RU2671598C1 - Способ ориентации космического аппарата в солнечно-земной системе координат - Google Patents

Способ ориентации космического аппарата в солнечно-земной системе координат Download PDF

Info

Publication number
RU2671598C1
RU2671598C1 RU2017135610A RU2017135610A RU2671598C1 RU 2671598 C1 RU2671598 C1 RU 2671598C1 RU 2017135610 A RU2017135610 A RU 2017135610A RU 2017135610 A RU2017135610 A RU 2017135610A RU 2671598 C1 RU2671598 C1 RU 2671598C1
Authority
RU
Russia
Prior art keywords
spacecraft
axis
sun
solar
angle
Prior art date
Application number
RU2017135610A
Other languages
English (en)
Inventor
Юрий Александрович Тентилов
Алексей Владимирович Фатеев
Александр Афанасьевич Васильев
Геннадий Павлович Титов
Андрей Викторович Овчинников
Евгений Николаевич Якимов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority to RU2017135610A priority Critical patent/RU2671598C1/ru
Application granted granted Critical
Publication of RU2671598C1 publication Critical patent/RU2671598C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • B64G1/363Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем разворотов относительно второй и третьей осей по информации с прибора ориентации на Землю, а также ориентацию панелей СБ на Солнце путем разворота КА относительно первой оси до совмещения второй оси КА с плоскостью Солнце - КА - Земля по информации с прибора ориентации на Солнце (ПОС). Панели СБ ориентируют на Солнце путём их разворота вокруг оси, параллельной третьей оси КА, приводом СБ по информации с ПОС. При этом на каждом цикле управления определяют расчетный угол между нормалью к поверхности СБ и второй осью КА путем интегрирования расчетной угловой скорости вала привода СБ, по которой сформировано управление СБ на предыдущем цикле управления. По величине данного угла управляют скоростью вала привода СБ, уточняя величину этого угла при каждом прохождении реперного концевого контакта. Технический результат состоит в возможности обеспечить ориентацию панелей СБ на Солнце при отсутствии датчика угла поворота вала привода СБ или его неисправности. 3 ил.

Description

Изобретение относится к области космической техники и может быть использовано на космических аппаратах (КА), ориентированных в солнечно-земной системе координат, для ориентации солнечных батарей на Солнце без датчика угла поворота вала привода солнечных батарей (СБ).
Известен способ ориентации космического аппарата в солнечно-земной системе координат, включающий ориентацию первой оси космического аппарата на центр Земли путем разворотов относительно второй и третьей осей по информации с прибора ориентации на Землю (ПОЗ) с использованием исполнительных органов, ориентацию панелей солнечных батарей на Солнце путем разворота космического аппарата относительно первой оси до совмещения второй оси КА с плоскостью Солнце -космический аппарат - Земля по информации с прибора ориентации на Солнце (ПОС), установленного на корпусе КА, с использованием исполнительных органов и разворот панелей СБ вокруг оси, параллельной третьей оси КА, до совмещения нормали к поверхности солнечных батарей с направлением на Солнце с использованием привода СБ по информации с ПОС [Космические вехи: сборник научных трудов, посвященный 50-летию создания АО «ИСС» имени академика М.Ф. Решетнева. - Красноярск: ИП Суховольская Ю.П., 2009. с. 129-130].
Для обеспечения функционирования космического аппарата в режиме работы по целевому назначению необходимо ориентировать нормаль к рабочей поверхности СБ на Солнце. Это можно осуществлять, например, путем разворота панелей СБ вокруг оси, параллельной третьей оси КА со скоростью, пропорциональной углу между направлением на Солнце и нормалью к рабочей поверхности СБ.
Угол между направлением на Солнце и нормалью к рабочей поверхности СБ вычисляется по разности углов, полученных с ПОС и датчика угла поворота вала привода СБ.
По информации с прибора ориентации на Солнце, установленного на корпусе КА, в плоскости, перпендикулярной третьей оси, определяется угол между второй осью космического аппарата и направлением на Солнце (α). По информации с датчика угла поворота вала привода СБ, входящего в состав привода солнечных батарей, определяется угол между второй осью КА и нормалью к рабочей поверхности СБ (γ).
На каждом цикле управления на привод СБ выдается управляющее воздействие на формирование угловой скорости (γ') поворота вала привода солнечных батарей.
Управляющее воздействие на формирование угловой скорости поворота вала привода солнечных батарей может определяться, например, по следующему закону:
Figure 00000001
где:
К - коэффициент закона управления;
α - угол между второй осью КА и направлением на Солнце;
γ - угол между второй осью КА и нормалью к рабочей поверхности СБ (угол поворота вала привода солнечных батарей);
γ' - управляющее воздействие на формирование угловой скорости поворота вала привода солнечных батарей.
Следует отметить, что при точном (идеальном) отслеживании угла α приводом солнечных батарей (γ≡α) скорость привода СБ, отрабатывающая величину γ' равна проекции орбитальной скорости на третью ось КА, а проекция орбитальной скорости на третью ось КА - величина непостоянная и зависит от угла Солнце - космический аппарат - Земля, угла между плоскостью орбиты и направлением на Солнце и эксцентриситета орбиты. Поэтому, так как привод СБ компенсирует уход направления на Солнце вокруг третьей оси КА, угловая скорость поворота вала привода солнечных батарей должна реализовываться тоже непостоянной.
На фиг. 1 показано взаимное расположение орбитальной (OXOYOZO), солнечно-земной (OXZYZZZ) и связанной (OXYZ) систем координат, где:
О - начало системы координат (совпадает с центром масс КА);
ОХO - направлена по текущему радиус-вектору КА от Земли;
OZO - направлена по нормали к плоскости орбиты, совпадает по направлению с вектором угловой орбитальной скорости;
OYO - дополняет систему координат до правой;
OXZ - направлена по текущему радиус-вектору КА от Земли;
OYZ - лежит в плоскости Солнце - космический аппарат - Земля и направлена в сторону Солнца;
OZZ - дополняет систему координат до правой;
ОХ - первая ось КА;
OY - вторая ось КА;
OZ - третья ось КА;
Ψ - курсовой угол;
OS - направление на Солнце;
V - линейная скорость КА;
ωO - орбитальная скорость;
СОЗ - Солнце - космический аппарат - Земля.
На фиг .2 и фиг. 3 представлены случаи крайнего положения Солнца относительно плоскости орбиты, где:
αS - угол между плоскостью орбиты и направлением на Солнце;
γ - угол поворота вала привода солнечных батарей;
γ' - угловая скорость поворота вала привода солнечных батарей.
На фиг. 2 плоскость СОЗ перпендикулярна плоскости орбиты, при этом:
Figure 00000002
Figure 00000003
Figure 00000004
При αS=90° γMAXMIN=0, γ'=0.
На фиг. 3 угол между плоскостью СОЗ и плоскостью орбиты равен αS, при этом:
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
При αS=0 γMAX=90°, γMIN=-90°.
На фиг. 2, 3 углы γ=α, что может быть при идеальном отслеживании нормалью к поверхности СБ направление на Солнце.
Основным недостатком способа ориентации космического аппарата в солнечно-земной системе координат, описанного выше, является то, что при отсутствии датчика угла поворота вала привода СБ либо при его неисправности, невозможно определить угол рассогласования между направлением на Солнце и нормалью к рабочей поверхности солнечных батарей космического аппарата. Это приводит к потере ориентации нормали к рабочей поверхности СБ на Солнце.
Выход из сложившейся ситуации может быть следующим.
При отсутствии датчика угла поворота вала привода СБ или при его неисправности ориентация панелей СБ на Солнце реализуема в том случае, если есть возможность зафиксировать хотя бы в одной точке (реперной) на витке угол поворота вала привода СБ между второй осью КА и нормалью к рабочей поверхности СБ. Затем, на каждом цикле управления по разности углов между направлением на Солнце и расчетным углом положения нормали к рабочей поверхности СБ определяется управляющее воздействие на формирование расчетной угловой скорости γ'P (далее по тексту расчетная угловая скорость) поворота вала привода СБ, например, по следующему закону:
Figure 00000009
где:
К - коэффициент закона управления;
α - угол между второй осью КА и направлением на Солнце;
γP - расчетный угол между второй осью КА и нормалью к рабочей поверхности СБ (расчетный угол поворота вала привода солнечных батарей);
γ'P - расчетная угловая скорость поворота вала привода солнечных батарей.
Значение расчетного угла γP определяется путем интегрирования расчетной угловой скорости поворота вала привода СБ (γ'P), считая, что привод отрабатывает угловую скорость равную K⋅(α-γP). При этом начальное значение γP(0) должно соответствовать положению привода СБ в реперной точке.
Наиболее близким к заявляемому решению по технической сущности и достигаемому техническому результату является способ ориентации космического аппарата в солнечно-земной системе координат, включающий ориентацию первой оси космического аппарата на центр Земли путем разворотов относительно второй и третьей осей по информации с ПОЗ с использованием исполнительных органов, ориентацию панелей солнечных батарей на Солнце путем разворота космического аппарата относительно первой оси до совмещения второй оси КА с плоскостью Солнце - космический аппарат - Земля по информации с ПОС, установленного на корпусе КА, с использованием исполнительных органов и разворот панелей СБ вокруг оси, параллельной третьей оси КА, до совмещения нормали к поверхности солнечных батарей с направлением на Солнце с использованием привода СБ по информации с ПОС [Космические вехи: сборник научных трудов, посвященный 50-летию создания АО «ИСС» имени академика М.Ф. Решетнева. - Красноярск: ИП Суховольская Ю.П., 2009. с. 129-130].
Описанный способ принят за прототип изобретения.
Недостатком прототипа является то, что при отсутствии датчика угла поворота вала привода СБ или его неисправности невозможно определить угол между второй осью КА и нормалью к рабочей поверхности СБ. Это приводит к потере ориентации нормали к рабочей поверхности СБ на Солнце.
Обычно на приводах поворота солнечных батарей устанавливают концевые контакты, которые используют для установки панелей СБ в исходное положение в начальных режимах работы КА и в режиме обеспечения живучести. Эти концевые контакты можно использовать в качестве реперных точек для определения углового положения панелей солнечных батарей. При отсутствии таких контактов в приводе СБ устанавливают дополнительные реперные контакты, при замыкании которых нормаль к поверхности СБ параллельна второй оси КА.
В основу настоящего изобретения положена задача создания способа ориентации космического аппарата, ориентируемого в солнечно-земной системе координат, позволяющего обеспечить ориентацию панелей СБ на Солнце, без датчика угла поворота вала привода солнечных батарей.
Поставленная задача решается следующим образом.
Заявлен способ ориентации космического аппарата в солнечно-земной системе координат, включающий ориентацию первой оси космического аппарата на центр Земли путем разворотов относительно второй и третьей осей по информации с прибора ориентации на Землю с использованием исполнительных органов, ориентацию панелей солнечных батарей на Солнце путем разворота космического аппарата относительно первой оси до совмещения второй оси КА с плоскостью Солнце - космический аппарат - Земля по информации с прибора ориентации на Солнце, установленного на корпусе космического аппарата, с использованием исполнительных органов и разворот панелей солнечных батарей вокруг оси, параллельной третьей оси космического аппарата, до совмещения нормали к поверхности солнечных батарей с направлением на Солнце с использованием привода солнечных батарей по информации с прибора ориентации на Солнце, отличающийся тем, что при отсутствии датчика угла поворота вала привода солнечных батарей или его неисправности на каждом цикле управления проводятся определение расчетного угла между положением нормали к поверхности солнечных батарей и второй осью космического аппарата путем интегрирования расчетной угловой скорости поворота вала привода солнечных батарей, по которой сформировано управляющее воздействие на привод солнечных батарей на предыдущем цикле управления, выдача управляющего воздействия по скорости на привод солнечных батарей по информации о расчетном угле между положением нормали к поверхности солнечных батарей и направлением на Солнце на текущем цикле управления, уточнение расчетного угла между положением нормали к поверхности солнечных батарей и второй осью космического аппарата при каждом прохождении реперного концевого контакта.
Сущность изобретения.
При отсутствии датчика угла поворота вала привода солнечных батарей или при его неисправности после прохождения реперного концевого контакта на каждом цикле управления определяют расчетный угол между положением нормали к поверхности СБ и второй осью космического аппарата путем интегрирования расчетной угловой скорости поворота вала привода СБ, сформированной на предыдущем цикле управления, например, по следующему закону:
Figure 00000010
где:
К - коэффициент закона управления;
α - угол между второй осью КА и направлением на Солнце;
Figure 00000011
- расчетный угол между второй осью КА и нормалью к рабочей поверхности СБ (расчетный угол поворота вала привода солнечных батарей);
Figure 00000012
- расчетная угловая скорость поворота вала привода солнечных батарей,
и формируют управляющее воздействие по скорости на привод СБ, направленное на уменьшение угла между расчетным положением нормали к рабочей поверхности СБ и направлением на Солнце.
При прохождении реперной точки определяется фактический угол рассогласования между направлением на Солнце и нормалью к рабочей поверхности СБ, что позволяет уточнить величину расчетного угла между второй осью КА и нормалью к рабочей поверхности СБ.
В качестве реперной точки используется концевой контакт.
Величина угла замыкания или размыкания (далее по тексту замыкание) концевого контакта определяется в процессе изготовления привода СБ и закладывается в бортовую вычислительную машину КА.
Концевой контакт устанавливают в привод СБ таким образом, чтобы его замыкание происходило при минимальном угле между нормалью к рабочей поверхности СБ и второй осью космического аппарата. Это необходимо потому, что максимальный угол между второй осью КА и направлением на Солнце в течение года для космических аппаратов, ориентируемых в солнечно-земной системе координат, изменяется от 0 до ±90° (см. фиг. 2, 3), при этом на каждом витке при отслеживании направления на Солнце нормаль к рабочей поверхности СБ проходит параллельно второй оси КА.
Режимы начальной ориентации при неисправном датчике угла осуществляются следующим образом. Нормали к рабочей поверхности СБ устанавливаются параллельно второй оси КА, при этом концевой контакт замкнут. После этого осуществляется ориентация второй оси на Солнце по информации с ПОС. Затем осуществляется ориентация первой оси на Землю при углах Солнце - космический аппарат - Земля близких к 90° путем разворота КА вокруг второй оси до момента попадания Земли в поле зрения ПОЗ, при поддержании ориентации второй оси КА на Солнце. По окончанию ориентации первой оси на Землю КА переходит в режим работы по целевому назначению, при этом угол между нормалью к рабочей поверхности СБ и направлением на Солнце мал и отслеживание направления на Солнце панелями СБ осуществляется по логике, описанной выше.
Такой способ ориентации космического аппарата в солнечно-земной системе координат позволяет обеспечить ориентацию солнечных батарей на Солнце, при отсутствии или неисправности датчика угла поворота вала привода солнечных батарей.
Погрешность представленного способа ориентации зависит от погрешности установки концевых контактов и от погрешности формирования угловой скорости вращения приводом солнечных батарей.
Предложенный способ ориентации космического аппарата в солнечно-земной системе координат, применяется на космических аппаратах системы «ГЛОНАСС».

Claims (1)

  1. Способ ориентации космического аппарата в солнечно-земной системе координат, включающий ориентацию первой оси космического аппарата на центр Земли путем разворотов относительно второй и третьей осей по информации с прибора ориентации на Землю с использованием исполнительных органов, ориентацию панелей солнечных батарей на Солнце путем разворота космического аппарата относительно первой оси до совмещения второй оси КА с плоскостью Солнце - космический аппарат - Земля по информации с прибора ориентации на Солнце, установленного на корпусе космического аппарата, с использованием исполнительных органов и разворот панелей солнечных батарей вокруг оси, параллельной третьей оси космического аппарата, до совмещения нормали к поверхности солнечных батарей с направлением на Солнце с использованием привода солнечных батарей по информации с прибора ориентации на Солнце, отличающийся тем, что при отсутствии датчика угла поворота вала привода солнечных батарей или его неисправности на каждом цикле управления проводятся определение расчетного угла между положением нормали к поверхности солнечных батарей и второй осью космического аппарата путем интегрирования расчетной угловой скорости поворота вала привода солнечных батарей, по которой сформировано управляющее воздействие на привод солнечных батарей на предыдущем цикле управления, выдача управляющего воздействия по скорости на привод солнечных батарей по информации о расчетном угле между положением нормали к поверхности солнечных батарей и направлением на Солнце на текущем цикле управления, уточнение расчетного угла между положением нормали к поверхности солнечных батарей и второй осью космического аппарата при каждом прохождении реперного концевого контакта.
RU2017135610A 2017-10-05 2017-10-05 Способ ориентации космического аппарата в солнечно-земной системе координат RU2671598C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017135610A RU2671598C1 (ru) 2017-10-05 2017-10-05 Способ ориентации космического аппарата в солнечно-земной системе координат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017135610A RU2671598C1 (ru) 2017-10-05 2017-10-05 Способ ориентации космического аппарата в солнечно-земной системе координат

Publications (1)

Publication Number Publication Date
RU2671598C1 true RU2671598C1 (ru) 2018-11-02

Family

ID=64103154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017135610A RU2671598C1 (ru) 2017-10-05 2017-10-05 Способ ориентации космического аппарата в солнечно-земной системе координат

Country Status (1)

Country Link
RU (1) RU2671598C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759517A (en) * 1982-06-25 1988-07-26 General Electric Company Station-keeping using solar sailing
RU2131832C1 (ru) * 1998-04-20 1999-06-20 Акционерное общество открытого типа Ракетно-космическая корпорация "Энергия" им.С.П.Королева Способ управления разворотом космического аппарата
US6142422A (en) * 1996-10-16 2000-11-07 Space Systems/Loral, Inc. Method to reorient a spacecraft using only initial single axis attitude knowledge
RU2247684C2 (ru) * 2003-03-25 2005-03-10 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ трехосной ориентации космического аппарата в орбитальной системе координат
RU2414392C1 (ru) * 2009-12-04 2011-03-20 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759517A (en) * 1982-06-25 1988-07-26 General Electric Company Station-keeping using solar sailing
US6142422A (en) * 1996-10-16 2000-11-07 Space Systems/Loral, Inc. Method to reorient a spacecraft using only initial single axis attitude knowledge
RU2131832C1 (ru) * 1998-04-20 1999-06-20 Акционерное общество открытого типа Ракетно-космическая корпорация "Энергия" им.С.П.Королева Способ управления разворотом космического аппарата
RU2247684C2 (ru) * 2003-03-25 2005-03-10 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" Способ трехосной ориентации космического аппарата в орбитальной системе координат
RU2414392C1 (ru) * 2009-12-04 2011-03-20 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.М. Климарев, Ю.А.Тентилов и др. Бигиродинная система ориентации космического аппарата на высокоэллиптической орбите. В сб.: Космические вехи: сб. научных трудов, посв. 50-летию создания АО "ИСС" им. акад. М.Ф. Решетнева. Красноярск. ИП Суховольская Ю.П., 2009. с. 129-139. *

Similar Documents

Publication Publication Date Title
US8174581B2 (en) Moving object image tracking apparatus and method
JP2561256B2 (ja) デュアルスピン衛星用の姿勢制御装置
US9522746B1 (en) Attitude slew methodology for space vehicles using gimbaled low-thrust propulsion subsystem
CN108657470B (zh) 航天器帆板一维驱动机构停滞位置在轨辨识及修正方法
Quarta et al. Minimum-time trajectories of electric sail with advanced thrust model
JPH02262500A (ja) 衛星制御システム
CN104204719A (zh) 带有辅助输出信号的旋转可变差动变压器(rvdt)传感器组件
CN105899430A (zh) 用于控制航天器的日光采集阶段的方法和装置
US9963249B2 (en) Efficient stationkeeping design for mixed fuel systems in response to a failure of an electric thruster
CN103034237B (zh) 使用两个单框架控制力矩陀螺的航天器姿态机动控制方法
US7370833B2 (en) Method and system for determining a singularity free momentum path
US11273933B2 (en) Spacecraft attitude control strategy for reducing disturbance torques
RU2414392C1 (ru) Способ ориентации осей космического аппарата в солнечно-орбитальную систему координат
CN110775302A (zh) 一种基于太阳帆板输出电流信息的应急对日方法
RU2671598C1 (ru) Способ ориентации космического аппарата в солнечно-земной системе координат
RU2361788C1 (ru) Способ управления положением солнечной батареи космического аппарата
US9887651B2 (en) Method and apparatus for driving motor and appliance
CN113891836A (zh) 在缺乏卫星轨道的本地时间的先验知识的情况下在生存模式下对卫星进行姿态控制的方法
CN113091753B (zh) 用于星敏视场保护的卫星姿态导引方法及其系统
Meng et al. A new geometric guidance approach to spacecraft near-distance rendezvous problem
Xie et al. A reentry trajectory planning approach satisfying waypoint and no-fly zone constraints
US20200377240A1 (en) Control system for executing a safing mode sequence in a spacecraft
RU2309876C1 (ru) Способ управления движением космического аппарата и система управления
US20080135686A1 (en) Method and system for spacecraft power acquisition using single-axis slit sun sensor
Baranov et al. Optimal low-thrust transfers between close near-circular coplanar orbits