RU2670713C1 - Видеорегистратор зоопланктона - Google Patents

Видеорегистратор зоопланктона Download PDF

Info

Publication number
RU2670713C1
RU2670713C1 RU2017146357A RU2017146357A RU2670713C1 RU 2670713 C1 RU2670713 C1 RU 2670713C1 RU 2017146357 A RU2017146357 A RU 2017146357A RU 2017146357 A RU2017146357 A RU 2017146357A RU 2670713 C1 RU2670713 C1 RU 2670713C1
Authority
RU
Russia
Prior art keywords
surveillance camera
zooplankton
video
pump
camera
Prior art date
Application number
RU2017146357A
Other languages
English (en)
Other versions
RU2670713C9 (ru
Inventor
Александр Григорьевич Островский
Антон Леонидович Оленин
Original Assignee
Александр Григорьевич Островский
Антон Леонидович Оленин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Григорьевич Островский, Антон Леонидович Оленин filed Critical Александр Григорьевич Островский
Priority to RU2017146357A priority Critical patent/RU2670713C9/ru
Application granted granted Critical
Publication of RU2670713C1 publication Critical patent/RU2670713C1/ru
Publication of RU2670713C9 publication Critical patent/RU2670713C9/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers

Abstract

Изобретение относится к области морского приборостроения, а именно к автоматизированным системам изучения зоопланктона. Заявленный видеорегистратор зоопланктона содержит камеру видеонаблюдения. При этом он содержит раму, в нижней части которой закреплены насос, не менее двух глубоководных боксов, между которыми размещена прозрачная емкость, снабженная одним и более оптическими окнами, двумя или более патрубками, содержащими сетчатые фильтры, размер ячеек которых меньше размеров частиц зоопланктона, и шлангом. А в глубоководных боксах размещены электронные блоки, камера видеонаблюдения, осветители, оптическая система для макросъемки и иллюминаторы. При этом осветители и камера видеонаблюдения размещены непосредственно вблизи оптических окон прозрачной емкости, причем поле зрения и глубина резко изображаемого пространства камеры видеонаблюдения больше или равны соответствующим размерам внутренней полости прозрачной емкости. В верхней части рамы закреплены блок управления, один или более датчиков водной среды, а полость прозрачной емкости последовательно соединена через патрубок с сетчатым фильтром и шлангом с первым входом насоса, а через другой патрубок с сетчатым фильтром полость прозрачной емкости через второй вход насоса сообщается с окружающим пространством. Причем блок управления выполнен с возможностью принятия команд управления по кабель-тросу, выработки команд управления, сбора и обработки видеоданных от камеры видеонаблюдения, датчиков водной среды и передачи собранных данных по кабель-тросу, при этом он электрически соединен с электронными блоками, датчиками водной среды и насосом, а электронные блоки электрически соединены с камерой видеонаблюдения и осветителями. Технический результат - регистрация физиологической и двигательной активности конкретных особей зоопланктона in situ на различных глубинах при естественных гидрофизических, гидрооптических и гидрохимических условиях с высокой достоверностью. 4 з.п. ф-лы, 6 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области морского приборостроения, а именно к автоматизированным системам изучения зоопланктона.
Уровень техники
Изучение особей зоопланктона обычно происходит в лабораторных условиях. Для отбора проб традиционно используют планктонные мелкоячеистые сети. Все взвешенные частицы, задержанные такой сетью, собирают в специальный стакан. Его содержимое затем исследуют в лаборатории с помощью микроскопа. Так определяют видовой состав и распределение зоопланктона по горизонтам [Sameoto D., Wiebe P., Runge J., Postel L., Dunn J., Miller C, Coombs S., 2000. Collecting zooplankton. In: Harris R.P., Wiebe P.H., Lenz J., Skjoldal,H.R., Huntley M. (Eds.), ICES Zooplankton Methodology Manual. Academic Press, London, UK, 55-81].
Однако кроме этого, необходимы детальные наблюдения за поведением особей зоопланктона, находящихся в различных, и постоянно меняющихся условиях среды (глубина, нисходящая освещенность, соленость, химический состав воды, концентрация растворенного кислорода и прочих газов, и т.п.). Это необходимо, в частности, для изучения поведенческой активности, стимулируемой или ингибируемой различными внешними воздействиями в первую очередь светом, теплом и степенью насыщения кислородом, например, в процессе онтогенетических вертикальных миграций зоопланктона, когда погружение может происходить пассивно, а подъем - за счет активных движений. Традиционный лабораторный способ для решения этой задачи не подходит, так как особи исследуются не в естественной среде обитания в водной толще, а только после подъема на поверхность.
Наиболее перспективными представляются устройства подводного видеонаблюдения, позволяющие регистрировать зоопланктон непосредственно в местах его обитания. Например, известна система, которая может осуществлять видеосъемку частиц в составе океанологического зонда-розетты. Частицы регистрируются при их проходе через измерительную камеру прибора [М. Picheral, L. Guidi, L. Stemmann, D. M. Karl, G. Iddaoud, G. Gorsky, The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr.: Methods, 8, 2010, 462-473].
Известна также система для определения вертикального распределения и размерной структуры зоопланктона, состоящая из погружаемого блока, включающего: цифровую цветную видеокамеру, лазерный модуль, гидростатический датчик глубины, и регистрирующего компьютера [RU 2495451 от 10.10.2013]. Элементы погружаемого блока закреплены на треножном штативе. В верхней части штатива располагается направленная вниз видеокамера, помещенная в водонепроницаемый бокс с обзорным окном. Опоры штатива служат для крепления гидростатического датчика глубины и лазерного модуля, которые располагаются на одном уровне. Видеокамера и датчик глубины соединены с регистрирующим компьютером комбинированным кабелем. По кабелю осуществляется передача видеоданных и управление видеокамерой, передача сигнала с датчика глубины, а также электропитание видеокамеры и лазерного модуля. Лазерный модуль крепится на штативе таким образом, чтобы генерируемая лазерная плоскость была перпендикулярна главной оптической оси объектива видеокамеры, а зона видимости камеры находилась внутри границ лазерной плоскости. Расстояние от объектива камеры до лазерной плоскости выбирается с таким расчетом, чтобы исследуемые объекты, находящиеся на этом расстоянии, были достаточно хорошо различимы на видеокадрах с целью последующего определения их размера.
Описанные выше устройства подводного видеонаблюдения предназначены в основном для регистрации частиц размером менее 2 см, к которым относятся пикопланктон, нанопланктон, микропланктон и мезопланктон - организмы размером, соответственно, 0.2 - 2, 2 - 20, 20 - 200, 200 - 2000 мкм [Lenz J., 2000. Introduction. In: Harris R.P., Wiebe P.H., Lenz J., Skjoldal H.R., Huntley M. (Eds.), ICES Zooplankton Methodology Manual. Academic Press, London, UK, 1-32]. Недостаток перечисленных устройств заключен в невозможности наблюдать интересующие экземпляры зоопланктона во всем диапазоне глубин и изменения внешних условий, так как в поле зрения камеры из-за движения зондирующего прибора попадают каждый раз новые частицы, а прежние уплывают или уносятся потоком воды.
Этого недостатка отчасти лишено устройство для регистрации двигательной активности гидробионтов Фролова Н.С.[RU 148670 от 10.12.2014]. В нем гидробионты (например, рыбы) помещаются в бассейн с водой, которая подсвечивается внешним источником света. Гидробионты регистрируются установленной около бассейна видеокамерой. Недостатком устройства является то, что гидробионты находятся в лабораторных условиях, а не в натуральных условиях исследуемого горизонта глубины. Данное устройство рассмотрено в качестве ближайшего аналога.
Сущность изобретения
Техническим результатом предлагаемого изобретения является обеспечение видеорегистрации двигательной и физиологической активности конкретных особей зоопланктона in situ на различных глубинах в естественных гидрофизических, гидрооптических и гидрохимических условиях с высокой достоверностью.
Технический результат достигается тем, что создан видеорегистратор зоопланктона, содержащий камеру видеонаблюдения, при этом он содержит раму, в нижней части которой закреплены насос, не менее двух герметичных глубоководных боксов, между которыми размещена прозрачная емкость, снабженная одним и более оптическими окнами, двумя или более патрубками, содержащими сетчатые фильтры, размер ячеек которых меньше размеров частиц зоопланктона, и шлангом, а в глубоководных боксах размещены электронные блоки, камера видеонаблюдения, осветители и иллюминаторы, при этом осветители и камера видеонаблюдения размещены непосредственно вблизи оптических окон прозрачной емкости, причем поле зрения и глубина резко изображаемого пространства камеры видеонаблюдения больше или равны соответствующим размерам внутренней полости прозрачной емкости, в верхней части рамы закреплены блок управления, гидрофизический, гидрооптический и гидрохимический датчики водной среды, а полость прозрачной емкости последовательно соединена через патрубок с сетчатым фильтром и шлангом с первым входом насоса, а через другой патрубок с сетчатым фильтром полость через второй вход насоса сообщается с окружающим пространством, причем блок управления выполнен с возможностью принятия команд управления по кабель-тросу, выработки команд управления, сбора и обработки видеоданных от камеры видеонаблюдения, гидрофизических, гидрооптических и гидрохимических датчиков и передачи собранных данных по кабель-тросу при этом блок управления электрически соединен с электронными блоками, датчиками водной среды и насосом, а электронные блоки электрически соединены с камерой видеонаблюдения и осветителями.
В предпочтительном варианте в качестве камеры видеонаблюдения используют телевизионную IP-камеру с объективом для макросъемки.
В предпочтительном варианте в качестве камеры видеонаблюдения используют установку стереоскопической макросъемки.
В предпочтительном варианте в качестве камеры видеонаблюдения используют камеру светового поля.
В предпочтительном варианте в качестве датчиков водной среды используют гидрофизические, гидрооптические и гидрохимические датчики.
Краткое описание чертежей
Сущность изобретения поясняется чертежами.
На фиг. 1 представлен общий вид видеорегистратора зоопланктона.
На фиг. 2 представлены глубоководные боксы и прозрачная емкость видеорегистратора зоопланктона в разрезе.
На фиг. 3 представлен видеорегистратор в разрезе с глубоководным боксом и прозрачной емкостью с особью зоопланктона.
На фиг. 4 представлена общая схема макросъемки особи зоопланктона, реализованная в видеорегистраторе зоопланктона с помощью телевизионной IP-камеры с объективом для макросъемки.
На фиг. 5 представлена схема стереоскопической макросъемки особи зоопланктона.
На фиг. 6 представлена схема съемки особи зоопланктона при помощи камеры светового поля.
Видеорегистратор зоопланктона (см. фиг. 1 и 2) содержит, подвешиваемую на кабель-тросе, раму (1), в верхней части которой закреплен блок управления (2) и датчики водной среды (гидрофизический (14), гидрооптический (15), гидрохимический (16)). В нижней части рамы (1) закреплены насос (13), два герметичных глубоководных бокса (3), между которыми подвижно размещена прозрачная емкость (8), снабженная одним и более оптическими окнами (9), двумя или более патрубками (11), содержащими сетчатые фильтры (10), размер ячеек которых меньше размеров частиц зоопланктона. В глубоководных боксах (3) размещены камера видеонаблюдения (5), электронные блоки (4), предназначенные для преобразования данных с видеокамеры, осветители (6), выполненные, например, в виде светодиодов и коллимирующей оптической системы, формирующей световой пучок заданной конфигурации. Стороны глубоководных боксов (3), которые обращены к соответствующему оптическому окну (9) прозрачной емкости (8) герметично оснащены иллюминаторами (7), из оптически прозрачного материала, выдерживающего внешнее гидростатическое давление. При этом осветители (6) и камера видеонаблюдения (5) размещены непосредственно вблизи оптических окон (9) прозрачной емкости (8), предназначенной для размещения в ней особи зоопланктона (17) (см. фиг. 3). Полость прозрачной емкости (8) последовательно соединена через патрубок (И) с сетчатым фильтром (10) и гибким шлангом (12) с первым входом насоса (13). Гибкий шланг (12) используют для обеспечения более удобного размещения насоса (13) на раме (1) и для уменьшения воздействия его вибрации и шума на особь зоопланктона (17). Через другой патрубок (11) с сетчатым фильтром (10) полость прозрачной емкости (8) сообщается с окружающим пространством. Блок управления (2) выполнен с возможностью принятия команд управления по кабель-тросу (19), выработки команд управления, сбора и обработки видеоданных от камеры видеонаблюдения (5), гидрофизических, гидрооптических и гидрохимических датчиков (14, 15 и 16) и передачи собранных данных по кабель-тросу (19). Блок управления (2) содержит в себе блок питания (на фигурах не показано) и электрически посредством информационных кабелей (18) соединен с электронными блоками (4), размещенными в глубоководных боксах (3) и датчиками водной среды (14,15,16) и насосом (13), а электронные блоки (4) в свою очередь соединены с камерой видеонаблюдения (5) и осветителями (6).
Подробное описание осуществления изобретения
Видеорегистратор зоопланктона функционирует следующим образом. Внутрь прозрачной емкости (8) наливают воду с поверхности исследуемой акватории, помещают в нее одну или несколько особей зоопланктона (17), после чего прозрачную емкость (8) закрепляют на раме (1). Раму (1) с закрепленными на ней конструктивными элементами видеорегистратора зоопланктона погружают в исследуемую водную среду на кабель-тросе (19). Включают насос (13). В результате этого окружающая вода засасывается через патрубок (11) с сетчатым фильтром (10) в прозрачную емкость (8). Затем вода проходит через второй патрубок (11) с сетчатым фильтром (10) и шлангом (12) и поступает на первый вход насоса (13) и далее через второй вход насоса (13) выбрасывается в окружающую воду. Сетчатые фильтры (10) имеют размеры ячеек меньше, чем особь зоопланктона (17) и поэтому она не может покинуть прозрачную емкость (8). Кроме того, внешние помеховые частицы из окружающей воды с размерами больше, чем ячеи сетчатого фильтра (10) патрубка (11), через который засасывается вода, задерживаются им и не могут попасть в прозрачную емкость (8). При этом вода, с растворенными в ней примесями и газами, свободно прокачивается насосом (13) через прозрачную емкость (8). Гидростатическое давление в полости прозрачной емкости (8) практически равно таковому в окружающей воде, с поправкой на гидравлический напор от насоса (13). Стенки прозрачной емкости (8) пропускают внешнее освещение от естественного подводного светового поля. Таким образом, особь зоопланктона (17) находится в гидрофизических, гидрооптических и гидрохимических условиях, идентичных таковым в точке нахождения видеорегистратора зоопланктона. Далее осветители (6), установленные внутри глубоководного бокса (3), через иллюминатор (7) освещают особь зоопланктона (17). Одновременно с этим камера видеонаблюдения (5) (либо телевизионная IP-камера с объективом для макросъемки, либо установка стереоскопической макросъемки, либо камера светового поля) установленная в глубоководном корпусе (3), через иллюминатор (7), окружающую воду, оптическое окно (9) регистрирует видеоизображение особи зоопланктона (17), находящейся внутри прозрачной емкости (8). На фиг. (4) представлена общая схема регистрации телевизионной IP-камерой с объективом для макросъемки. При этом параметры оптической схемы регистрации подобраны так, что регистрируется поле зрения размером А и глубиной резко изображаемого пространства около особи зоопланктона равной В.
Работа видеорегистратора зоопланктона с размещенной в глубоководных боксах (3) камерой видеонаблюдения (5) (телевизионная IP-камера, либо камера стереоскопической макросъемки, либо камера светового поля) осуществляется, как описано выше. Разница заключается только в возможностях получения различной информации двигательной и физиологической активности особи зоопланктона (17) в зависимости от технических особенностей съемки той или иной камеры видеонаблюдения (5). Например, стереоскопическая макросъемка камерой видеонаблюдения (5) обеспечивает реализацию эффекта бинокулярного зрения посредством просмотра двух изображений искомого объекта с двух разных ракурсов (см. фиг.5). Бинокулярное (стереоскопическое) зрение, то есть способность одновременно четко видеть изображение предмета обоими глазами, позволяет оператору видеть одно изображение предмета, на который он смотрит двумя глазами, с подсознательным соединением в зрительном анализаторе (коре головного мозга) изображений, полученных каждым глазом в единый образ. Созданное объемное изображение с двух разных ракурсов проецируют на экран или просматривают в стереоочках. Изображения для правого и левого глаза на экране могут выводиться либо двумя разными цветами и просмотром их оператором через очки с правым и левым стеклом с соответствующим светофильтром, либо методом быстрого чередования правого и левого изображений. Этот принцип может быть реализован с использованием для установки в глубоководных боксах (3), видеорегистратора зоопланктона, выполненного, например, в виде отечественной установки для макроскопической стереосъемки [Мелкумов А.. Технология макроскопической стереокиносъемки // Мир техники кино. №2017-1(11)].
Камера видеонаблюдения (5) в виде камеры светового поля создана для осуществления съемки одиночных кадров через оптическую систему с очень большим, по сравнению с обычными матрицами для цифровой съемки, количеством пикселей (см. фиг.6). Полученный двумерный цифровой массив кадра обрабатывается специальным программным обеспечением так, что возможно последующее получение из него резких цифровых изображений в любой выбранной плоскости фокусировки и в большом диапазоне глубины резкости. В специальной оптической системе в фокальной плоскости основного объектива помещается решетка (растр), состоящая из сферических микролинз. В прозрачных растрах чередуются прозрачные и непрозрачные элементы, отражательные растры состоят из зеркально отражающих и поглощающих (или рассеивающих) элементов. ПЗС-матрица находится позади растра и каждый микрообъектив строит на ее поверхности элементарное изображение выходного зрачка съемочного объектива. При дешифровке полученной совокупности изображений создается виртуальная векторная модель светового поля, описывающая направление и интенсивность световых пучков, исходящих из объектива. В результате на основе этой модели может быть воссоздана картина распределения освещенности в любой из сопряженных фокальных плоскостей. Для такой съемки можно использовать камеру, описанную в статье [R. Ng, М. Levoy, М. Bredif, G. Duval, М. Horowitz, and P. Hanrahan. Light Field Photography with a Hand-Held Plenoptic Camera. Stanford University Computer Science Tech Report CSTR 2005-02, Апрель 2005 года]. На фигуре 6 показана схема съемки особи зоопланктона (17) при помощи камеры светового поля. Особь зоопланктона (17) находится внутри прозрачной емкости (8) и освещается осветителем (6). Камера видеонаблюдения (5) в виде камеры светового поля строит векторное поле световых лучей (световое поле) от всего объема прозрачной емкости (8), а именно воды, прошедшей внутрь прозрачной емкости (8), оптического окна (9), воды перед иллюминатором (7) и иллюминатора (7) на многоэлементной матрице. На основе картины светового поля воссоздается наиболее полная информация об изображении, набор плоскостей с восстановленными резкими изображениями с линейным полем А и по всей требуемой глубине резко изображаемого пространства В. Полученные изображения передаются по кабель-тросу (19).
Таким образом, результат обеспечения регистрации двигательной и физиологической активности конкретных особей зоопланктона in situ на различных глубинах при соответствующих гидрофизических, гидрооптических и гидрохимических условиях с высокой достоверностью достигается тем, что в устройстве реализовано профилирование водной толщи на разных горизонтах глубины с помощью погружаемого видеорегистратора зоопланктона с установленными на нем датчиками гидрофизических, гидрооптических и гидрохимических параметров, прозрачной емкостью с водой, герметичной камерой видеонаблюдения, при этом особи зоопланктона помещаются внутрь прозрачной емкости, подсвечиваются осветителями и регистрируются камерой видеонаблюдения, при этом ее параметры выбраны так, что поле ее зрения и глубина резко изображаемого пространства равны или больше соответствующих размеров внутренней полости прозрачной емкости, вода в прозрачной емкости заменяется на окружающую, с помощью насоса, через сетчатые фильтры, не позволяющие особям зоопланктона покинуть прозрачную емкость и препятствующие проникновению помеховых частиц извне, при этом давление в емкости в момент регистрации камерой видеонаблюдения равно окружающему.

Claims (5)

1. Видеорегистратор зоопланктона, содержащий камеру видеонаблюдения, отличающийся тем, что он содержит раму, в нижней части которой закреплены насос, не менее двух герметичных глубоководных боксов, между которыми размещена прозрачная емкость, снабженная одним и более оптическими окнами, двумя или более патрубками, содержащими сетчатые фильтры, размер ячеек которых меньше размеров частиц зоопланктона, и шлангом, а в глубоководных боксах размещены электронные блоки, камера видеонаблюдения, осветители и иллюминаторы, при этом осветители и камера видеонаблюдения размещены непосредственно вблизи оптических окон прозрачной емкости, причем поле зрения и глубина резко изображаемого пространства камеры видеонаблюдения больше или равны соответствующим размерам внутренней полости прозрачной емкости, в верхней части рамы закреплены блок управления, один или более датчиков водной среды, а полость прозрачной емкости последовательно соединена через патрубок с сетчатым фильтром и шлангом с первым входом насоса, а через другой патрубок с сетчатым фильтром полость прозрачной емкости через второй вход насоса сообщается с окружающим пространством, причем блок управления выполнен с возможностью принятия команд управления по кабель-тросу, выработки команд управления, сбора и обработки видеоданных от камеры видеонаблюдения, датчиков водной среды и передачи собранных данных по кабель-тросу, при этом он электрически соединен с электронными блоками, датчиками водной среды и насосом, а электронные блоки электрически соединены с камерой видеонаблюдения и осветителями.
2. Регистратор по п. 1, отличающийся тем, что в качестве камеры видеонаблюдения содержит телевизионную IP-камеру с объективом для макросъемки.
3. Регистратор по п. 1, отличающийся тем, что в качестве камеры видеонаблюдения содержит установку стереоскопической макросъемки.
4. Регистратор по п. 1, отличающийся тем, что в качестве камеры видеонаблюдения содержит камеру светового поля.
5. Регистратор по п. 1, отличающийся тем, что в качестве датчиков водной среды используют гидрофизические, гидрооптические и гидрохимические датчики.
RU2017146357A 2017-12-27 2017-12-27 Видеорегистратор зоопланктона RU2670713C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146357A RU2670713C9 (ru) 2017-12-27 2017-12-27 Видеорегистратор зоопланктона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146357A RU2670713C9 (ru) 2017-12-27 2017-12-27 Видеорегистратор зоопланктона

Publications (2)

Publication Number Publication Date
RU2670713C1 true RU2670713C1 (ru) 2018-10-24
RU2670713C9 RU2670713C9 (ru) 2018-11-29

Family

ID=63923421

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146357A RU2670713C9 (ru) 2017-12-27 2017-12-27 Видеорегистратор зоопланктона

Country Status (1)

Country Link
RU (1) RU2670713C9 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495451C1 (ru) * 2012-03-29 2013-10-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ определения вертикального распределения и размерной структуры зоопланктона в водоеме
WO2014116120A1 (en) * 2013-01-28 2014-07-31 Sinvent As System and method for counting zooplankton
RU148827U1 (ru) * 2014-07-18 2014-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии" (ФГУП "ВНИРО") Подводный видеорегистратор планктона
EP3033936B1 (en) * 2014-12-15 2017-07-19 Norwegian Innovation Technology Group AS Underwater Harvesting System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495451C1 (ru) * 2012-03-29 2013-10-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" Способ определения вертикального распределения и размерной структуры зоопланктона в водоеме
WO2014116120A1 (en) * 2013-01-28 2014-07-31 Sinvent As System and method for counting zooplankton
RU148827U1 (ru) * 2014-07-18 2014-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии" (ФГУП "ВНИРО") Подводный видеорегистратор планктона
EP3033936B1 (en) * 2014-12-15 2017-07-19 Norwegian Innovation Technology Group AS Underwater Harvesting System

Also Published As

Publication number Publication date
RU2670713C9 (ru) 2018-11-29

Similar Documents

Publication Publication Date Title
Kocak et al. A focus on recent developments and trends in underwater imaging
US8446667B2 (en) Contact microscope using point source illumination
CN106604017B (zh) 图像显示装置
US20080012850A1 (en) Three-Dimensional Imaging System Using Optical Pulses, Non-Linear Optical Mixers And Holographic Calibration
KR101473768B1 (ko) 편광 라이트 필드 카메라를 이용한 스페큘러 및 디퓨즈 영상 생성 장치 및 그것의 제어방법
DE102006031114A1 (de) 3D Kombinationsmessgerät aus digitaler Kamera und Laserscanner
US6233035B1 (en) Image recording apparatus and image reproducing apparatus
CN103973976B (zh) 一种利用光学成像的显著性提取装置及方法
JP2020508496A (ja) 試料の三次元画像を撮影および表示するための顕微鏡装置
CN106507096A (zh) 一种具有超大视角的追踪式地面光场3d显示方法及系统
CN107092096A (zh) 一种裸眼3d地面沙盘显示系统及方法
RU2670713C1 (ru) Видеорегистратор зоопланктона
EP4195918A1 (en) Systems and methods for aquatic organism imaging
CN109389623B (zh) 一种鱼类活体的三维跟踪系统及其跟踪方法
Karpel et al. Portable polarimetric underwater imaging system with a linear response
CN107065426A (zh) 立体图形采集装置及方法
CN110908133A (zh) 一种基于二面角反射镜阵列的集成成像3d显示装置
DE102013009634A1 (de) Plenoptisches Bildgebungsverfahren
AU2017271135A1 (en) Method, system, software, and device for remote, miniaturized, and three-dimensional imaging and analysis of human lesions. Research and clinical applications thereof
RU108651U1 (ru) Растровая система воспроизведения объемного изображения
Mignard-Debise Tools for the paraxial optical design of light field imaging systems
EA020147B1 (ru) Способ определения вертикального распределения и размерной структуры зоопланктона в водоеме
Bolan et al. Enhanced imaging of reacting flows using 3D deconvolution and a plenoptic camera
CN212364739U (zh) 一种全息图像显示系统
Bruno et al. Opto-acoustic data fusion for supporting the guidance of remotely operated underwater vehicles (rovs)

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191228