что находит практическое применение в целлюлозно-бумажной, текстильной промышленности и в области полиграфии [1]. Использование металлических и полупроводниковых наночастиц в композитах на основе молекул целлюлозы применяется при создании антисептиков и негорючих тканей [2]. Разработку материалов с эффектом видимой фотолюминесценции нанокристаллического кремния в основном связывают с созданием и использованием веществ на основе пористого кремния [3].
При создании новых наноструктурированных композитных материалов с управляемыми физическими свойствами немаловажную роль играет экологическая безопасность синтезируемого материала. В этой связи перспективен синтез нанокомпозитов, состоящих из целлюлозной основы [4], в которую внедрены наноразмерные частицы кремния, не представляющие опасности ни для окружающей среды, ни для здоровья человека и животных.
Среди известных методик приготовления нанокристаллической целлюлозы следует отдать предпочтение методикам, изложенным в работах [5, 6]. Методики приготовления наноразмерных частиц кремния обобщены в [7].
В качестве близких аналогов среди действующих патентов можно рассмотреть патент [8], в котором полимерные композитные пленки изготовлены растворением суспензий определенных квантовых точек в триацетате целлюлозы. Оптические свойства, рассмотренные до и после реакции гидролиза с помощью флуоресцентной спектроскопии, не различаются. В упоминаемом патенте реализован многоэтапный, технологически сложный процесс получения материалов, в частности использован длительный селективный щелочной гидролиз в течение 24 часов с целью получения регенерированных целлюлозных пленок.
Патент [9] описывает метод получения нанокристаллической целлюлозы с помощью кислотного гидролиза. В изложенном патенте метод получения нанокристаллической целлюлозы состоит из нескольких этапов. На первом этапе технологического цикла используется обработка серной кислотой. Вторым этапом является обработка щелочью для перевода целлюлозы I в целлюлозу II. Реализация метода приготовления нанокристаллической целлюлозы в несколько этапов существенно сложнее методов, описанных в [5, 6], и требует дополнительных технологических ресурсов.
Патент [10] описывает электропроводящий композит на основе целлюлозы, состоящий из целлюлозной матрицы и включенного в нее проводящего углеродистого материала. Полученный композит может служить для формирования электродов, например, для использования в мембранных электродных блоках топливных элементов. В указанном патенте композитный материал содержит углеродистый наполнитель, поэтому люминесцентная активность материала отсутствует.
Достаточно важным в плане рассмотрения уровня техники является патент [11], который взят на способ защиты объектов от подделок с помощью нанесения люминесцентной краски, и накрывает достаточно широкий спектр органических люминофоров, в том числе производные карбазола, которые обладают эффективной люминесценцией и активно используются в сочетании с целлюлозой. Однако в рассмотренном патенте [11] в классе органических люминофоров имеются вещества с ограниченными областями применения в связи с их токсичностью или отсутствием биосовместимости.
В патенте [12] рассмотрен материал, представляющий собой гидрофильные биосовместимые и биодеградируемые флуоресцентные метки нанокристаллического кремния для in vivo применения, обладающие устойчивой яркой люминесценцией и узкой функцией распределения по размерам, устойчивые к повышенным температурам без использования токсичных веществ в процессе их синтеза, для получения которого в патенте [12] предложен способ, заключающийся в проведении реакции диспропорционирования монооксида кремния при температуре 950°С в атмосфере воздуха с последующим взаимодействием наночастиц кремния с диметилсульфоксидом. По совокупности существенных признаков данный патент является наиболее близким аналогом к заявляемому изобретению, поэтому он принят за прототип.
Заявленное в патенте [12] узкое распределение наночастиц кремния по размерам (функция распределения по размерам - от 1.3 до 4.0 нм), необходимое для получения двух максимумов на кривой фотолюминесценции (при 650 нм и 730 нм), используется исключительно для специфических (in vivo) применений люминесцентных меток и требует сложных методик приготовления и жесткого контроля размеров частиц порошка. Дополнительная стадия окисления кремниевых наночастиц путем отжига в атмосферном воздухе с последующим многоэтапным процессом растворения и удаления побочных продуктов для сдвига максимума и увеличения интенсивности люминесценции на самом деле не является существенно важной, поскольку сопровождается побочными эффектами смены пассивации поверхности наночастиц и изменениями их размеров. Кроме того, для ее реализации требуются дополнительные прецизионные методики контроля структурного состояния наночастиц кремния.
Технический результат настоящего изобретения заключается в том, что предложенный композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния обладает, при простоте и дешевизне процесса его приготовления, совокупностью следующих полезных свойств: высокой стабильностью интенсивности фотолюминесценции, позволяющей эксплуатировать материал в течение нескольких лет при различных атмосферных условиях (в том числе при воздействии озона) с уменьшением интенсивности люминесценции не более чем на 20%; удобством механической обработки материала (прессование, заполнение форм сложного профиля, склеивание, внедрение в бумажные листы) при сохранении вышеупомянутых люминесцентных свойств. При этом материал экологически безопасен, и может быть использован для создания фотолюминесцентных меток на любом материале при соблюдении принципов химического, физического и технологического согласования.
Технический результат достигается благодаря тому, что фракция нанокристаллической целлюлозы имеет средний размер в поперечном сечении целлюлозных вискеров 60 нм при длине вискера не более 1 мкм, а частицы нанокристаллического кремния имеют размер от 3 до 50 нм, при этом доля кремния в композитном материале составляет от 10 до 40 масс. %.
В качестве такого композитного материала предлагается использовать материал, созданный на основе нанокристаллической целлюлозы и наночастиц кремния, обладающий фотолюминесценцией в видимой области спектра, имеющий более высокую интенсивность по сравнению с пористым кремнием (при равных количествах вещества). Для предлагаемого материала, как и в случае пористого кремния, люминесцентные свойства объясняются эффектом квантового ограничения носителей заряда в структурах с пониженной размерностью и эффектом локализации экситонов [13]. В случае пористого кремния хорошо известно негативное влияние атмосферы, приводящее к окислению кремниевых нанокристаллитов, что ведет к деградации люминесцентного сигнала [14]. Однако известно, что устойчивость целлюлозной матрицы к внешнему газофазному окислению на порядок выше, чем в случае пористого кремния [15]. Макромолекулы целлюлозы, не способные сами проявлять люминесцентные свойства [16], могут сформировать, таким образом, стабилизирующую матрицу для размещенных в ней кремниевых наночастиц [17]. Природа стабилизации заключается в наличии большого количества связанной воды в порах целлюлозы, что подтверждается исследованиями влагопоглощения полученных образцов и ионным характером проводимости целлюлозной матрицы [18]. Взаимодействие протонов с поверхностью кремниевых наночастиц приводит к формированию устойчивой водородной пассивации их поверхности [19], что уменьшает вероятность безызлучательной рекомбинации при фотовозбуждении наночастиц.
Предложенный композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния способен люминесцировать под действием ультрафиолетового возбуждения в красно-желтой области спектра (максимум пика при 1.85 эВ), при этом время деградации люминесцентного сигнала сравнимо со временем деструкции молекул целлюлозы. Созданный материал не является пористым кремнием или композитом на основе матрицы пористого кремния, и не обладает совокупностью свойств, характерных для пористого кремния. В частности, озоновое воздействие не приводит к необратимой деградации люминесцентных свойств предложенного материала.
Спектр люминесценции нанокомпозита приведен на фиг. 1. Кривая 4а показывает, что эффективность люминесценции нанокомпозита выше эффективности люминесценции пористого кремния (1а) при одинаковых количествах нанокристаллического кремния и при одинаковых условиях фотовозбуждения.
Кривая 4б демонстрирует эффект деградационной стойкости нанокомпозита в условиях озонового окисления. Аналогичное по условиям и по длительности (75 мин.) воздействие на пористый кремний приводит к уменьшению в четыре раза интенсивности люминесценции пористого кремния (кривая 1b). Кривые 2 и 3 показывают спектры фотолюминесценции естественных примесей натуральной целлюлозы (производные кумарина и стильбен), соответственно для исходной микрокристаллической целлюлозы и нанокристаллической целлюлозы, проявляющиеся вплоть до достижения ею нанокристаллического состояния. При добавлении кремниевых наночастиц свечение вышеупомянутых примесей целлюлозы исчезает, поскольку формируется композитная структура с высокой вероятностью излучательной рекомбинации в низкоэнергетической области спектра. Спектры люминесценции нанокомпозита лежат в красно-желтой области видимого диапазона излучения и не соответствуют по положению и форме спектрам указанных флуорофоров.
Указанный технический результат в части люминесцентной активности материала достигается тем, что при использованном технологическом процессе приготовления композита размеры созданных кремниевых наночастиц находятся в диапазоне от 3 до 50 нм, а размеры целлюлозных вискеров порядка 60 нм в поперечнике при длине вискера не более 1 мкм. Учитывая, что аморфная фаза элементарной фибриллы имеет линейные размеры порядка 4 нм, наиболее эффективно люминесцирующие частицы кремния проникают в аморфные области фибрилл либо могут находиться в непосредственной близости от них. Сущность эффекта люминесценции нанокомпозита «кремний-целлюлоза» заключается в локализации носителей заряда в наночастицах кремния, что приводит к увеличению энергии переходов между нижними состояниями локализованного экситона и увеличению вероятности переходов с излучением кванта света в видимой области спектра. Влияние матрицы целлюлозы состоит в обеспечении устойчивой водородной пассивации поверхности кремниевых нанокристаллитов, что увеличивает вероятность излучательных переходов. Водородная пассивация поверхности нанокристаллитов оказывается стабильной при различных вариантах окисляющего воздействия на композит, сохраняясь вплоть до наступления условий деструкции молекул целлюлозы как таковых.
Технология приготовления нанокомпозита формирует остаточную влажность материала не менее 6%, при этом между молекулами целлюлозы присутствует прочно удерживаемая кристаллизационная и абсорбированная вода.
Предпочтительный вариант осуществления изобретения
Для осуществления изобретения необходимо синтезировать нанокомпозитный материал по следующей схеме, состоящей из трех основных этапов.
Первый этап заключается в получении нанокристаллической целлюлозы путем модификации химически чистой микрокристаллической целлюлозы (МКЦ), в водном растворе 38%-й соляной и 98%-й серной кислот (соответственно 1:3:6 диет, воды) при периодическом ультразвуковом диспергировании смеси в течение нескольких часов. Кислотность раствора уменьшается до рН=4 путем промывания суспензии дистиллированной водой. После выпаривания воды при комнатной температуре полученный белый осадок используется для приготовления композита.
На втором этапе синтезируется пористый кремний электрохимическим травлением монокристаллической кремниевой пластины в растворе 40%-й плавиковой кислоты в изопропиловом спирте при постоянной плотности тока. После промывки свежеприготовленных образцов пористого кремния в изопропаноле образцы вновь помещаются в емкость с изопропанолом, в котором проводится механическое соскабливание пористого слоя с помощью стеклянного капилляра. Контакта частиц пористого кремния с воздухом при этом не происходит. Полученная спиртовая суспензия после ультразвукового диспергирования процеживается через фильтр с нанопорами для отделения кремниевых частиц микроскопического размера.
На третьем этапе происходит смешивание нанокристаллической целлюлозы и нанокремния в спиртовом растворе в необходимой пропорции (от 10 до 40 масс. % кремния). Коллоидная смесь подвергается ультразвуковому диспергированию в течение 60 мин. Далее полученный коллодный раствор используется либо для нанесения тонких слоев на гидрофильную подложку, либо происходит выпаривание спирта из раствора при комнатной температуре, а полученный порошок прессуется в таблетку при оптимальном давлении 0.2 МПа.
Описываемый композитный материал представляет собой в непрессованном состоянии вещество белого цвета, образующее плотный однородный слой на стеклянной поверхности, легко подвергающееся механическому разрушению с образованием белого порошка. В прессованном состоянии материал представляет собой механически прочную таблетку светло-желтого цвета.
Рассмотренный процесс приготовления нанокомпозита отличается как дешевизной и широкой распространенностью исходных материалов - кремния и целлюлозы - так и весьма незначительными технологическими издержками на всех этапах приготовления нанокомпозита.
Применение изобретения состоит в различных вариантах использования полученного вещества для формирования скрытой люминесцентной метки на материалах с большим содержанием целлюлозы, в частности, на листах бумаги или на таблетках с лекарственным средством. Для этого небольшое количество композитного материала может впрессовывается в приповерхностный слой бумаги или таблетки по шаблону соответствующей пресс-формы. Затем с помощью металлических электродов соответствующая метка может быть электрически заряжена. В видимом свете метка не видна, при использовании ультрафиолетового излучения внедренный композит начинает люминесцировать, при этом спектр излучения не зависит от зарядового состояния композита.
Источники информации
1. Красовицкий, Б. Органические люминофоры / Б. Красовицкий, Б. Болотин. - М.: Химия, 1984. - 336 с.
2. Dufresne, A. Biopolymer Nanocomposites: Processing, Properties, and Applications / A. Dufresne, S. Thomas, L.A. Pothan, R.F. Grossman, D. Nwabunma. - Wiley, 2013. - 696 p.
3. Ossicini, S. Light emitting silicon for microphotonics / S. Ossicini, L. Pavesi, F. Priolo. - Springer, 2003. - 300 p.
4. Oksman, K. Cellulose Nanocomposites: Processing, Characterization, and Properties / K. Oksman, M. Sain // ACS Symposium series. - ACS, 2006. - Vol. 938. - 288 p.
5. Wang, N. Preparation and liquid crystalline properties of spherical cellulose / E. Ding, R. Cheng. // Langmuir. - 2008. - Vol. 24, N 1. - P. 5-8.
6. Bai, W. A technique for production of nanocrystalline cellulose with a narrow size distribution / J. Holbery, K. Li // Cellulose. - 2009. - Vol. 16. - P. 455-465.
7. Ищенко А. Нанокремний: свойства, получение, применение, методы исследования и контроля / А. Ищенко, Г. Фетисов, Л. Асланов. - М.: Физматлит, 2011. - 648 с.
8. Patent US №20080041542, 07.02.2007. D. Gray, Т. Abitbol. Cellulose composites comprising hydrophobic particles and their use in paper products.
9. Patent CN №01129717, 30.09.2001. Li Guokang, Ding Enyong, Li Xiaofang. Method for preparing nanocrystal cellulose by means of acid hydrolysis.
10. Patent US №7709133, 4.05.2010. B. Evans, H.
Figure 00000001
, J. Woodward. Electrically conductive cellulose composite.
11. Patent KR №20030015435, 25.02.2003. S. Ji, H. Park, J. Park. Method for preventing counterfeit using luminescent paint.
12. Патент РФ №2012107945/04, 02.03.2012. Ищенко А.А., Баграташвили В.Н., Кононов Н.Н., Дорофеев С.Г., Ольхов А.А. Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения // Патент России №2491227. 2013. Бюл. №24.
13. Cullis, A. The structural and luminescence properties of porous silicon / L. Canham, P. Calcott // Applied Physics Reviews. - 1997. - Vol. 82, N 3. - P. 909-965.
14. Tischler, M. Luminescence degradation in porous silicon / M. Tischler, R. Collins, J. Stathis, J. Tsang // Appl. Phys. Lett. - 1992. - Vol. 60, N 5. - P. 639-641.
15. Климук, А. Взаимодействие озона с микроволокнистыми материалами / А. Климук, Л. Обвинцева, В. Кучаев, и др. // Российский химический журнал. - 2008. - Vol. LII, N 5. - Р. 102-111.
16. Байклз, Н. Целлюлоза и ее производные / Н. Байклз, Л. Сегал. - М.: Мир, 1974. - Т. 2. - 512 с.
17. Pikulev V., Loginova S., Gurtov V. Luminescence properties of silicon-cellulose nanocomposite / Nanoscale Research Letters. - 2012. - Vol. 7. - P. 426:1-6.
18. Пикулев В.Б., Прокопович П.Ф., Гуртов В.А. Влияние озона на зарядоперенос в микрокристаллической целлюлозе // Уч. записки Петрозаводского гос. университета. - 2015. - Т. 2 (148). - С. 77-81.
19. Waltenburg Н.N., Yates J.Т. Surface chemistry of silicon // Chem. Rev. - 995. - Vol. 5, N 5. - P. 1589-1673.

Claims (1)

  1. Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния, содержащий наполнитель в виде частиц нанокристаллического кремния и фракцию нанокристаллической целлюлозы, отличающийся тем, что фракция нанокристаллической целлюлозы имеет средний размер в поперечном сечении целлюлозных вискеров 60 нм при длине вискера не более 1 мкм, а частицы нанокристаллического кремния имеют размер от 3 до 50 нм, при этом доля кремния в композитном материале составляет от 10 до 40 мас.%.
RU2017143712A 2017-12-13 2017-12-13 Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния RU2671702C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017143712A RU2671702C1 (ru) 2017-12-13 2017-12-13 Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017143712A RU2671702C1 (ru) 2017-12-13 2017-12-13 Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния

Publications (1)

Publication Number Publication Date
RU2671702C1 true RU2671702C1 (ru) 2018-11-06

Family

ID=64103469

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017143712A RU2671702C1 (ru) 2017-12-13 2017-12-13 Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния

Country Status (1)

Country Link
RU (1) RU2671702C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015435A (ko) * 2001-08-14 2003-02-25 주식회사 코오롱 발광 도료를 이용한 위조방지 방법
JP2003326876A (ja) * 2002-05-15 2003-11-19 Dainippon Printing Co Ltd 光回折層を有する偽造防止用紙、及び有価証券
RU2426693C2 (ru) * 2006-09-27 2011-08-20 Циба Холдинг Инк. Кремнийсодержащая композиция и ее применение в изготовлении бумаги
RU2491227C1 (ru) * 2012-03-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ имени М.В. Ломоносова) Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015435A (ko) * 2001-08-14 2003-02-25 주식회사 코오롱 발광 도료를 이용한 위조방지 방법
JP2003326876A (ja) * 2002-05-15 2003-11-19 Dainippon Printing Co Ltd 光回折層を有する偽造防止用紙、及び有価証券
RU2426693C2 (ru) * 2006-09-27 2011-08-20 Циба Холдинг Инк. Кремнийсодержащая композиция и ее применение в изготовлении бумаги
RU2491227C1 (ru) * 2012-03-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ имени М.В. Ломоносова) Способ получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Гуртов В.А., Пикулев В.Б., Прокопович П.Ф. Оптические свойства композита "Нанокремний-нанокристалическая целлюлоза". Взаимодействие сверхвысокочастотного, терагерцового и оптического излучения с полупроводниковыми микро- и наноструктурами, метаматериалами и биообъектами: материалы Всерос. научной школы-семинара / под. ред. проф. Д.А. Усанова. - Саратов: изд-во Саратовский источник, 2015. - 192 с.: ил. ISBN 978-5-91879-501-9. *

Similar Documents

Publication Publication Date Title
Zhang et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection
Jovanović et al. Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor
KR101663364B1 (ko) 열반응에 의한 고효율 탄소 양자점 제조방법
Prakash et al. Phosphor polymer nanocomposite: ZnO: Tb3+ embedded polystyrene nanocomposite thin films for solid-state lighting applications
Lesnyak et al. Colloidal semiconductor nanocrystals: the aqueous approach
Hou et al. One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application
Lizundia et al. Chiroptical luminescent nanostructured cellulose films
KR101636131B1 (ko) 고품질 광발광 특성을 가지는 탄소 양자점의 제조방법
Ma et al. Green and orange emissive carbon dots with high quantum yields dispersed in matrices for phosphor-based white LEDs
JP5252621B2 (ja) 粘土を主成分とするフレキシブル蛍光フィルム
Xiong et al. Water-stable blue-emitting ZnO@ polymer core–shell microspheres
US20180030344A1 (en) Novel composite of silica and graphene quantum dots and preparation thereof
Wu et al. Synthesis and photoluminescence of Dy-doped ZnO nanowires
Zhu et al. Highly transparent and colour-tunable composite films with increased quantum dot loading
Haider et al. Spectroscopic and structural properties of zinc oxide nanosphere as random laser medium
Jia et al. Visible light-induced lanthanide polymer nanocomposites based on clays for bioimaging applications
Abir et al. Tunable CsPb (Br/Cl) 3 perovskite nanocrystals and further advancement in designing light emitting fiber membranes
Wang et al. Multifunctional ionomer-derived honeycomb-patterned architectures and their performance in light enhancement of light-emitting diodes
Ren et al. Surface chemistry in calcium capped carbon quantum dots
JP2014133685A (ja) 炭素量子ドットの製造方法及び炭素量子ドット
Liu et al. Efficient electronic coupling and heterogeneous charge transport of zero-dimensional Cs 4 PbBr 6 perovskite emitters
Jeong et al. Reversible nanoparticle gels with colour switching
RU2671702C1 (ru) Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния
Guan et al. Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method
Wu et al. Ligand dynamic effect on phase and morphology control of hexagonal NaYF 4