CN112368208A - 电动动力系统架构和使用该架构的容错vtol飞行器 - Google Patents

电动动力系统架构和使用该架构的容错vtol飞行器 Download PDF

Info

Publication number
CN112368208A
CN112368208A CN201980036597.6A CN201980036597A CN112368208A CN 112368208 A CN112368208 A CN 112368208A CN 201980036597 A CN201980036597 A CN 201980036597A CN 112368208 A CN112368208 A CN 112368208A
Authority
CN
China
Prior art keywords
motor
aircraft
motors
battery
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980036597.6A
Other languages
English (en)
Inventor
乔本·贝维尔特
亚历克斯·斯托尔
马丁·范德吉斯特
斯科特·迈克菲
詹森·瑞恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geoby Flight Ltd
Original Assignee
Geoby Flight Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geoby Flight Ltd filed Critical Geoby Flight Ltd
Publication of CN112368208A publication Critical patent/CN112368208A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/16Power plant control systems; Arrangement of power plant control systems in aircraft for electric power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • B64D31/09Initiating means actuated automatically in response to power plant failure
    • B64D31/10Initiating means actuated automatically in response to power plant failure for preventing asymmetric thrust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2221/00Electric power distribution systems onboard aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

一种适合在飞行器械中使用的具有用于电动马达的增强可靠性的电池架构的动力系统。例如,在具有六个或更多个马达的系统中,单独的电池可以用于给两个或更多个马达的子集供电。每个马达可以由电池的两个或更多个子集供电,从而允许缓解马达故障。在垂直起飞或着陆模式中存在故障的马达的情况下,电力可能会转供给其他马达以继续进行正确的姿态控制,并提供足够的推力。在出现故障的马达的情况下,偏离故障的马达的第二马达可以断电,以便于姿态控制。

Description

电动动力系统架构和使用该架构的容错VTOL飞行器
相关申请的交叉引用
本申请要求贝维尔特等人在2018年5月31日提交的美国临时专利申请第62/678,275号的优先权,该临时专利申请据此通过引用以其整体并入。
发明领域
本发明涉及电动驱动的飞行,即用于飞行器械(aerial vehicles)上使用的电动马达的动力系统。
附图简述
图1A-图1D是根据本发明的一些实施例的处于悬停构型的VTOL飞行器。
图1E-图1H是根据本发明的一些实施例的处于向前飞行构型的VTOL飞行器。
图1E-图1H是根据本发明的一些实施例的从向前飞行构型过渡到垂直起飞和着陆构型的VTOL飞行器。
图2A是根据本发明的一些实施例的具有环形架构的飞行系统的布局。
图2B是根据本发明的一些实施例的标识用于环形架构的马达位置的布局。
图2C是根据本发明的一些实施例的电池位置的布局。
图3是根据本发明的一些实施例的马达功率图。
图4是根据本发明的一些实施例的故障场景布局。
图5是根据本发明的一些实施例的故障补偿布局。
图6是根据本发明的一些实施例的故障补偿布局。
图7是根据本发明的一些实施例的电源架构布局。
图8是根据本发明的一些实施例的电池放电图。
图9是根据本发明的一些实施例的飞行控制系统架构布局。
图10图示了根据本发明的一些实施例的飞行控制软件架构。
图11A是根据本发明的一些实施例的具有双重架构的飞行动力系统的布局。
图11B是根据本发明的一些实施例的具有双重架构的飞行动力系统的布局。
图11C是根据本发明的一些实施例的具有带马达故障的双重架构的飞行动力系统的布局。
图11D是根据本发明的一些实施例的具有带电池故障的双重架构的飞行动力系统的布局。
图12是根据本发明的一些实施例的具有六芒星形架构(hexagram architecture)的飞行动力系统的布局。
图13是根据本发明的一些实施例的具有星形架构的飞行动力系统的布局。
图14是根据本发明的一些实施例的具有网状架构的飞行动力系统的布局。
图15A-图15C表示根据本发明一些实施例的关于电池故障运行的信息。
概述
一种适合在飞行器械中使用,具有用于电动马达的增强可靠性的动力系统架构的动力系统。例如,在具有六个或更多个马达的系统中,单独的电池可以用于给两个或更多个马达的子集供电。每个马达可以由电池的两个或更多个子集供电,从而允许缓解马达故障。每个马达可以具有两组或更多组绕组,其中每个绕组由不同的电池供电。在向前飞行模式或垂直起飞和着陆模式中,在出现故障的绕组、故障的电池或故障的马达的情况下,动力线路可以被自动改变以继续进行正确的姿态控制,并提供足够的推力。在出现故障的马达的情况下,偏离故障的马达的第二马达可以断电,以便于姿态控制。
详细描述
在一些方面中,飞行器械可以使用由电动马达驱动的叶片螺旋桨(bladedpropeller),以在起飞期间提供推力。螺旋桨/马达单元可以被称为推进组件。在一些方面中,飞行器械的机翼可以旋转,其中前缘(leading edge)面向上,使得螺旋桨为起飞和着陆提供垂直推力。在一些方面中,机翼上的马达驱动的螺旋桨单元本身可以相对于固定机翼旋转,使得螺旋桨为起飞和着陆提供垂直推力。马达驱动的螺旋桨单元的旋转可以通过旋转螺旋桨和电动马达两者来允许推力的方向改变,因此不需要围绕旋转接头或通过旋转接头进行扭矩驱动的任何万向接头(gimbaling),或者其他方法。
在一些方面中,根据本发明的实施例的飞行器械从地面起飞,其中垂直推力来自已经部署成垂直构型的旋翼组件(rotor assemblies)。随着飞行器械开始获得飞行高度(altitude),旋翼组件可以开始向前倾斜,以便开始向前加速。随着飞行器械获得向前的速度,机翼上方的气流产生了升力,使得旋翼变得不太重要,并且然后不需要使用垂直推力来保持飞行高度。一旦飞行器械已经达到足够的向前的速度,用于在起飞期间提供垂直推力的叶片中的一些或全部可以沿着它们的短舱(nacelle)收起。在一些方面中,也在向前飞行期间使用用于垂直起飞和着陆的所有推进组件。支撑推进组件的短舱可以具有凹部,使得叶片可以嵌套在凹部中,从而大大减小脱离的旋翼组件的阻力。
起飞后,飞行器械将通过将螺旋桨从垂直推力定向铰接成包括水平推力元件的位置来开始过渡到向前飞行。随着飞行器械开始以一定速度向前移动,升力将由机翼产生,因此对来自旋翼的垂直推力需求更少。当螺旋桨进一步朝向向前飞行、水平推力构型铰接时,飞行器械获得更多的速度。
在根据本发明的一些实施例的第一垂直构型中,如图1A至图1D中的垂直起飞构型中看出的,飞行器械200使用固定机翼202、203,该固定机翼202、203可以是前掠机翼,其具有适合于垂直起飞和着陆以及适合于向前飞行两者的相同或不同类型的推进组件。在这种构型中,推进组件定位成用于垂直推动。飞行器机体201支撑左机翼202和右机翼203。沿着机翼的马达驱动的旋翼组件206可以包括电动马达和螺旋桨,旋翼组件206适于利用可以驻留于短舱主体中的部署机构从向前飞行构型铰接成垂直构型,并且当所有或大部分的短舱保持在附接到机翼的适当位置中时部署马达和螺旋桨。在一些方面中,螺旋桨叶片可以收起和嵌套到短舱主体中。机翼尖端处的马达驱动的旋翼组件207可以沿着枢轴轴线从向前飞行构型部署成垂直起飞和着陆构成,其中短舱和电动马达以及螺旋桨一致地部署。尽管每个机翼图示有一个中跨推进组件(mid-span propulsion assembly)和一个机翼尖端推进组件,但是在一些方面中,可以存在更多的中跨推进组件。
飞行器机体201向后延伸,还附接到升高的后平衡器204。后平衡器具有附接到其的后推进组件205。在后平衡器的尖端处的马达驱动的旋翼组件207可以沿着枢轴轴线从向前飞行构型部署成垂直起飞和着陆构型,其中短舱和电动马达以及螺旋桨一致地部署。
如图1D中的俯视图中看出的,推进组件定位于距飞行器质心不同距离处的两个轴线上。垂直起飞和着陆期间的姿态控制可以通过改变每一处推进组件位置中的推力来操纵。在垂直起飞或着陆期间马达故障的情况下,并且尤其是在机翼外侧推进组件处的马达故障的情况下,飞行器的姿态可以通过实施本文描述的容错策略(fault tolerancestrategies)来保持。
可见飞行器械200具有并排的两个乘员座椅,以及机体201下方的起落架。尽管图示了两个乘员座椅,但是在本发明的不同实施例中可以容纳其他数量的乘员。
图1E至图1H图示了处于向前飞行构型的飞行器械200。在这种构型中,推进组件被定位成在水平飞行期间提供向前的推力。如图1H中看出的,在向前飞行构型中,马达和螺旋桨的质心可能在机翼的前缘的前方。如图1G中看出的,后平衡器204上的推进组件205可以与机翼上的推进组件206、207处于不同的高度。在向前飞行期间马达故障的情况下,飞行器的姿态可以通过实施本文描述的容错策略来保持。
在一些方面中,安装在机翼上的推进组件中的全部或一部分可以适于在向前飞行构型中使用,而其他安装在机翼上的螺旋桨可以适于在常规向前飞行期间完全收起。飞行器械200可以在右侧机翼203上具有两个推进组件并且在左侧机翼202上具有两个推进组件。每个机翼上的内侧推进组件可以具有安装在机翼上的旋翼206,该旋翼206适于向上翻转到用于垂直起飞和着陆的部署位置,在过渡到向前飞行期间朝向收起位置向后移动,并且然后在向前飞行期间使这些旋翼206的叶片收起并嵌套。外侧推进组件207可以从水平推力构型一致地枢转到垂直推力构型。
类似地,每个后平衡器204可以具有安装到其的推进组件,这两个推进组件都适于在垂直起飞和着陆模式以及过渡模式期间使用。在一些方面中,所有的推进组件设计是相同的,其中子集与推进组件的主叶片一起用于向前飞行。在一些方面中,所有的推进组件设计是相同的,其中所有的螺旋桨用于向前飞行。在一些方面中,可以有不同数量的推进组件单元安装到后平衡器204。
驱动安装在机翼上的推进组件206、207的马达和驱动安装在后平衡器上的推进组件的马达可以各自具有两组绕组。在一些方面中,两组绕组在飞行期间都通电。在一些方面中,马达的每个绕组由不同的电池电路供电。在一些方面中,每个马达可以具有多于两组的绕组。
在一些实施例中,飞行器械的电动马达由可充电电池供电。在单个电池故障的情况下,使用驱动一个或更多个电源总线的多个电池增强了可靠性。在一些实施例中,电池驻留于器械主体内具有可调节位置的支架上,使得器械的平衡可以根据飞行员的重量进行调节。图10图示了根据本发明的一些实施例的用于六电池系统的电池位置布局。
在一些实施例中,如图2A中看出的,用于电力驱动的垂直起飞和着陆飞行器的高可靠性动力系统10在环形架构中具有六个马达和六个电池。在该示例性配置中,有六个马达和六个电池。电池中的每一个向两个马达提供电力,并且每个马达从两个电池接收电力。图2B图示了使用六个推进组件和六个电池的示例性实施例中的VTOL飞行器上的六个马达的布局。图2C图示了使用六个推进组件和六个电池的示例性实施例中的VTOL飞行器中的六个电池的布局。在示例性的环形实施例中,有六个电池和六个马达。马达中的每一个由两个独立的电池供电。电池的不同的位置30也增强了动力系统架构的可靠性和容错性。每个电池为两个独立的马达供电。在一些方面中,马达中的每一个缠绕有两组绕组,并且每组绕组从不同的电池接收电力。如下面参考图7所讨论的,六个电池中的每一个供应两个功率逆变器(power inverters)31,总共供应12个功率逆变器。电池的标称电压为600V。六个推进马达中的每一个具有两组绕组,其中每个马达由两个逆变器供电,每组绕组对应一个逆变器。为单个马达供电的两个逆变器各自由不同的电池供应电力。
在示例性的六马达六电池实施例10中,第一马达11联接第六电池26和第一电池21。第二马达12联接到第一电池21和第二电池22。第三马达13联接到第二电池22和第三电池23。第四马达14联接到第三电池23和第四电池24。第五马达15联接到第四电池24和第五电池25。第六马达16联接到第五电池25和第六电池26。在标称运行场景下,每个电池在其联接到的两个马达之间平均拆分(split)其功率分布,并且每个马达从其联接到的每个电池接收等量的功率。
根据本发明的实施例的动力系统架构的容错方面适于承受并响应于至少以下故障:电池的故障;马达的故障;或者马达逆变器的故障。
图3是在六马达实施例中,单个马达40所需功率的条形图(具有用于每种运行模式的条形对)。蓝色竖条(在用于每种模式的条形对的左侧)图示了五个不同飞行阶段(即,悬停41、垂直上升42、垂直下降43、巡航爬升44和巡航45)的每个马达的标称(正常)运行功率。悬停、垂直上升和垂直下降模式是VTOL模式,其中马达旋转到垂直推力位置,如图1A-图1D中看出的。巡航爬升和巡航阶段是其中马达处于向前飞行位置,如图1E-1H中看出的。红色竖条(在用于每种模式的条形对的右侧)表示紧急阶段运行,如下面讨论的。
如图3中看出的,六马达六电池环形架构系统的说明性实施例在标称条件期间处于VTOL模式下每个马达运行大约60kW。这60kW与约150kW的最大可用功率相比较。然而,在马达故障的情况下,更多的功率可以被转移到剩余的马达,以保持姿态控制和飞行高度控制,如下面进一步讨论的。
图4图示了潜在故障模式60,其中第一马达发生故障。如在表示的马达布局中看出的,第一马达11的损失表示远港马达(far port motor)处的推力损失,这将对飞行器的姿态产生显著影响。飞行计算机可能会立即感知到至少两件事:第一,马达已经停止汲取电流;第二,发生对飞行器的姿态的干扰。为了保持飞行器中的平衡,飞行控制计算机将根据需要降低相对的马达的功率。在这个示例中,如图5中看出的,第四马达14的功率将被降低。由于两个马达的停机而导致的升力损失需要剩余四个马达采用更多的功率并输送更多的升力。图6图示了第二马达、第三马达、第五马达和第六马达中增加的负载需求是如何通过分布来自电池的更多功率来满足的。再看图3,红色竖条图示了马达故障以及因此相对的马达的马达停机时所需的功率输送。在一些方面中,第四马达的断电以及第二马达、第三马达、第五马达和第六马达的功率增加可以同时发生。在一些方面中,第四马达的断电以及第二马达、第三马达、第五马达和第六马达的功率增加可以按顺序发生。
如图6中看出的,在第一马达11发生故障并且第四马达14断电以平衡飞行器的情况下,第一电池21现在仅向第二马达12输送功率。同样,第三电池仅向第三马达输送功率,第四电池仅向第五马达输送功率,并且第六电池仅向第六马达输送功率。第二电池向第二马达和第三马达两者输送功率,并且第五电池向第五马达和第六马达输送功率。尽管图示为使第四马达运行降至0%功率,但是在一些方面中,相对的马达(cross motor)可以以低水平运行,例如在标称功率的0%-20%的范围内运行。由于第一电池和第六电池仅向单个马达提供功率,并且由于第三电池和第四电池主要仅向单个马达输送功率,所以这些电池将向第二马达、第三马达、第五马达和第六马达中它们各自的绕组提供更多的电流61。第二电池和第五电池将向它们相邻的马达之间平均拆分。在图6中图示的故障场景中,每个电池可能输出相同量的功率,但是两个电池拆分它们的功率输送,并且四个马达仅向单个马达提供(或基本上提供)功率。在这种紧急模式下,马达的增加的负载需求通过电池架构共享,以利用飞行器上的可用能量。虽然一个马达已经被禁用并且第二马达已经断电,以缓解姿态控制问题,但每个电池仍然在使用和输送功率。
在一些实施例中,垂直起飞和着陆飞行器具有自主姿态控制系统,该自主姿态控制系统适于通过负载共享来承受多电池系统中的电源链路(power link)故障或完全马达故障,以更好地使电池放电水平相等。在一些方面中,每个马达在多个互补的绕组的组上被驱动,其中每个绕组的组使用不同的负载链路并由不同的电池驱动。图7是用于六马达六电池飞行器的电气系统电源架构的说明性实施例。六个电池201中的每一个供应两个功率逆变器,总共供应12个功率逆变器202。电池的标称电压为600V。六个推进马达203中的每一个具有两组绕组,其中每个马达由两个逆变器供电,每组绕组对应一个逆变器。为单个马达供电的两个逆变器各自由不同的电池供应电力。除了向马达逆变器供应电力之外,电池还向旋翼部署机构204(短舱倾斜致动器)供应电力,旋翼部署机构204用于在各种飞行模式(垂直起飞和着陆构型、向前飞行构型以及它们之间的过渡)期间部署和收起旋翼。
飞行计算机205监控来自十二个马达逆变器202中的每一个的电流,这些马达逆变器202向六个马达203中的十二个绕组的组供应电力。飞行计算机205还可以控制供应给六个马达的12组绕组中的每一组的马达电流。在一些实施例中,电池201还向可变桨距螺旋桨206的叶片桨距马达和位置编码器供应电力。电池还向用于定位飞机上的各种控制表面的控制表面致动器207供应电力。叶片桨距马达和控制表面致动器207可以通过DC-DC转换器208接收电力运行,例如将电压从600V逐步降低到160V。一套航空电子设备209也可以联接到飞行计算机。电池充电器210可以用于向电池201充电,并且电池充电器可以在飞行器外部并且是基于地面的。
在故障发生的情况下,诸如马达或马达的电源链路的故障,如上面所描述的,可以自主地并且在飞行器上完成对从各个电池到各个马达的功率分布的补偿。例如,补偿可以在不需要飞行员输入的情况下完成。
在另一种故障场景下,马达上的单个绕组可能发生故障。在这样的场景下,相对的马达可以有所断电,同时具有唯一剩余绕组的马达可以有所加电(powered up)。由电池供应的功率可以被调制以平衡各个电池的放电。在又一种故障场景下,电池可能发生故障。在这种情况下,相对的马达可能被降低10%-20%,其中马达上剩余的唯一电池与故障的电池/逆变器一起提供额外的功率,并且沿着环的差分功率用于分散电池放电。在环形架构中的电池完全故障的情况下,这将导致两个马达各自具有一个未通电的绕组的组,相邻马达中的每一个中剩余的绕组的组将从该绕组的组的电池获取增加的功率,并且为了最佳地均衡电池放电速率,围绕环将有差分地调节的功率。相对的马达将部分地断电,以保持适当的放电速率。
图8图示了四种飞行模式和用于每种飞行模式的电池放电速率的条形图235。条形图中的竖直轴线是电池放电速率C。电池放电速率是标准化系数,其中1C的放电速率将使电池在一个小时内放电。2C使电池在30分钟内放电,3C的放电速率将使电池在20分钟内放电,并且依此类推。最大峰值放电速率236(其在该示例性实施例中大约为5C)可以由电池化学性质的限制来设定。标称飞行模式是悬停232、过渡233和巡航234。巡航放电速率240可以约为1C。当飞行器接近着陆时,飞行器将改变到过渡模式233,该过渡模式可以具有约2C的过渡放电速率239。然后,当飞行器着陆时,飞行器将进入悬停模式232,该悬停模式可以具有约2.5C的放电速率。在马达故障的情况下,飞行器可以进入紧急悬停模式231,其中相对的马达可以被断电以实现姿态稳定性。悬停模式放电速率237可以超过3C。
在示例性实施例中,最大总起飞重量(MGTOW)可以是4200磅。放电速率超出地面效应(OGE),此时所有电池的总储能为150kWh。在紧急悬停模式231中紧急着陆的情况下,使用紧急悬停放电速率237的高放电速率的预期时间约为1分钟。
图9图示了根据本发明的一些实施例的用于高可靠性电动驱动的飞行器的飞行控制系统架构。在示例性实施例中,控制系统的飞行计算机111接收来自任务计算机112和飞行员113的飞行命令114。飞行计算机还可以接收来自飞行关键传感器套件110的输入。飞行关键传感器可能有三重冗余(triply redundant)。飞行计算机可能有三重冗余。该系统可以包括每个致动器115上的表决桥(voting bridge)116。图10图示了根据本发明的一些实施例的飞行控制软件架构。
在本发明的一些实施例中,可以使用其他电池和马达架构,这进一步增强了系统的容错性。在一些方面中,如图11A中看出的,使用双重架构120,其使用四个电池用于六个推进组件的电动马达;左侧机翼尖端推进组件121、左侧机翼推进组件122、右侧机翼推进组件123、右侧机翼尖端推进组件124、左后推进组件125以及右后推进组件126。在双重架构中,每个电池向飞行器纵向中心线的每一侧上的一个或更多个马达提供电力。通过将向最远的外侧供电的电池链接到飞行器的中心线的另一侧上的马达,然后,电池故障使其在整个飞行器上的影响更加分散,从而减少由于电池故障而导致的姿态偏移的量。例如,在第一马达121处的马达故障的情况下,第四马达的功率仍然存在瞬时降低以补偿故障。但是,与上面公开的环形架构相比,在使用剩余马达的双重架构中用于功率共享的补偿机制将允许逆变器优化系统中的较低的逆变器负载。此外,与环形架构相比,在使用剩余马达的双重架构中用于功率共享的补偿机制将允许电池优化系统中的较低的电池负载。
图11B图示了双重架构120的标称运行条件,其中四个电池111、112、113、114中的每一个向三个不同马达的一个绕组提供35KW,每个电池输送的总功率为105kW,并且每个马达接收的总功率为70kW,总输送功率为420kW。每个马达从三个电池接收功率。
图11C图示了马达故障情况,在该示例性情况下,是左侧机翼尖端推进组件的马达121故障。如所图示的,为了抵消左侧机翼尖端马达的损失,右侧机翼尖端上的马达124已经断电并且不再汲取任何功率。电池中的每一个现在为两个(而不是以前的三个)马达供电,并且每个马达从两个电池接收功率,而不是以前的三个。电池中的每一个能够以相同的功率输出水平运行,并且马达绕组中的每一个及其相关联的逆变器也能够以相同的功率水平运行。
图11D图示了电池故障情况,在该示例性情况下,是第一电池111故障。在这种情况下,每个剩余的电池提供相同的功率输出水平,尽管不同的马达以不同的功率水平运行以便平衡飞行器纵向中心线的每一侧上产生的推力。
图12图示了根据本发明的一些实施例的六电池六马达六芒星形架构200。在图12中图示的六芒星形架构中,六个电池中的每一个为两个马达供电,就像环形架构一样。并且每个马达由两个电池供电。然而,第一电池向第一马达和第三马达提供电力,第二电池向第二马达和第四马达提供电力,并且以此类推。六芒星形架构创造了两个独立的环,涵盖第一马达、第三马达和第六马达,以及第二马达、第四马达和第五马达。通过将向最远的外侧供电的电池链接到飞行器的中心线的另一侧上的马达,然后,电池故障使其在整个飞行器上的影响更加分散,从而减少由于电池故障而导致的姿态偏移的量。例如,在第一马达处的马达故障的情况下,第四马达的功率仍然存在瞬时降低以补偿故障。但是,与环形架构相比,在使用剩余马达的六芒星形架构中用于功率共享的补偿机制将允许逆变器优化系统中的较低的逆变器负载。此外,与环形结构相比,在使用剩余马达的六芒星形架构中用于功率共享的补偿机制将允许电池优化系统中的较低的电池负载。图16图示了在电池故障期间用于针对本文描述的各种马达-电池架构的逆变器优化、电池优化和马达优化的解决方案的逆变器、电池和马达中的最大负载。在图16中,六芒星形架构用符号指示,而不是像其他架构那样用名称指示。
图13和图14图示了根据本发明的一些实施例的六马达四电池系统。图13图示了使用四个电池为六个马达供电的星形架构。每个电池联接到三个马达。图14图示了具有四个电池和六个马达的网状架构。
图16A、图16B和图16C分别图示了在马达故障期间用于针对本文描述的各种马达-电池架构的逆变器优化、电池优化和马达优化的解决方案的逆变器、电池和马达中的最大负载。六芒星形架构用符号指示,而不是像其他架构那样用名称指示。如所图示的,六芒星形架构给出了当关于所有优化(逆变器优化的、电池优化的和马达优化的)进行评估时的最佳解决方案。
如从上面描述中变得明显的,从本文给出的描述中可以配置各种各样的实施例,并且本领域技术人员将容易想到附加的优点和修改。因此,本发明在其更广泛的方面不限于所示出和描述的具体细节和说明性示例。本文描述的实施例可以包括物理结构以及使用方法。因此,在不脱离申请人的总体发明的精神或范围的情况下,可以偏离这样的细节。

Claims (16)

1.一种电力驱动垂直起飞和着陆的飞行器,所述飞行器包括:
多个推进组件,所述推进组件中的每一个包括电动马达;
多个电池,所述多个电池中的每一个联接到所述电动马达中的两个或更多个;
其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述绕组电路中的每一个联接到不同的电池。
2.根据权利要求1所述的飞行器,还包括多个逆变器,其中,所述电池中的每一个通过逆变器联接到所述电动马达中的每一个。
3.根据权利要求1所述的飞行器,还包括飞行控制系统,所述飞行控制系统适于在马达故障的情况下自主地调节由所述电池输送到所述电动马达的功率,以保持期望的飞行器姿态。
4.根据权利要求2所述的飞行器,还包括飞行控制系统,所述飞行控制系统适于在马达故障的情况下自主地调节由所述电池输送到所述电动马达的功率,以保持期望的飞行器姿态。
5.根据权利要求1所述的飞行器,还包括飞行控制系统,所述飞行控制系统适于在电池故障的情况下自主地调节由所述电池输送到所述电动马达的功率,以保持期望的飞行器姿态。
6.根据权利要求2所述的飞行器,还包括飞行控制系统,所述飞行控制系统适于在电池故障的情况下自主地调节由所述电池输送到所述电动马达的功率,以保持期望的飞行器姿态。
7.根据权利要求1所述的飞行器,其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述多个马达绕组电路中的每一个所述绕组电路联接到不同的电池。
8.根据权利要求2所述的飞行器,其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述多个马达绕组电路中的每一个所述绕组电路联接到不同的电池。
9.根据权利要求4所述的飞行器,其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述多个马达绕组电路中的每一个所述绕组电路联接到不同的电池。
10.根据权利要求6所述的飞行器,其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述多个马达绕组电路中的每一个所述绕组电路联接到不同的电池。
11.根据权利要求1所述的飞行器,其中,所述多个电池中的每一个联接到所述飞行器的纵向轴线的左侧上的一个或更多个马达,并且其中所述多个电池中的每一个联接到所述飞行器的所述纵向轴线的右侧上的一个或更多个马达。
12.根据权利要求2所述的飞行器,其中,所述多个电池中的每一个联接到所述飞行器的纵向轴线的左侧上的一个或更多个马达,并且其中所述多个电池中的每一个联接到所述飞行器的所述纵向轴线的右侧上的一个或更多个马达。
13.根据权利要求7所述的飞行器,其中,所述多个电池中的每一个联接到所述飞行器的纵向轴线的左侧上的一个或更多个马达,并且其中所述多个电池中的每一个联接到所述飞行器的所述纵向轴线的右侧上的一个或更多个马达。
14.根据权利要求8所述的飞行器,其中,所述多个电池中的每一个联接到所述飞行器的纵向轴线的左侧上的一个或更多个马达,并且其中所述多个电池中的每一个联接到所述飞行器的所述纵向轴线的右侧上的一个或更多个马达。
15.一种用于缓解垂直起飞和着陆的飞行器的动力和推进系统中的第一马达的马达故障的方法,所述飞行器包括:
多个推进组件,所述推进组件中的每一个包括电动马达;
多个电池,所述多个电池中的每一个联接到所述电动马达中的两个或更多个;
其中,所述电动马达中的每一个包括多个马达绕组电路,并且其中马达中的所述绕组电路中的每一个联接到不同的电池,
其中,所述方法包括以下步骤:
使第二马达断电,所述第二马达相对于所述第一马达处于所述飞行器的纵向中心线的相对侧上;以及
增加输送到剩余马达中的一些或全部的功率,以便保持必要的推力。
16.根据权利要求15所述的方法,其中,所述多个电池中的每一个联接到所述飞行器的纵向轴线的左侧上的一个或更多个马达,并且其中所述多个电池中的每一个联接到所述飞行器的所述纵向轴线的右侧上的一个或更多个马达。
CN201980036597.6A 2018-05-31 2019-05-31 电动动力系统架构和使用该架构的容错vtol飞行器 Pending CN112368208A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862678275P 2018-05-31 2018-05-31
US62/678,275 2018-05-31
PCT/US2019/035044 WO2019232472A1 (en) 2018-05-31 2019-05-31 Electric power system architecture and fault tolerant vtol aircraft using same

Publications (1)

Publication Number Publication Date
CN112368208A true CN112368208A (zh) 2021-02-12

Family

ID=68697150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980036597.6A Pending CN112368208A (zh) 2018-05-31 2019-05-31 电动动力系统架构和使用该架构的容错vtol飞行器

Country Status (6)

Country Link
US (2) US11827347B2 (zh)
EP (1) EP3802322A4 (zh)
JP (2) JP2021525673A (zh)
KR (2) KR20240007689A (zh)
CN (1) CN112368208A (zh)
WO (1) WO2019232472A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113734433A (zh) * 2021-09-08 2021-12-03 广东汇天航空航天科技有限公司 电动飞行器、飞行控制方法及电子设备
US11827347B2 (en) 2018-05-31 2023-11-28 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10974826B2 (en) 2017-05-22 2021-04-13 Overair, Inc. EVTOL having many variable speed tilt rotors
US10351235B2 (en) 2017-05-22 2019-07-16 Karem Aircraft, Inc. EVTOL aircraft using large, variable speed tilt rotors
EP3624301A1 (en) * 2018-09-11 2020-03-18 Embraer S.A. Method and system for distributed electrical loads connected to shared power sources
DE102019205152A1 (de) * 2019-04-10 2020-10-15 Rolls-Royce Deutschland Ltd & Co Kg Elektrisches Antriebssystem für ein Flugzeug mit minimalem Giermoment
US11433775B1 (en) * 2019-07-03 2022-09-06 Hivespot, Inc. Aircraft charging unit
WO2021039381A1 (ja) * 2019-08-28 2021-03-04 株式会社デンソー 電動垂直離着陸機および電動垂直離着陸機の制御装置
US10723235B1 (en) * 2019-08-30 2020-07-28 Kitty Hawk Corporation Flexible battery system for a vehicle
EP4041633A4 (en) 2019-10-09 2023-10-18 Kitty Hawk Corporation HYBRID PERFORMANCE SYSTEMS FOR DIFFERENT FLIGHT MODES
US11738862B2 (en) * 2020-01-28 2023-08-29 Overair, Inc. Fail-operational vtol aircraft
US11465738B2 (en) 2020-01-28 2022-10-11 Overair, Inc. Fail-operational VTOL aircraft
JP2021170883A (ja) * 2020-04-16 2021-10-28 株式会社Gsユアサ 蓄電システム
US11661180B2 (en) 2020-07-08 2023-05-30 Archer Aviation Inc. Systems and methods for power distribution in electric aircraft
US20230331407A1 (en) * 2020-09-07 2023-10-19 Aeronext Inc. Flying vehicle
WO2022115132A1 (en) * 2020-11-25 2022-06-02 Joby Aero, Inc. Electric power system architecture and fault tolerant vtol aircraft using same
US20220250759A1 (en) * 2021-02-09 2022-08-11 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Fault-tolerant power distribution with power source selection in a vehicle
EP3998688A1 (en) * 2021-02-19 2022-05-18 Lilium eAircraft GmbH Power distribution network
EP3998208B1 (en) 2021-02-19 2024-03-13 Lilium eAircraft GmbH Battery aircraft integration
EP4049930B1 (en) 2021-02-25 2023-12-06 Airbus Urban Mobility GmbH An electrically powered rotary-wing aircraft
EP3998201B1 (en) 2021-05-19 2024-06-05 Lilium eAircraft GmbH Time variable electrical load sharing in a power distribution network of an aircraft
EP3998687B1 (en) 2021-05-19 2024-05-15 Lilium eAircraft GmbH Electrical fault isolation in a power distribution network of an aircraft
EP4361024A1 (en) * 2022-10-24 2024-05-01 Textron Innovations Inc. Electric aircraft

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069901A1 (en) * 2000-05-15 2004-04-15 Nunnally William C. Aircraft and hybrid with magnetic airfoil suspension and drive
US20060151666A1 (en) * 2005-01-13 2006-07-13 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
US20090145998A1 (en) * 2008-01-11 2009-06-11 Salyer Ival O Aircraft using turbo-electric hybrid propulsion system
EP2669195A1 (de) * 2012-06-01 2013-12-04 EMT Ingenieurgesellschaft Dipl.-Ing. Hartmut Euer mbH Fluggerät
CN106143926A (zh) * 2015-05-05 2016-11-23 劳斯莱斯公司 用于飞行器推进和升高的电直接驱动器
CN106672223A (zh) * 2016-05-24 2017-05-17 周光翔 混合动力四同轴反转螺旋桨倾转旋翼机
EP3184425A1 (en) * 2015-12-21 2017-06-28 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Multirotor aircraft
WO2017158417A1 (en) * 2016-03-15 2017-09-21 Navis S.R.L. Vertical take off and landing aircraft with four tilting wings and electric motors
GB201714174D0 (en) * 2017-09-04 2017-10-18 Artemis Intelligent Power Ltd Hydraulic multi-rotor aerial vehicle

Family Cites Families (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1386713A (en) 1916-11-27 1921-08-09 Curtis H Leinweber Airship
US1496723A (en) 1923-01-10 1924-06-03 Miller Albert Emergency propeller
US1634167A (en) 1926-05-06 1927-06-28 George A Wilson Electrical generating apparatus for airplanes
US1794202A (en) 1930-03-01 1931-02-24 Nathan C Pickard Airship
US2868476A (en) 1956-06-25 1959-01-13 Ernest W Schlieben Convertiplane with tiltable cylindrical wing
US3002712A (en) 1957-02-01 1961-10-03 Beckwith Sterling Polycopter
US2969935A (en) 1957-09-09 1961-01-31 Carl C Price Convertible aircraft
US3035789A (en) 1957-11-27 1962-05-22 Arthur M Young Convertiplane
US3059876A (en) 1958-07-03 1962-10-23 Haviland H Platt Vertical take-off airplane
US3081964A (en) 1958-12-08 1963-03-19 Boeing Co Airplanes for vertical and/or short take-off and landing
US2981339A (en) 1960-05-12 1961-04-25 Allan G Kaplan Retractable propeller
US3082977A (en) 1960-07-06 1963-03-26 Arlin Max Melvin Plural rotor sustained aircraft
US3181810A (en) 1961-02-27 1965-05-04 Curtiss Wright Corp Attitude control system for vtol aircraft
US3089666A (en) 1961-04-13 1963-05-14 Boeing Co Airplane having changeable thrust direction
US3159361A (en) 1962-02-14 1964-12-01 Carl W Weiland Aircraft
US3141633A (en) 1962-11-05 1964-07-21 North American Aviation Inc Tilt-wing aircraft
US3136499A (en) 1962-11-15 1964-06-09 North American Aviation Inc Aircraft power transmission system
US3231221A (en) 1964-03-10 1966-01-25 Haviland H Platt Vertical take-off airplanes
US3350035A (en) 1964-08-19 1967-10-31 Ernest W Schlieben Vtol with cylindrical wing
US3259343A (en) 1964-09-23 1966-07-05 Clarence L Roppel Control apparatus for vertical take-off aircraft
US3360217A (en) 1965-05-26 1967-12-26 John C Trotter Duct rotation system for vtol aircraft
US4982914A (en) 1966-05-18 1991-01-08 Karl Eickmann Aircraft with a plurality of propellers, a pipe structure for thereon holdable wings, for vertical take off and landing
US4925131A (en) 1966-05-18 1990-05-15 Karl Eickmann Aircraft with a plurality of propellers, a pipe structure for thereon holdable wings, for vertical take off and landing
US3404852A (en) 1966-08-24 1968-10-08 Bell Aerospace Corp Trailing rotor convertiplane
GB1271102A (en) 1969-01-07 1972-04-19 Westland Aircraft Ltd An aircraft with a wing pivotable about a spanwise axis
US3618875A (en) * 1969-02-24 1971-11-09 Gen Electric V/stol aircraft
US3592412A (en) 1969-10-03 1971-07-13 Boeing Co Convertible aircraft
US3693910A (en) 1970-12-14 1972-09-26 Angelo J Aldi Aircraft rotor blade mechanism
US4387866A (en) 1971-01-07 1983-06-14 Karl Eickmann Fluid motor driven propeller-aircraft for vertical take off and landing with a multipurpose pipe structure
US3795372A (en) 1971-08-23 1974-03-05 L Feldman Sail rotor crane
US3856238A (en) 1972-04-14 1974-12-24 F Malvestuto Aircraft transporter
US3834654A (en) 1973-03-19 1974-09-10 Lockheed Aircraft Corp Boxplane wing and aircraft
US4053125A (en) 1973-08-30 1977-10-11 Alexander Ratony Staggered channel wing-type aircraft
US4047840A (en) 1975-05-29 1977-09-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Impact absorbing blade mounts for variable pitch blades
US4022405A (en) 1976-03-25 1977-05-10 The United States Of America As Represented By The Secretary Of The Navy Fan lift-cruise v/stol aircraft
US4146199A (en) 1977-08-01 1979-03-27 Phoenixbird, Inc. Multi-winged lifting body aircraft
DE2903389A1 (de) 1978-03-22 1979-10-04 Breinlich Richard Dr Luftfahrzeug mit von fluidmotoren getriebenen, in ihrer lage veraenderbaren propellern
US4321666A (en) 1980-02-05 1982-03-23 The Bendix Corporation Fault handler for a multiple computer system
US4434389A (en) 1980-10-28 1984-02-28 Kollmorgen Technologies Corporation Motor with redundant windings
US4519746A (en) 1981-07-24 1985-05-28 United Technologies Corporation Airfoil blade
JPS63145195A (ja) 1986-12-08 1988-06-17 森 敬 太陽光収集飛行体
US4816989A (en) 1987-04-15 1989-03-28 Allied-Signal Inc. Synchronizer for a fault tolerant multiple node processing system
US4979698A (en) 1988-07-07 1990-12-25 Paul Lederman Rotor system for winged aircraft
US5085315A (en) 1989-05-05 1992-02-04 Sambell Kenneth W Wide-range blade pitch control for a folding rotor
US5031858A (en) 1989-11-20 1991-07-16 Bell Helicopter Textron, Inc. Apparatus and method for folding and locking rotor blades
US5082079A (en) 1990-05-04 1992-01-21 Aerovironment, Inc. Passively stable hovering system
US5184304A (en) 1991-04-26 1993-02-02 Litton Systems, Inc. Fault-tolerant inertial navigation system
US5141176A (en) 1991-06-12 1992-08-25 Grumman Aerospace Corporation Tilt wing VTOL aircraft
US5715162A (en) 1992-10-13 1998-02-03 United Technologies Corporation Correlative filter for a synchrophaser
US5405105A (en) 1993-05-28 1995-04-11 Hudson Valley V/Stol Aircraft, Inc. Tilt wing VTOL aircraft
US5374010A (en) 1993-09-23 1994-12-20 E.G.R. Company Deflected slipstream vertical lift airplane structure
US5419514A (en) 1993-11-15 1995-05-30 Duncan; Terry A. VTOL aircraft control method
US5842667A (en) 1994-03-31 1998-12-01 Jones; Tommy Lee Vertical takeoff and landing mass transit system and method
US5515282A (en) 1994-04-25 1996-05-07 The Boeing Company Method and apparatus for implementing a databus voter to select flight command signals from one of several redundant asynchronous digital primary flight computers
US6343127B1 (en) 1995-09-25 2002-01-29 Lord Corporation Active noise control system for closed spaces such as aircraft cabin
US5823468A (en) 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
US5839691A (en) 1996-05-22 1998-11-24 Lariviere; Jean Soulez Vertical takeoff and landing aircraft
US5868351A (en) 1996-05-23 1999-02-09 Bell Helicopter Textron Inc. Rotor blade stowing system
US5806805A (en) 1996-08-07 1998-09-15 The Boeing Company Fault tolerant actuation system for flight control actuators
DE19700182A1 (de) 1997-01-04 1998-07-09 Industrieanlagen Betriebsges Luftfahrzeug mit einem im wesentlichen als aerostatischem Auftriebskörper ausgebildeten Rumpf
US6260796B1 (en) 1997-03-04 2001-07-17 Wallace Neil Klingensmith Multi-thrustered hover craft
DE19745492B4 (de) 1997-10-15 2005-06-09 Wobben, Aloys, Dipl.-Ing. Senkrecht startendes Flugzeug
US6561455B2 (en) 1997-12-10 2003-05-13 Franco Capanna Vertical take-off and landing, aerodynamically self-sustained horizontal flight hybrid aircraft
US6098923A (en) 1998-03-13 2000-08-08 Lockheed Martin Corporation Aircraft structure to improve directional stability
JP2968511B2 (ja) 1998-03-25 1999-10-25 株式会社コミュータヘリコプタ先進技術研究所 ヘリコプタの低騒音着陸装置および低騒音着陸システム
FR2791319B1 (fr) 1999-03-25 2001-05-25 Eurocopter France Aeronef convertible a rotors basculants
US6474604B1 (en) 1999-04-12 2002-11-05 Jerry E. Carlow Mobius-like joining structure for fluid dynamic foils
US6254032B1 (en) 1999-10-26 2001-07-03 Franz Bucher Aircraft and method for operating an aircraft
US6655631B2 (en) 2000-07-28 2003-12-02 John Frederick Austen-Brown Personal hoverplane with four tiltmotors
US6402088B1 (en) 2000-08-11 2002-06-11 Aero Copter, Inc. Passenger vehicle employing a circumferentially disposed rotatable thrust assembly
US6464166B1 (en) 2001-05-29 2002-10-15 Romeo Yankee Ltd. Ducted fan vehicles particularly useful as VTOL aircraft
WO2002098732A2 (en) 2001-06-04 2002-12-12 Romeo Yankee Ltd. Vehicles particularly useful as vtol vehicles
US6568630B2 (en) 2001-08-21 2003-05-27 Urban Aeronautics Ltd. Ducted vehicles particularly useful as VTOL aircraft
US6886776B2 (en) 2001-10-02 2005-05-03 Karl F. Milde, Jr. VTOL personal aircraft
US20030062443A1 (en) 2001-10-02 2003-04-03 Joseph Wagner VTOL personal aircraft
JP2003137192A (ja) 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd 垂直離着陸機
JP3861224B2 (ja) 2001-12-07 2006-12-20 有限会社新科学開発研究所 空中乗物
DE10209881A1 (de) 2002-03-06 2003-09-18 Aloys Wobben Fluggerät
US6625033B1 (en) 2002-04-01 2003-09-23 White Rock Networks Systems and methods for a reducing EMI in a communications switch component utilizing overlapping interfaces
RU2232105C2 (ru) 2002-04-16 2004-07-10 ООО "Мидера-К" Аэродинамический подъемно-тянущий движитель
US7048505B2 (en) 2002-06-21 2006-05-23 Darko Segota Method and system for regulating fluid flow over an airfoil or a hydrofoil
AU2003247149A1 (en) 2002-08-05 2004-02-23 Urban Aeronautics Ltd. Vtol vehicles
US20040126241A1 (en) 2002-12-30 2004-07-01 Gecheng Zha Forward swept high efficiency airplane propeller blades
ATE431944T1 (de) 2003-01-23 2009-06-15 Supercomputing Systems Ag Fehlertolerantes computergesteuertes system
US6719244B1 (en) 2003-02-03 2004-04-13 Gary Robert Gress VTOL aircraft control using opposed tilting of its dual propellers or fans
NO317612B1 (no) 2003-05-20 2004-11-22 Proxflyer As Rotor som genererer loft og bruk av rotor
JP4155112B2 (ja) 2003-06-02 2008-09-24 トヨタ自動車株式会社 冗長型制御装置を備えた自動車
US7219013B1 (en) 2003-07-31 2007-05-15 Rockwell Collins, Inc. Method and system for fault detection and exclusion for multi-sensor navigation systems
US6745977B1 (en) 2003-08-21 2004-06-08 Larry D. Long Flying car
JP4223921B2 (ja) 2003-10-24 2009-02-12 トヨタ自動車株式会社 垂直離着陸飛翔装置
US7857253B2 (en) 2003-10-27 2010-12-28 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
FR2864393B1 (fr) 2003-12-17 2006-04-28 Airbus France Reseau de communication redondant de type ethernet full-dupl full-duplex commute, et procedure de gestion de la redondance d'un tel reseau, notamment dans le domaine avionique.
US20050178879A1 (en) 2004-01-15 2005-08-18 Youbin Mao VTOL tailsitter flying wing
US7147182B1 (en) 2004-02-23 2006-12-12 Kenneth Warren Flanigan Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft
US7310573B2 (en) 2004-04-13 2007-12-18 Pratt & Whitney Canada Corp. Method and apparatus for isolating aircraft equipment
JP3677748B1 (ja) 2004-07-07 2005-08-03 快堂 池田 急速風量発生風向変更装置を機体の側面や側壁に直接、密着固定させて作成した航空機
US7472863B2 (en) 2004-07-09 2009-01-06 Steve Pak Sky hopper
US7118066B2 (en) 2004-07-22 2006-10-10 Norman Carter Allen Tall V/STOL aircraft
US7193391B2 (en) 2004-08-12 2007-03-20 Enerdel, Inc. Method for cell balancing for lithium battery systems
US7374130B2 (en) 2004-11-10 2008-05-20 The Boeing Company Method and apparatus for vehicle control using variable blade pitch
US20060226281A1 (en) 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
WO2006069291A2 (en) 2004-12-22 2006-06-29 Aurora Flight Sciences Corporation System and method for utilizing stored electrical energy for vtol aircraft thrust enhancement and attitude control
DE102004063205B3 (de) 2004-12-23 2006-05-04 Julian Kuntz Fluggerät mit verbesserter Beweglichkeit am Boden
CA2605111A1 (en) 2005-01-10 2006-07-13 Raphael Yoeli Ducted fan vtol vehicles
US7861967B2 (en) 2008-04-25 2011-01-04 Abe Karem Aircraft with integrated lift and propulsion system
US7802754B2 (en) 2005-08-15 2010-09-28 Abe Karem Tilt outboard wing for tilt rotor aircraft
US20100270435A1 (en) 2005-08-15 2010-10-28 Abe Karem Wing efficiency for tilt-rotor aircraft
US7874513B1 (en) 2005-10-18 2011-01-25 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
US8152096B2 (en) 2005-10-18 2012-04-10 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
US8720814B2 (en) 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
US7318565B2 (en) 2005-12-16 2008-01-15 Itt Manufacturing Enterprises, Inc. Electric motor assisted takeoff device for an air vehicle
US8020804B2 (en) 2006-03-01 2011-09-20 Urban Aeronautics, Ltd. Ground effect vanes arrangement
EP2021240A2 (en) 2006-05-03 2009-02-11 Urban Aeronautics Ltd. Ducted fan vtol vehicles
US8056866B2 (en) 2006-09-28 2011-11-15 Aerofex, Inc. Air-vehicle augmented kinesthetic control system
US20100076625A1 (en) 2006-11-30 2010-03-25 Raphael Yoeli Flight control cockpit modes in ducted fan vtol vehicles
WO2008147484A2 (en) 2007-02-16 2008-12-04 Donald Orval Shaw Modular flying vehicle
US20080205416A1 (en) 2007-02-23 2008-08-28 Honeywell International, Inc. Flight control computers with ethernet based cross channel data links
US8496200B2 (en) 2007-05-02 2013-07-30 Urban Aeronautics Ltd. Control flows and forces in VTOL vehicles
US8016226B1 (en) 2007-07-10 2011-09-13 Wood Victor A Vertical take off and landing aircraft system with energy recapture technology
US8083185B2 (en) 2007-11-07 2011-12-27 The Boeing Company Aircraft wing tip having a variable incidence angle
CA2707599C (en) 2007-12-03 2012-07-10 Bell Helicopter Textron Inc. Multi-bladed rotor system for rotorcraft
EP2234883B1 (en) 2007-12-14 2017-08-02 Urban Aeronautics Ltd. Vtol vehicle and method of operating
US20100072325A1 (en) 2008-01-22 2010-03-25 Kenneth William Sambell Forward (Upstream) Folding Rotor for a Vertical or Short Take-Off and Landing (V/STOL) Aircraft
US20090224095A1 (en) 2008-03-04 2009-09-10 Honeywell International, Inc. Ducted vertical take-off and landing (vtol) personnel carrier
US8322648B2 (en) 2008-05-15 2012-12-04 Aeryon Labs Inc. Hovering aerial vehicle with removable rotor arm assemblies
US20110049307A1 (en) 2008-06-03 2011-03-03 Raphael Yoeli Vtol vehicle with offset engine
NZ569455A (en) 2008-06-27 2009-10-30 Martin Aircraft Company Ltd Propulsion device incorporating radiator cooling passage
US8761970B2 (en) 2008-10-21 2014-06-24 The Boeing Company Alternative method to determine the air mass state of an aircraft and to validate and augment the primary method
WO2010123601A1 (en) 2009-01-27 2010-10-28 Kuhn Ira F Jr Purebred and hybrid electric vtol tilt rotor aircraft
US9102401B2 (en) 2009-03-12 2015-08-11 Textron Innovations Inc. Wing extension control surface
CA2762246C (en) 2009-05-22 2015-07-21 Bell Helicopter Textron Inc. Rotor blade spacing for vibration attenuation
IL199009A (en) 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
US20110001020A1 (en) 2009-07-02 2011-01-06 Pavol Forgac Quad tilt rotor aerial vehicle with stoppable rotors
US20110042510A1 (en) * 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
US20110042508A1 (en) 2009-08-24 2011-02-24 Bevirt Joeben Controlled take-off and flight system using thrust differentials
US8376264B1 (en) 2009-08-24 2013-02-19 Jianhui Hong Rotor for a dual mode aircraft
US8708273B2 (en) 2009-10-09 2014-04-29 Oliver Vtol, Llc Three-wing, six tilt-propulsion unit, VTOL aircraft
US8800912B2 (en) 2009-10-09 2014-08-12 Oliver Vtol, Llc Three wing, six-tilt propulsion unit, VTOL aircraft
US8342440B2 (en) 2009-12-10 2013-01-01 Regents Of The University Of Minnesota Miniature robotic vehicle with ground and flight capability
US20110147533A1 (en) 2009-12-21 2011-06-23 Honeywell International Inc. Morphing ducted fan for vertical take-off and landing vehicle
US8275494B1 (en) 2009-12-31 2012-09-25 Michael Roth System, apparatus and method for controlling an aircraft
CN102905972B (zh) 2010-06-15 2015-02-11 贝尔直升机泰克斯特龙公司 用于在飞行中折叠桨叶的方法和设备
GB2482333A (en) 2010-07-30 2012-02-01 Ge Aviat Systems Ltd Aircraft propeller
US8527233B2 (en) 2010-09-27 2013-09-03 The Boeing Company Airspeed sensing system for an aircraft
US8602347B2 (en) 2011-02-04 2013-12-10 Textron Innovations Inc. Tilt rotor aircraft with fixed engine arrangement
GB2491129B (en) 2011-05-23 2014-04-23 Blue Bear Systems Res Ltd Air vehicle
TWI538852B (zh) 2011-07-19 2016-06-21 季航空股份有限公司 個人飛機
US9786961B2 (en) 2011-07-25 2017-10-10 Lightening Energy Rapid charging electric vehicle and method and apparatus for rapid charging
FR2979993B1 (fr) 2011-09-09 2013-09-20 Airbus Operations Sas Procede et dispositif d'estimation automatique d'une vitesse air d'un aeronef.
SG190540A1 (en) 2011-11-17 2013-06-28 Flight Focus Pte Ltd Aircraft computer system for executing inflight entertainment and electronic flight bag applications
US20130201316A1 (en) 2012-01-09 2013-08-08 May Patents Ltd. System and method for server based control
US20130204544A1 (en) 2012-02-03 2013-08-08 Gulfstream Aerospace Corporation Methods and systems for determining airspeed of an aircraft
GB201202441D0 (en) 2012-02-13 2012-03-28 Reiter Johannes Wing adjustment mechanism
EP2817219B1 (de) * 2012-02-22 2020-06-03 Volocopter GmbH Fluggerät
DE102012104783B4 (de) 2012-06-01 2019-12-24 Quantum-Systems Gmbh Fluggerät, bevorzugt UAV, Drohne und/oder UAS
US9128109B1 (en) 2012-08-20 2015-09-08 The Boeing Company Method and system for detecting errors in indicated air speed
US9816529B2 (en) 2013-03-15 2017-11-14 Kcf Technologies, Inc. Propeller sound field modification systems and methods
GB201308292D0 (en) * 2013-05-09 2013-06-12 Rolls Royce Plc Aircraft electrical system
US9068999B2 (en) 2013-05-30 2015-06-30 Sikorsky Aircraft Corporation Airspeed estimation using rotor vibrations
CN103363993B (zh) 2013-07-06 2016-04-20 西北工业大学 一种基于无迹卡尔曼滤波的飞机角速率信号重构方法
US9561867B2 (en) 2013-10-11 2017-02-07 The Boeing Company Modular equipment center lightning threat reduction architecture
US9714575B2 (en) 2013-11-27 2017-07-25 Hamilton Sundstrand Corporation Differential blade design for propeller noise reduction
US9623967B2 (en) 2014-02-01 2017-04-18 Aero Machining, LLC Tiltrotor unmanned aerial vehicle
CN116534299A (zh) 2014-03-13 2023-08-04 多韧系统有限责任公司 无人机配置和用于无人机内燃机的电池增大,以及相关的系统和方法
US9694911B2 (en) 2014-03-18 2017-07-04 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
US10046855B2 (en) 2014-03-18 2018-08-14 Joby Aero, Inc. Impact resistant propeller system, fast response electric propulsion system and lightweight vertical take-off and landing aircraft using same
US10625852B2 (en) 2014-03-18 2020-04-21 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
US10315760B2 (en) 2014-03-18 2019-06-11 Joby Aero, Inc. Articulated electric propulsion system with fully stowing blades and lightweight vertical take-off and landing aircraft using same
FR3020799B1 (fr) 2014-05-12 2016-06-03 Airbus Helicopters Giravion equipe d'un anemometre place au sommet d'une derive arriere du giravion
US9643729B2 (en) 2014-06-20 2017-05-09 Electronair Llc Energy cell regenerative system for electrically powered aircraft
EP3186998A4 (en) * 2014-08-29 2018-09-26 Zunum Aero, Inc. System and methods for implementing regional air transit network using hybrid-electric aircraft
FR3025626B1 (fr) 2014-09-05 2017-11-03 Sagem Defense Securite Architecture bi-voies avec liaisons ccdl redondantes
US10013900B2 (en) 2014-09-23 2018-07-03 Amazon Technologies, Inc. Vehicle noise control and communication
US10050548B2 (en) * 2014-09-29 2018-08-14 The Boeing Company No-break power transfer
WO2016054068A1 (en) 2014-10-03 2016-04-07 Lightening Energy Electric vehicle battery thermal management system and method
US9435661B2 (en) 2014-10-08 2016-09-06 Honeywell International Inc. Systems and methods for attitude fault detection based on air data and aircraft control settings
FR3027477B1 (fr) 2014-10-17 2017-12-29 Thales Sa Commutateur de transmission de donnees entre reseaux heterogenes pour aeronef
US9994313B2 (en) 2014-11-26 2018-06-12 XCraft Enterprises, LLC High speed multi-rotor vertical takeoff and landing aircraft
US9838436B2 (en) 2015-03-30 2017-12-05 Gulfstream Aerospace Corporation Aircraft data networks
US20160304214A1 (en) 2015-04-20 2016-10-20 Hamilton Sundstrand Corporation Emergency power sources for propulsion systems
GB201511033D0 (en) * 2015-05-19 2015-08-05 Rolls Royce Plc Aircraft electrical network
CN107848623B (zh) 2015-05-29 2021-02-09 维里蒂工作室股份公司 飞行器
MY167707A (en) 2015-06-08 2018-09-21 Nissan Motor Power generation control device for a hybrid vehicle
DE102015213026A1 (de) * 2015-07-13 2017-01-19 Siemens Aktiengesellschaft System zum Bereitstellen von kinetischer Energie für ein Antriebssystem eines Luftfahrzeugs
US9415870B1 (en) 2015-09-02 2016-08-16 Amazon Technologies, Inc. Unmanned aerial vehicle motor driving randomization and feedback for noise abatement
US10589854B2 (en) 2015-10-07 2020-03-17 Sikorsky Aircraft Corporation Aircraft with overlapped rotors
US20170104385A1 (en) 2015-10-08 2017-04-13 Adam C. Salamon Reduced Complexity Ring Motor Design for Propeller Driven Vehicles
US10246184B2 (en) 2015-12-02 2019-04-02 Jon M. Ragland Aircraft with internally housed propellor units
US10926874B2 (en) * 2016-01-15 2021-02-23 Aurora Flight Sciences Corporation Hybrid propulsion vertical take-off and landing aircraft
EP3213952B1 (de) * 2016-03-02 2020-08-26 Airbus Defence and Space GmbH Elektrisches antriebssystem für ein luftfahrzeug sowie betriebsverfahren
US10399666B2 (en) 2016-03-23 2019-09-03 Amazon Technologies, Inc. Aerial vehicle propulsion mechanism with coaxially aligned and independently rotatable propellers
JP2017184504A (ja) * 2016-03-30 2017-10-05 並木精密宝石株式会社 飛行装置用モータユニット及び飛行装置
IL260259B2 (en) * 2016-05-13 2023-11-01 Aurora Flight Sciences Corp Solar power system and its method
BR112018073801A2 (pt) 2016-05-18 2019-02-26 A^3 By Airbus, Llc aeronave elétrica pilotada automaticamente para executar decolagens e aterrissagens verticais e método para controlar uma aeronave
US10183746B2 (en) 2016-07-01 2019-01-22 Bell Helicopter Textron Inc. Aircraft with independently controllable propulsion assemblies
US9963228B2 (en) 2016-07-01 2018-05-08 Bell Helicopter Textron Inc. Aircraft with selectively attachable passenger pod assembly
US10011351B2 (en) 2016-07-01 2018-07-03 Bell Helicopter Textron Inc. Passenger pod assembly transportation system
US9944386B1 (en) 2017-07-13 2018-04-17 Kitty Hawk Corporation Multicopter with wide span rotor configuration and protective fuselage
US10364036B2 (en) 2016-10-18 2019-07-30 Kitty Hawk Corporation Multicopter with boom-mounted rotors
US10654578B2 (en) * 2016-11-02 2020-05-19 Rolls-Royce North American Technologies, Inc. Combined AC and DC turboelectric distributed propulsion system
BR112019008925A2 (pt) 2016-11-02 2019-07-16 Joby Aviation Inc aeronave vtol com o uso de rotores para simular aerodinâmica de asa rígida
WO2018083839A1 (ja) 2016-11-04 2018-05-11 英男 鈴木 垂直離着陸可能飛行体、垂直離着陸可能飛行体のコントローラ、制御方法及び制御プログラム
WO2018087582A1 (en) * 2016-11-11 2018-05-17 Airselfie Holdings Limited External battery module
EP3363733B1 (en) 2017-02-18 2021-11-10 Jean-Eloi William Lombard Passive flow control mechanism for reducing and/or suppressing tollmien-schlichting waves, delaying transition to turbulence and reducing drag
US10384776B2 (en) 2017-02-22 2019-08-20 Bell Helicopter Textron Inc. Tiltrotor aircraft having vertical lift and hover augmentation
US11731772B2 (en) 2017-03-02 2023-08-22 Textron Innovations Inc. Hybrid propulsion drive train system for tiltrotor aircraft
CN107042884A (zh) 2017-03-18 2017-08-15 北京天宇新超航空科技有限公司 一种倾转旋翼无人机
WO2018175349A1 (en) * 2017-03-19 2018-09-27 Zunum Aero, Inc. Hybrid-electric aircraft, and methods, apparatus and systems for facilitating same
US11065979B1 (en) * 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
US10435148B2 (en) 2017-05-08 2019-10-08 Aurora Flight Sciences Corporation Systems and methods for acoustic radiation control
US10513334B2 (en) 2017-06-12 2019-12-24 Textron Innovations Inc. X-tiltwing aircraft
US10768201B2 (en) 2017-06-12 2020-09-08 The Boeing Company System for estimating airspeed of an aircraft based on a drag model
CN109204064A (zh) 2017-06-29 2019-01-15 比亚迪股份有限公司 车辆、外部冷却装置、充电装置和车辆冷却系统
US10461542B2 (en) * 2017-07-10 2019-10-29 Ge Aviation Systems Llc Power distribution network
US10797612B2 (en) * 2017-08-01 2020-10-06 Ge Aviation Systems Llc Power distribution network
WO2019056052A1 (en) 2017-09-22 2019-03-28 AMSL Innovations Pty Ltd WING TILT OPERATING SYSTEM FOR VERTICAL TAKE-OFF AND LANDING ELECTRIC AIRCRAFT (ADAV)
US10822109B2 (en) 2018-01-05 2020-11-03 The Boeing Company Methods and systems for determining airspeed of an aircraft
US11660970B2 (en) 2018-01-05 2023-05-30 Byton Limited On-board liquid-cooled or gas-cooled charging cable for electric vehicles
US10144503B1 (en) 2018-02-22 2018-12-04 Kitty Hawk Corporation Fixed wing aircraft with trailing rotors
KR20240007689A (ko) 2018-05-31 2024-01-16 조비 에어로, 인크. 전력 시스템 아키텍처 및 이를 이용한 내고장성 vtol 항공기
US12006048B2 (en) * 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
FR3082807B1 (fr) * 2018-06-22 2021-05-21 Thales Sa Architecture electrique d'aeronef, aeronef comprenant l'architecture et procede de fonctionnement de l'architecture
US10497996B1 (en) 2018-12-12 2019-12-03 Cora Aero Llc Battery with liquid temperature controlling system
US11964780B2 (en) * 2019-02-28 2024-04-23 Beta Air, Llc Systems and methods for in-flight operational assessment
US11325714B2 (en) * 2020-07-09 2022-05-10 General Electric Company Electric power system for a vehicle
WO2022115132A1 (en) 2020-11-25 2022-06-02 Joby Aero, Inc. Electric power system architecture and fault tolerant vtol aircraft using same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069901A1 (en) * 2000-05-15 2004-04-15 Nunnally William C. Aircraft and hybrid with magnetic airfoil suspension and drive
US20060151666A1 (en) * 2005-01-13 2006-07-13 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
US20090145998A1 (en) * 2008-01-11 2009-06-11 Salyer Ival O Aircraft using turbo-electric hybrid propulsion system
EP2669195A1 (de) * 2012-06-01 2013-12-04 EMT Ingenieurgesellschaft Dipl.-Ing. Hartmut Euer mbH Fluggerät
CN106143926A (zh) * 2015-05-05 2016-11-23 劳斯莱斯公司 用于飞行器推进和升高的电直接驱动器
EP3184425A1 (en) * 2015-12-21 2017-06-28 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Multirotor aircraft
WO2017158417A1 (en) * 2016-03-15 2017-09-21 Navis S.R.L. Vertical take off and landing aircraft with four tilting wings and electric motors
US20190071174A1 (en) * 2016-03-15 2019-03-07 Navis S R L Vertical take off and landing aircraft with four tilting wings and electric motors
CN106672223A (zh) * 2016-05-24 2017-05-17 周光翔 混合动力四同轴反转螺旋桨倾转旋翼机
GB201714174D0 (en) * 2017-09-04 2017-10-18 Artemis Intelligent Power Ltd Hydraulic multi-rotor aerial vehicle
CN109421926A (zh) * 2017-09-04 2019-03-05 阿尔特弥斯智能动力有限公司 液压多旋翼飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827347B2 (en) 2018-05-31 2023-11-28 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
US12006048B2 (en) 2018-05-31 2024-06-11 Joby Aero, Inc. Electric power system architecture and fault tolerant VTOL aircraft using same
CN113734433A (zh) * 2021-09-08 2021-12-03 广东汇天航空航天科技有限公司 电动飞行器、飞行控制方法及电子设备

Also Published As

Publication number Publication date
WO2019232472A1 (en) 2019-12-05
KR20210006972A (ko) 2021-01-19
JP2023134581A (ja) 2023-09-27
US20240025543A1 (en) 2024-01-25
US11827347B2 (en) 2023-11-28
EP3802322A4 (en) 2022-02-23
EP3802322A1 (en) 2021-04-14
JP2021525673A (ja) 2021-09-27
US20200010187A1 (en) 2020-01-09
KR20240007689A (ko) 2024-01-16

Similar Documents

Publication Publication Date Title
CN112368208A (zh) 电动动力系统架构和使用该架构的容错vtol飞行器
US20210339881A1 (en) Electric power system architecture and fault tolerant vtol aircraft using same
US11198515B2 (en) Method and system for distributed electrical loads connected to shared power sources
EP3521172B1 (en) Drive system for an aircraft and method for supplying drive power for an aircraft
US11661180B2 (en) Systems and methods for power distribution in electric aircraft
US11745883B2 (en) Systems and methods for power distribution in electric aircraft
US11465532B2 (en) Systems and methods for power distribution in electric aircraft
CN114919428A (zh) 用于eVTOL飞行器的可配置电气架构
US20240051672A1 (en) Airship equipped with an electric distributed propulsion system
WO2022115132A1 (en) Electric power system architecture and fault tolerant vtol aircraft using same
US12006035B1 (en) Systems and methods for flight control of EVTOL aircraft
AU2021399186B2 (en) Airship equipped with an electric distributed propulsion system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination