RU2670941C9 - Двухканальная архитектура с избыточными линиями связи ccdl - Google Patents

Двухканальная архитектура с избыточными линиями связи ccdl Download PDF

Info

Publication number
RU2670941C9
RU2670941C9 RU2017111197A RU2017111197A RU2670941C9 RU 2670941 C9 RU2670941 C9 RU 2670941C9 RU 2017111197 A RU2017111197 A RU 2017111197A RU 2017111197 A RU2017111197 A RU 2017111197A RU 2670941 C9 RU2670941 C9 RU 2670941C9
Authority
RU
Russia
Prior art keywords
processing unit
communication line
control system
communication
flight control
Prior art date
Application number
RU2017111197A
Other languages
English (en)
Other versions
RU2017111197A (ru
RU2017111197A3 (ru
RU2670941C2 (ru
Inventor
Селин ЛИУ
Никола МАРТИ
Стефен ЛАНГФОР
Original Assignee
Сафран Электроникс Энд Дифенс
Сафран Хеликоптер Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Электроникс Энд Дифенс, Сафран Хеликоптер Энджинз filed Critical Сафран Электроникс Энд Дифенс
Publication of RU2017111197A publication Critical patent/RU2017111197A/ru
Publication of RU2017111197A3 publication Critical patent/RU2017111197A3/ru
Application granted granted Critical
Publication of RU2670941C2 publication Critical patent/RU2670941C2/ru
Publication of RU2670941C9 publication Critical patent/RU2670941C9/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control; Arrangement thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2002Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where interconnections or communication control functionality are redundant
    • G06F11/2007Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where interconnections or communication control functionality are redundant using redundant communication media
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40169Flexible bus arrangements
    • H04L12/40176Flexible bus arrangements involving redundancy
    • H04L12/40182Flexible bus arrangements involving redundancy by using a plurality of communication lines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24182Redundancy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25144Between microcomputers, processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25163Transmit twice, redundant, same data on different channels, check each channel
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25174Ethernet

Abstract

Система управления полетом летательного аппарата содержит два блока обработки, средства двухсторонней связи между первым и вторым блоками обработки, выполненные с возможностью быть активными одновременно, аварийные средства связи, содержащие сеть датчиков или приводов и защищенную бортовую сеть для авионики. Обеспечивается повышение надежности системы управления полетом, уменьшение габаритов. 5 з.п. ф-лы, 4 ил.

Description

Общая область техники
Объектом изобретения является система управления полетом летательного аппарата, содержащая блоки обработки или вычислительные устройства и образующая двухканальную архитектуру.
В частности, эта система находит свое применение для двигателей небольшого размера, таких как вертолетные двигатели.
Уровень техники
Существующие бортовые системы управления полетом, которыми оснащены летательные аппараты, такие как самолеты или вертолеты, выполняют функции управления и регулирования двигателя летательного аппарата, обеспечивающие его хорошую работу. Такие функции являются критическими для безопасности пассажиров. Следовательно, такие системы должны быть стойкими к неисправностям.
Для этого, как правило, существующие системы управления полетом содержат два блока обработки или вычислительных устройства, каждое из которых может обеспечивать хорошую работу двигателя. Следовательно, такая система образует двухканальную архитектуру, в которой каждый канал может обеспечивать выполнение указанных критических функций в случае неисправности другого канала.
Чтобы определить, следует ли ему принять за себя выполнение этих функций, каждый блок обработки должен иметь возможность обмениваться информацией с другим блоком обработки системы управления, в частности, информацией, касающейся рабочего состояния этого другого блока обработки. Для этого, как правило, оба блока обработки системы управления соединены цифровой двухсторонней линией связи или двумя односторонними линиями связи противоположного направления, такими как линия связи CCDL (“Cross Channel Data Link”).
Чтобы повысить стойкость к неисправностям такой системы управления полетом, блоки обработки системы управления могут быть выполнены раздельно в двух удаленных корпусах, чтобы быть удаленными географически друг от друга и чтобы уменьшить таким образом чувствительность к внешним воздействиям. Кроме того, чтобы сделать систему управления стойкой к неисправности линии передачи данных между блоками обработки, блоки обработки могут быть соединены при помощи дополнительной линии связи в виде нескольких дискретных аналоговых связей, которые могут достигать количества двадцати для систем управления на гражданских самолетах. Однако увеличение числа связей повышает вероятность отказа одной из них и увеличивает объем проводки, что затрудняет получение компактной системы управления полетом. Хотя для управления двигателями больших летательных аппаратов, таких как лайнеры, такая компактность не имеет значения, она становится определяющей, чтобы ограничивать общий габарит, в случае двигателя небольшого летательного аппарата, такого как вертолетный двигатель.
Следовательно, существует потребность в системе управления, имеющей двухканальную архитектуру, сводящую к минимуму количество проводки и в то же время остающуюся стойкой к неисправностям и к внешним воздействиям.
Раскрытие изобретения
В связи с этим первым объектом настоящего изобретения является система управления полетом летательного аппарата, содержащая:
- первый блок обработки,
- второй блок обработки,
- средства связи, выполненные с возможностью установления первой цифровой двухсторонней линии связи и второй цифровой двухсторонней линии связи между первым блоком обработки и вторым блоком обработки,
при этом указанная вторая линия связи является избыточной с первой линией связи, и указанные первая и вторая линии связи могут быть активными одновременно,
при этом указанная система дополнительно содержит аварийные средства связи, позволяющие обеспечивать обмены данными между первым блоком обработки и вторым блоком обработки в случае отказа первой и второй линий связи,
при этом указанные аварийные средства связи содержат сеть датчиков или приводов и/или защищенную бортовую сеть для авионики.
Такая система обладает повышенной стойкостью к неисправностям, благодаря избыточности своих блоков обработки и своих средств связи, а также за счет минимизации числа линий связи, и одновременно имеет ограниченный габарит. Кроме того, аварийные средства связи позволяют избегать полного ослепления двухканальной системы и прерывания связи между двумя блоками обработки. Наконец, использование таких сетей для обмена информацией между блоками обработки позволяет повысить уровень избыточности средств связи между блоками обработки и обеспечивать надежность работы системы управления полетом, не прибегая к использованию специальных дополнительных средств связи только для связи между блоками обработки.
Согласно предпочтительному и не ограничительному признаку, первая и вторая линии связи могут быть линиями связи CCDL (“Cross Channel Data Link”).
Такая линия связи позволяет, в частности, блокам обработки обмениваться более сложными данными исправности, чем данные, обмениваемые при помощи дискретных аналоговых линий связи известных систем, и одновременно уменьшить объем проводки.
Защищенная бортовая сеть для авионики может быть, например, избыточной сетью Ethernet типа AFDX (“Avionics Full DupleX switched Ethernet) или μAFDX.
Согласно предпочтительному и не ограничительному признаку, каждый блок обработки заявленной системы управления содержит средства для проверки целостности данных, получаемых по каждой из линий связи.
Это позволяет убедиться, что принятые данные не были искажены во время их передачи.
Кроме того, каждый блок обработки может содержать средства для проверки когерентности данных, полученных по первой линии связи и по второй линии связи, в результате передачи данной одновременно по первой линии связи и по второй линии связи.
Это позволяет улучшить способность системы обнаруживать изменения данных, обмениваемых между блоками обработки, и свести к минимуму вероятность отказа системы управления полетом.
Кроме того, средства связи заявленной системы управления полетом могут быть выполнены с возможностью передачи от первого блока обработки во второй блок обработки данных, относящихся к исправности первого блока обработки, при этом указанная заявленная система дополнительно содержит средства для выбора блока обработки с целью управления двигателем указанного летательного аппарата среди первого и второго блоков обработки в зависимости от переданных данных, относящихся к исправности первого блока обработки, и от данных, относящихся к исправности второго блока обработки.
Такой обмен данными позволяет каждому блоку обработки узнать рабочее состояние другого блока обработки, чтобы гарантировать, что канал с лучшим рабочим состоянием продолжает обеспечивать управление двигателем.
Краткое описание чертежей
Другие отличительные признаки и преимущества будут более очевидны из нижеследующего описания варианта выполнения. Это описание представлено со ссылками на прилагаемые чертежи, на которых:
фиг. 1 - схематичный вид системы управления полетом согласно варианту выполнения изобретения;
фиг. 2 - схема аппаратных средств, предназначенных для установления двух линий связи CCDL между двумя блоками обработки системы управления полетом согласно варианту выполнения изобретения;
фиг. 3 схематично иллюстрирует физическое разделение модулей CCDL каждого блока обработки системы управления полетом согласно варианту выполнения изобретения;
фиг. 4 схематично иллюстрирует разделение аппаратных средств блока обработки, предназначенных для установления двух линий связи CCDL, согласно варианту выполнения изобретения.
Осуществление изобретения
Вариант выполнения изобретения, представленный на фиг. 1, касается системы управления полетом летательного аппарата, содержащей по меньшей мере первый блок 1 обработки и второй блок 2 обработки. Эта два блока обработки являются избыточными и могут, каждый, выполнять функции управления и регулирования двигателя летательного аппарата. Таким образом, система, показанная на фиг. 1, образует двухканальную архитектуру, содержащую канал А и канал В.
Блоки обработки 1 и 2 могут быть процессорами одной многопроцессорной компьютерной системы, содержащей несколько процессоров. Чтобы улучшить стойкость системы управления полетом по отношению к внешним воздействиям и чтобы одно локальное событие не могло вывести из строя одновременно оба блока обработки 1 и 2, оба канала могут быть установлены на расстоянии друг от друга в разных корпусах. В такой конфигурации блоки обработки не являются рабочими исполнительными устройствами, находящимися внутри одного процессора.
Система содержит также средства связи, позволяющие соединять оба блока обработки для обеспечения обмена данными, являющимися существенными для нормальной работы каждого из блоков обработки, такими как данные о рабочем состоянии противоположного блока обработки.
Эта двухканальная система отличается от известных систем тем, что средства связи выполнены с возможностью установления первой цифровой двухсторонней линии связи 3 и второй цифровой двухсторонней линии связи 4 между первым блоком 1 обработки и вторым блоком 2 обработки. В отличие от известных систем, такая система не содержит никакой дискретной связи между двумя блоками обработки, что позволяет ограничить сложность ее проводки и вероятность отказа одной из связей.
Вторая линия связи 4 является избыточной с первой линией связи 3, чтобы обеспечивать связь между двумя блоками обработки в случае отказа первой линии связи 3 и наоборот. С точки зрения обмена информацией между двумя блоками обработки такая избыточность обеспечивает такой же уровень надежности, как и у известных систем.
Кроме того, указанные первая и вторая линии связи могут быть одновременно активными. Таким образом, в отличие от систем, в которых избыточную линию связи используют только в случае отказа первой линии связи, система управления полетом может использовать первую линию связи 3 и вторую линию связи 4 одновременно при нормальной работе, то есть в случае отсутствия отказа одной из двух линий связи, и может использовать сосуществование этих двух линий связи, чтобы проверять отсутствие искажения данных, обмениваемых между двумя блоками обработки.
Первый и второй блоки обработки 1 и 2 могут использовать протокол Ethernet EIEEE 802.3, HDLC, SDLC, или любой другой протокол, имеющий функцию обнаружения или исправления ошибки, чтобы сообщаться между собой через две линии связи 3 и 4. В частности, линия связи Ethernet обеспечивает отличные характеристики, высокую надежность по отношению к окружающей среде, в частности, с точки зрения стойкости к действию молнии и электромагнитной совместимости (“CEM”), и высокую функциональную надежность, благодаря применению механизмов контроля целостности данных и контроля потоков. Кроме того, протокол Ethernet является промышленным стандартом, совместимым с технологиями связи в рамках авионики, такими как AFDX (“Avionics Full DupleX switched Ethernet) или μAFDX, и с технологиями обслуживания.
Первая и вторая линии связи могут быть линиями связи CCDL (“Cross Channel Data Link”). Такая линия связи позволяет синхронизировать каждое приложение с точностью до ста микросекунд. Такая линия связи позволяет также, вместо обмена дискретными сообщениями, как в известных системах, осуществлять обмен данными исправности, формируемыми аппаратными средствами (“hardware”) или программными средствами (“software”), данными, необходимыми для системы (измерение, статус…), и функциональными данными эксплуатационной системы (OS) или прикладной системы (AS).
Такие линии связи CCDL между двумя блоками обработки А и В показаны на фиг. 2. Каждый блок 1, 2 обработки может содержать систему, например, однокристальную систему (SoC, “system on a chip”), или систему, состоящую из микропроцессора и периферийных средств, установленных в отдельных корпусах или в карте FPGA, при этом система 5а, 5b имеет первый модуль CCDL (CCDLА) 6а, 6b для установления первой линии связи CCDL 3 и второй модуль CCDL (CCDLВ) 7а, 7b для установления второй линии связи CCDL 4. Поскольку каждая линия связи CCDL имеет свой собственный модуль, независимость каждой из линий связи CCDL увеличивается, и вероятность одновременного отказа обеих линий CCDL уменьшается. Каждый модуль CCDL может быть соединен с входным/выходным интерфейсом в своем корпусе через материальный интерфейс Phy 8a, 8b, 8c, 8d и трансформатор 9a, 9b, 9c, 9d.
Как показано на фиг. 3, модули CCDL каждого блока обработки могут быть физически разделены, будучи расположенными на системе 5а, 5b в разных местах, удаленных друг от друга, например, каждый расположен в углу системы. В альтернативном варианте эти модули CCDL могут быть расположены на разных кристаллах. Это позволяет уменьшить вероятность общей неисправности в случае изменения типа SEU (“Single Event Upset”) или MBU (“Multiple Bit Upset”).
Согласно первому варианту, каждая система 5a, 5b получает питание от отдельного источника питания. Согласно второму варианту, система содержит источник питания 15 (“power supply”), общий для всей однокристальной системы, при этом каждая однокристальная система может питаться при помощи двух разных синхронизирующих сигналов 11 и 12, как показано на фиг. 4. Таким образом, хотя их питание и не является независимым, модули CCDL каждого блока обработки могут питаться от независимых тактовых синхронизаторов, что усиливает стойкость однокристальной системы к неисправностям, поскольку неисправность тактового синхронизатора одного из модулей CCDL не может повлиять на другой модуль CCDL.
Модули CCDL каждого блока обработки могут быть синхронизированы при помощи локального синхронизирующего механизма в реальном времени (HTR или RTC “Real time clock”) 10a, 10b, как показано на фиг. 2, и механизма синхронизации, такого как механизм с синхронизирующим окном. Таким образом, в случае потери синхронизации каждый блок обработки работает, благодаря своему локальному тактовому синхронизатору, затем опять синхронизируется при получении надлежащего сигнала. Локальный синхронизирующий механизм можно запрограммировать при помощи приложения, и его программирование защищено от изменений типа SEU (“Single Event Upset”) или MBU (“Multiple Bit Upset”). Вместе с тем, линии связи CCDL могут продолжать работать даже в отсутствие синхронизации или в случае потери тактового синхронизатора.
Система может также содержать аварийные средства связи, позволяющие обеспечивать обмены данными между первым и вторым блоками обработки и используемые только в случае отказов первой и второй линий связи, чтобы избегать прерывания связи между блоками обработки.
В первом варианте выполнения, представленном на фиг. 1, эти аварийные средства связи могут содержать сеть датчиков или приводов 13. Такая сеть датчиков или приводов может быть, например, сетью умных датчиков или приводов (“smart sensor, smart actuator”). Каждый блок обработки можно подключить к этой сети 13 через шину типа RS-485, позволяющую передавать информацию не в аналоговом, а в цифровом виде.
Во втором варианте выполнения, представленном на фиг. 1, эти аварийные средства связи содержат бортовую защищенную сеть 14 для авионики. Такая защищенная бортовая сеть может быть, например, избыточной сетью Ethernet, такой как AFDX (“Avionics Full DupleX switched Ethernet”) или μAFDX. Такая сеть обеспечивает средства общего использования ресурсов, разделения потоков, а также детерминизм и доступность, необходимые для авиационной сертификации.
Поскольку цифровые сигналы, передаваемые через две двухсторонние линии связи между блоками обработки, являются более чувствительными к помехам, чем дискретные аналоговые сигналы, передаваемые через множество дискретных линий связи в существующих системах, можно установить механизмы контроля целостности и контроля когерентности данных, передаваемых между двумя удаленными блоками обработки.
Так, каждый блок обработки может содержать средства проверки целостности данных, получаемых через каждую из двухсторонних линий связи. Чтобы проверить целостность полученных данных, можно проверить различные поля каждого принятого фрейма, в частности, в случае линии связи Ethernet, - поля, относящиеся к адресу получателя, к адресу источника, к типу и к длине фрейма, к данным МАС и к вставным данным. Фрейм можно считать некорректным, если длина этого фрейма не соответствует длине, указанной в поле длины фрейма, или если байты не являются целыми числами. Фрейм можно также считать некорректным, если контроль избыточности (CRC, “Cyclic Redundancy Check”), производимый вычислением при получении фрейма, не соответствует принятому CRC по причине ошибок, связанных, например, с помехами во время передачи.
Кроме того, при передаче одной данной одновременно по первой линии связи 3 и по второй линии связи 4 каждый блок обработки может содержать средства для проверки когерентности данных, принятых по двум линиям связи, которые должны переносить одну и ту же информацию в отсутствие неисправности или искажения передаваемых фреймов.
Чтобы иметь возможность обеспечивать управление двигателем летательного аппарата, система управления полетом должна доверить это управление одному из своих двух каналов. Для этого каждый блок обработки должен знать рабочее состояние противоположного блока обработки. Поэтому средства связи системы выполнены с возможностью передавать от первого блока обработки во второй блок обработки данные, относящиеся к исправности первого блока обработки, и наоборот.
Такие данные исправности являются данными, позволяющими выбирать канал и осуществлять полную системную диагностику. Они могут быть: данными диагностики CCDL, сигналами, необходимыми для логики переключения каналов, данными статуса эксплуатационной системы и приложений, данными диагностики оборудования, в частности, датчиков или приводов, данными функциональной диагностики, осуществляемой программой, и т.д.
Система управления полетом может содержать средства, чтобы выбирать, - с целью управления двигателем летательного аппарата в зависимости от переданных данных, относящихся к исправности первого блока обработки, и данных, относящихся к исправности второго блока обработки, - блок обработки среди первого и второго блоков обработки, позволяющий обеспечивать лучшую работу системы управления полетом.

Claims (13)

1. Система управления полетом летательного аппарата, содержащая:
первый блок (1) обработки,
второй блок (2) обработки,
средства связи, выполненные с возможностью установления первой цифровой двухсторонней линии связи (3) и второй цифровой двухсторонней линии связи (4) между первым блоком (1) обработки и вторым блоком (2) обработки,
при этом указанная вторая линия связи (4) является избыточной для первой линии связи (3),
и указанные первая (3) и вторая (4) линии связи выполнены с возможностью быть активными одновременно,
при этом указанная система дополнительно содержит аварийные средства связи, позволяющие обеспечивать обмен данными между первым (1) и вторым (2) блоками обработки в случае отказа первой (3) и второй (4) линий связи,
при этом указанные аварийные средства связи содержат сеть (13) датчиков или приводов и/или защищенную бортовую сеть (14) для авионики.
2. Система управления полетом по п. 1, в которой первая (3) и вторая (4) линии связи являются линиями связи CCDL (“Cross Channel Data Link”).
3. Система управления полетом по п. 1 или 2, в которой защищенная бортовая сеть (14) является избыточной сетью Ethernet типа AFDX (“Avionics Full DupleX switched Ethernet) или μAFDX.
4. Система управления полетом по любому из пп. 1-3, в которой каждый блок (1, 2) обработки содержит средства для проверки целостности данных, принимаемых по каждой из линий связи (3, 4).
5. Система управления полетом по любому из пп. 1-4, в которой каждый блок (1, 2) обработки содержит средства для проверки согласованности данных, принимаемых по первой линии связи (3) и по второй линии связи (4) в результате передачи данных одновременно по первой линии связи (3) и по второй линии связи (4).
6. Система управления полетом летательного аппарата по любому из пп. 1-5, в которой средства связи выполнены с возможностью передачи от первого блока (1, 2) обработки во второй блок (2, 1) обработки данных, относящихся к исправности первого блока (1, 2) обработки, при этом указанная система содержит средства для выбора блока обработки для управления двигателем указанного летательного аппарата из первого (1, 2) и второго (2, 1) блоков обработки в зависимости от переданных данных, относящихся к исправности первого блока обработки, и от данных, относящихся к исправности второго блока (2, 1) обработки.
RU2017111197A 2014-09-05 2015-09-04 Двухканальная архитектура с избыточными линиями связи ccdl RU2670941C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1458350 2014-09-05
FR1458350A FR3025626B1 (fr) 2014-09-05 2014-09-05 Architecture bi-voies avec liaisons ccdl redondantes
PCT/FR2015/052342 WO2016034824A1 (fr) 2014-09-05 2015-09-04 Architecture bi-voies avec liaisons ccdl redondantes

Publications (4)

Publication Number Publication Date
RU2017111197A RU2017111197A (ru) 2018-10-05
RU2017111197A3 RU2017111197A3 (ru) 2018-10-05
RU2670941C2 RU2670941C2 (ru) 2018-10-25
RU2670941C9 true RU2670941C9 (ru) 2018-11-26

Family

ID=52692714

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111197A RU2670941C9 (ru) 2014-09-05 2015-09-04 Двухканальная архитектура с избыточными линиями связи ccdl

Country Status (9)

Country Link
US (1) US10338560B2 (ru)
EP (1) EP3189380B1 (ru)
JP (2) JP2017530461A (ru)
KR (2) KR102213762B1 (ru)
CN (1) CN107005446B (ru)
CA (1) CA2960093C (ru)
FR (1) FR3025626B1 (ru)
RU (1) RU2670941C9 (ru)
WO (1) WO2016034824A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025626B1 (fr) * 2014-09-05 2017-11-03 Sagem Defense Securite Architecture bi-voies avec liaisons ccdl redondantes
CN107331185B (zh) * 2017-08-16 2019-12-06 青岛海信网络科技股份有限公司 一种交通信号灯机的异常状态处理方法、主机及从机
DE102018111338A1 (de) * 2018-05-11 2019-11-14 Liebherr-Aerospace Lindenberg Gmbh System zum Steuern, Regeln und/oder Überwachen eines Luftfahrzeugs
CN112368208A (zh) 2018-05-31 2021-02-12 杰欧比飞行有限公司 电动动力系统架构和使用该架构的容错vtol飞行器
US10710741B2 (en) 2018-07-02 2020-07-14 Joby Aero, Inc. System and method for airspeed determination
CN108924955B (zh) * 2018-07-30 2021-12-14 山东大骋医疗科技有限公司 一种基于双链无线通信的ct数据传输与控制方法及装置
DK201870684A1 (en) 2018-08-27 2020-05-19 Aptiv Technologies Limited PARTITIONED WIRELESS COMMUNICATION SYSTEM WITH REDUNDANT DATA LINKS AND POWER LINES
US11099936B2 (en) * 2018-09-11 2021-08-24 Embraer S.A. Aircraft integrated multi system electronic architecture
EP3853736A4 (en) 2018-09-17 2022-11-16 Joby Aero, Inc. AIRCRAFT CONTROL SYSTEM
US20200331602A1 (en) 2018-12-07 2020-10-22 Joby Aero, Inc. Rotary airfoil and design method therefor
US10983534B2 (en) 2018-12-07 2021-04-20 Joby Aero, Inc. Aircraft control system and method
US10845823B2 (en) 2018-12-19 2020-11-24 Joby Aero, Inc. Vehicle navigation system
CN109707517B (zh) * 2018-12-21 2021-06-25 中国航发控制系统研究所 一种控制双通道同步的方法及系统
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
CN116646641A (zh) 2019-04-23 2023-08-25 杰欧比飞行有限公司 电池热管理系统及方法
EP3959127A4 (en) 2019-04-25 2023-01-11 Joby Aero, Inc. VTOL AIRCRAFT
US11491930B2 (en) * 2019-12-03 2022-11-08 Woodward, Inc. Systems and methods for commanded or uncommanded channel switchover in a multiple processor controller
US11720067B2 (en) * 2020-03-30 2023-08-08 General Electric Company Method for handling a simultaneous failure of all channels of a multi-channel engine controller for a gas turbine engine
US11673649B2 (en) 2020-06-05 2023-06-13 Joby Aero, Inc. Aircraft control system and method
CN113934153A (zh) * 2020-06-29 2022-01-14 中国航发商用航空发动机有限责任公司 航空发动机控制系统的多通道仿真方法和系统
CN112346331B (zh) * 2020-11-18 2022-11-18 西安爱生技术集团公司 一种三余度飞控计算机的通道选择方法
CN113824698B (zh) * 2021-08-27 2023-04-07 中国航空无线电电子研究所 一种保障民用航空电子系统数据完整性的方法
CN113504720A (zh) * 2021-09-07 2021-10-15 中国商用飞机有限责任公司 一种基于分布式电传飞控架构的备份控制系统及工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274554A (en) * 1991-02-01 1993-12-28 The Boeing Company Multiple-voting fault detection system for flight critical actuation control systems
US20080205416A1 (en) * 2007-02-23 2008-08-28 Honeywell International, Inc. Flight control computers with ethernet based cross channel data links
US20120297108A1 (en) * 2009-12-16 2012-11-22 Kawasaki Jukogyo Kabushiki Kaisha Integrated electronic system mounted on aircraft
US8504178B2 (en) * 2009-02-27 2013-08-06 Mitsubishi Heavy Industries, Ltd. Multiple redundant control system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2984715B2 (ja) * 1988-04-12 1999-11-29 第一電気株式会社 航空機等空海交通機関の姿勢制御装置
JPH0410832A (ja) * 1990-04-27 1992-01-16 Nec Commun Syst Ltd パケットネットワークシステムのバックアップ方式
US6611499B1 (en) * 1999-03-18 2003-08-26 At&T Corp. Method for measuring the availability of router-based connectionless networks
WO2003042928A2 (en) * 2001-11-13 2003-05-22 Goodrich Pump & Engine Control Systems, Inc. Fault management system for gas turbine engines
US20040153700A1 (en) * 2003-01-02 2004-08-05 Nixon Mark J. Redundant application stations for process control systems
KR100564758B1 (ko) * 2003-12-12 2006-03-27 한국전자통신연구원 통신경로 이중화장치 및 이중화된 통신경로의 운용방법
JP4478037B2 (ja) * 2004-01-30 2010-06-09 日立オートモティブシステムズ株式会社 車両制御装置
KR100603599B1 (ko) * 2004-11-25 2006-07-24 한국전자통신연구원 이중화된 스위치 보드의 이중화 제어장치 및 그 방법
FR2879388B1 (fr) * 2004-12-15 2007-03-16 Sagem Procede de transmission securisee, systeme, pare-feu et routeur le mettant en oeuvre
US20060184253A1 (en) * 2005-02-03 2006-08-17 International Business Machines Corporation Intelligent method of organizing and presenting operational mode information on an instrument panel of a flight deck
US7346793B2 (en) * 2005-02-10 2008-03-18 Northrop Grumman Corporation Synchronization of multiple operational flight programs
FR2922959B1 (fr) * 2007-10-31 2009-12-04 Airbus France Systeme de controle et procede de controle.
US8503484B2 (en) * 2009-01-19 2013-08-06 Honeywell International Inc. System and method for a cross channel data link
CN102130722B (zh) * 2011-03-01 2014-04-23 南京航空航天大学 用于光传飞行控制系统中的交叉通道数据链路系统
JP6227239B2 (ja) * 2011-11-16 2017-11-08 ナブテスコ株式会社 航空機制御装置及び航空機制御システム
FR2986398B1 (fr) * 2012-01-30 2014-03-07 Snecma Dispositif de securite pour la commande d'un moteur comprenant une redondance des acquisitions d'une mesure de capteurs
US9449498B2 (en) * 2012-08-17 2016-09-20 Illinois Tool Works Inc. Wireless communication network power optimization for control of industrial equipment in harsh environments
CN103853626A (zh) * 2012-12-07 2014-06-11 深圳航天东方红海特卫星有限公司 一种星载电子设备的双工冗余备份总线通信方法及装置
CN103441875A (zh) * 2013-08-23 2013-12-11 中国铁道科学研究院 一种实现信号集中监测系统冗余通信的方法
CN103490959B (zh) * 2013-10-10 2016-12-07 北京航天发射技术研究所 一种双冗余can总线故障检测方法
FR3025626B1 (fr) * 2014-09-05 2017-11-03 Sagem Defense Securite Architecture bi-voies avec liaisons ccdl redondantes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274554A (en) * 1991-02-01 1993-12-28 The Boeing Company Multiple-voting fault detection system for flight critical actuation control systems
US20080205416A1 (en) * 2007-02-23 2008-08-28 Honeywell International, Inc. Flight control computers with ethernet based cross channel data links
US8504178B2 (en) * 2009-02-27 2013-08-06 Mitsubishi Heavy Industries, Ltd. Multiple redundant control system
US20120297108A1 (en) * 2009-12-16 2012-11-22 Kawasaki Jukogyo Kabushiki Kaisha Integrated electronic system mounted on aircraft

Also Published As

Publication number Publication date
EP3189380B1 (fr) 2018-08-22
RU2017111197A (ru) 2018-10-05
CA2960093C (fr) 2020-03-10
FR3025626B1 (fr) 2017-11-03
FR3025626A1 (fr) 2016-03-11
RU2017111197A3 (ru) 2018-10-05
CA2960093A1 (fr) 2016-03-10
RU2670941C2 (ru) 2018-10-25
KR102213762B1 (ko) 2021-02-09
EP3189380A1 (fr) 2017-07-12
CN107005446A (zh) 2017-08-01
US20170277152A1 (en) 2017-09-28
WO2016034824A1 (fr) 2016-03-10
KR20180087468A (ko) 2018-08-01
CN107005446B (zh) 2018-11-27
US10338560B2 (en) 2019-07-02
KR20170089835A (ko) 2017-08-04
JP2020030815A (ja) 2020-02-27
JP2017530461A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
RU2670941C9 (ru) Двухканальная архитектура с избыточными линиями связи ccdl
RU2679706C2 (ru) Двухканальная архитектура
Alena et al. Communications for integrated modular avionics
US7505400B2 (en) Dual lane connection to dual redundant avionics networks
JP5337022B2 (ja) フォールト・トレランス・コンピューティング・システムにおけるエラー・フィルタリング
EP2209241B1 (en) System and method for a cross channel data link (CCDL)
US9582376B2 (en) Unified communications module (UCM)
JP3827772B2 (ja) 分散型制御システムのための投票ノード
EP1857935B1 (en) Fault tolerant data bus node in a distributed system
EP3699764B1 (en) Redundant ethernet-based secure computer system
CN107276710B (zh) 基于时间同步状态监控的时间触发以太网故障诊断方法
EP0883838B1 (en) Shared bw architecture for applications with varying levels of integrity requirements
Hiergeist et al. Internal redundancy in future UAV FCCs and the challenge of synchronization
Hiergeist et al. Fault-tolerant FCC Architecture for future UAV systems based on COTS SoC
McCabe et al. Avionics architecture interface considerations between constellation vehicles
CN111177793B (zh) 数字量采集及通信传输系统
CN113472378A (zh) 一种民用飞机无线航电网络系统架构和专用无线传输装置
CN115185877A (zh) 一种双余度通用处理模块及其信息同步方法
An et al. Architecture Design of Aviation Fault-tolerant Computer Based on ARINC659 Bus Technology
Fidi Deterministic Ethernet for Scalable, Modular Launcher Avionics

Legal Events

Date Code Title Description
TH4A Reissue of patent specification