RU2669272C1 - Способ сгущения сапонитовой суспензии - Google Patents

Способ сгущения сапонитовой суспензии Download PDF

Info

Publication number
RU2669272C1
RU2669272C1 RU2018101348A RU2018101348A RU2669272C1 RU 2669272 C1 RU2669272 C1 RU 2669272C1 RU 2018101348 A RU2018101348 A RU 2018101348A RU 2018101348 A RU2018101348 A RU 2018101348A RU 2669272 C1 RU2669272 C1 RU 2669272C1
Authority
RU
Russia
Prior art keywords
water
coagulant
suspension
saponite
thickening
Prior art date
Application number
RU2018101348A
Other languages
English (en)
Inventor
Алексей Иванович Алексеев
Ольга Олеговна Конончук
Ольга Сергеевна Зубкова
Вячеслав Николаевич Бричкин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority to RU2018101348A priority Critical patent/RU2669272C1/ru
Application granted granted Critical
Publication of RU2669272C1 publication Critical patent/RU2669272C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Изобретение может быть использовано в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов. Способ сгущения сапонитовой суспензии включает осаждение частиц для последующего отделения образующегося осадка и обработку коагулянтом. Слив классификатора разбавляют водой в реакторе до плотности от 1250 до 1350 кг/м, затем суспензию подают в сгуститель, снабженный мешалкой, и обрабатывают коагулянтом. В качестве коагулянта используют оксихлорид алюминия с 15% концентрацией рабочего коагулянта по AlO. Проводят перемешивание со скоростью от 80 до 110 об/мин и разделяют твердую и жидкую фазы. Жидкую фазу подают обратно в цикл, а сгущенную твердую фазу - в хвостохранилище. Способ обеспечивает получение очищенной воды с использованием всех технологических вод после процесса обогащения, что позволяет организовать систему оборотного водоснабжения, сократить расход свежей воды и исключить сброс производственных стоков. Кроме того, полученный осадок сгущенной твердой фазы пригоден для конусного складирования. 3 ил., 3 пр.

Description

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии.
Известен способ сгущения сапонитовой суспензии путем ее замораживания и последующего оттаивания, приводящего к разрушению диффузного слоя минеральных частиц, их агрегации и возникновению ближних коагуляционных связей с образованием осадка и с его последующей дегидратацией и консолидацией (Автореферат диссертации на соискание уч. ст. канд. геолого-минерал. наук "Условия накопления сапонитосодержащих осадков и технология их сгущения в хвостохранилище месторождения алмазов им. М.В. Ломоносова" Карпенко Ф.С., Учреждение РАН Ин-т геоэкологии им. Б.М. Сергеева РАН, М., 2009 г.).
Основным недостатком способа является обратимость процесса, необходим значительный землеотвод и большие материальные затраты на обустройство и организацию работ.
Известен способ сгущения суспензии методом отстаивания, при котором происходит отделение частиц водной суспензии под действием силы тяжести. (Большая советская энциклопедия, 2-е изд., т. 31, с. 438). Скорость оседания частиц зависит от их размера, плотности и от вязкости среды.
Основным недостатком известного способа является длительность процесса отстаивания суспензий таких мелких частиц, как частицы сапонита, что может привести к отрицательным последствиям при разработке алмазоносных месторождений.
Известен способ коагуляции, применяемый для очистки жидкости представляющей водную дисперсную систему (Запольский А.К., Коган А.А. Коагулянты и флокулянты в процессах очистки воды: свойства. Получение. Применение. - Л. Химия. 1987. - 208 с). Процесс коагуляции, осуществляют путем введения в пульпу раствора сульфата алюминия, который имеет своей целью дестабилизировать дисперсную систему. В результате гидролиза сульфата алюминия образуется труднорастворимая гидроокись Al2 (ОН)3, которая адсорбирует частицы примесей из воды с образованием крупных агломератов, удаляемых отстаиванием или фильтрацией. Поскольку Al2 (ОН)3 - амфотерная гидроокись, получить стабильный осадок, исходя из константы гидролиза, удастся при рН=6,5-7,5. С целью получения наиболее устойчивого осадка применяют подщелачивание содой или известью.
Недостатками способа являются, нестабильность процесса коагуляции, в том числе при низких температурах воды; необходимость подщелачивать сгущаемую пульпу с целью уменьшения концентрации Н+; содержание остаточного алюминия более 0,2 мг/л; высокая коррозионная химическая активности сульфата алюминия при гидролизе по отношению к технологической аппаратуре, используемой для осадительных процессов сгущения сапонитовой пульпы.
Известен способ складирования хвостов обогащения. (Авторское свидетельство SU №1314059, опубл. 30.05.1987), где уменьшение объема хвостохранилища осуществляется за счет концентрации твердой фазы хвостовой пульпы. Реализацию способа осуществляют при положительных температурах воздуха путем замораживания пульпы на криогенных установках. Для этого хвостовую пульпу разливают в разъемные ковши, которые передвигают по замкнутой траектории. Попадая в зону холода, пульпа замораживается и через определенный промежуток времени освобождается из ковшей в виде брикетов, которые затем транспортируют к месту хранения (хвостохранилище) и оттаивают при положительных температурах. В процессе оттаивания пульпа разделяется на жидкую и твердую фазы. Жидкая фаза удаляется самотеком. Сгущенная твердая фаза (хвосты) после обезвоживания земснарядами или насосами перекачивается в хвостохранилище и складируется, при этом объем твердой фазы уменьшается. В зимний период хвостовую пульпу перекачивают с помощью технических средств на предварительно подготовленные дренируемые хвостовые карты и замораживают послойно до расчетной высоты.
Основной недостаток способа заключаются в следующем: на дренированных хвостовых картах невозможно получить осветленную воду как при медленном послойном замораживании тонкодисперсной хвостовой пульпы в зимний период, так и при ее оттаивании. Так же после оттаивания тонкодисперсной хвостовой пульпы в летний период сгущенная фаза после сброса осветленной воды достигает плотности не выше 0,7 т/м3, что недостаточно для ее промышленного применения и использования в качестве ценного сырья. Полученный уплотненный осадок сапонита нуждается в дополнительной концентрации.
Известен способ сгущения сапонитовой суспензии (патент RU 2448052, опубл. 20.04.2012), путем введения в суспензию под давлением до 2 кгс/см2 углекислого газа в количестве до 300 г на 1 кг сухого осадка, затем обрабатывают коагулянтом - сернокислым алюминием.
Недостатком способа является необратимое повышение минерализации жидкой фазы сапонитовой суспензии. Химическая формула молекулы сапонита Ca0,25(Mg,Fe)3[(Si,Al)4O10](OH)2⋅nH2O. При введении в суспензию под давлением до 2 кгс/см2 углекислого газа в количестве до 300 г на 1 кг происходит образование комплекса: Fe3[(Si,Al)4O10](OH)2, а так же карбонатов кальция и магния - растворимых соединений. Образовавшиеся карбонаты переходят в жидкую часть пульпы (растворяются), повышая ее минерализацию. Затем в пульпу вводят коагулянт-сернокислый алюминий. Помимо коагуляционных хлопьев образуется сульфат железа (III). - растворимое соединение, которое переходит в жидкую часть пульпы, повышая минерализацию.
Техническим результатом изобретения является получение очищенной воды в соответствии с СанПиН 2.1.5.980-00 с вовлечением в процесс очистки всех технологических вод после процесса обогащения. Это позволит организовать систему оборотного водоснабжения, позволяющую сократить расход свежей воды и исключить сброс производственных стоков. Так же при реализации способа удается получить осадок сгущенной твердой фазы, пригодный для конусного складирования.
Технический результат достигается тем, что слив классификатора разбавляется водой в реакторе до плотности от 1250 до 1350 кг/м3, затем поступает в сгуститель, снабженный мешалкой, и обрабатывается коагулянтом, в качестве коагулянта используется оксихлорид алюминия, с концентрацией рабочего коагулянта по Al2O3 15% при перемешивании со скоростью от 80 до 110 об/мин, где происходит разделение твердой и жидкой фазы, жидкая фаза поступает обратно в цикл, а сгущенная твердая фаза в хвостохранилище
Способ поясняется следующими фигурами:
фиг. 1 - выделение воды при сгущении суспензии коагулянтами;
фиг. 2 - разделение суспензии на сгущенную твердую фазу и воду;
фиг. 3 - уплотнение осадка твердой фазы.
Способ осуществляется следующим образом. Вначале слив классификатора - сапонитовая суспензия подается в реактор, снабженный лопастной мешалкой и плотномером, затем в реактор подается вода. Происходит разбавление суспензии водой до плотности ρразб.п. от 1250 до 1350 кг/м3. Перемешивание суспензии протекает со скоростью от 60 до 90 об/мин. Затем сапонитовая суспензия подается в сгуститель, снабженный лопастной мешалкой. В сгуститель подается раствор оксихлоридного коагулянта, в качестве коагулянта используется оксихлорид алюминия, с содержанием алюминия по Al2O3 197,25 кг/м3, концентрация рабочего раствора коагулянта по Al2O3 15%, плотность рабочего раствора ρраб.р-ра=1315 кг/м3 расход рабочего раствора коагулянта 120 м3 на 1000 м3 разбавленной пульпы. При воздействии на дестабилизированную суспензию оксихлоридным коагулянтом протекает процесс гидролиза солей. В результате гидролиза в коллоидном растворе образуются многозарядные ионы металлов, которые нейтрализуют силы отталкивания между коллоидными частицами. Перемешивание коллоидного раствора осуществляется со скоростью от 80 до 110 об/мин, приводит к столкновению коллоидных частиц. Силы притяжения заставляют коллоидные частицы слипаться друг с другом, что приводит к образованию крупных агломератов и сгущению твердой фазы сапонитовой суспензии. Затем сгущенная твердая фаза сапонитовой суспензии поступает в хвостохранилище, а очищенная вода обратно в цикл. В результате осаждения твердой фазы сапонитовой суспензии и последующего уплотнения 1 т осадка выделяется не менее 3 м3 воды с концентрацией шламовых частиц менее 0,5 г/л, пригодной для использования ее в системе оборотного водоснабжения фабрики. Образовавшаяся вода поступает обратно в цикл, а сгущенная твердая фаза сапонитовой суспензии в хвостохранилище. После сгущения твердая фаза сапонитовой суспензии имеет влажность 30% (70% твердого), то есть возможно конусное складирование.
Способ поясняется следующими примерами.
Пример 1. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). Затем часть разбавленной суспензии поместили в сатуратор и обработали пропусканием через нее под давлением 1,5 кгс/см2 углекислого газа в количестве 250 г на 1 кг сухого осадка. После чего в 2 дренажных колпачка производства ООО "Калан" (изделие ДКЗС-40/60-70В) влили по 1000 мл сапонитовой суспензии: в колпачок 1 - обработанную CO2; в колпачок 2 - без обработки. Сгущение суспензии проводилось по общепринятой методике с применением коагулянтов (колпачок 1 - сернокислый алюминий, колпачок 2 - оксихлоридный коагулянт) при давлении 1 Бар, температуре 298 К. В результате через 1 сутки из колпачка 1 выделено 160 мл воды, а из стакана с раствором, обработанным оксихлоридным коагулянтом, выделено 270 мл воды.
Пример 2. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). Затем часть разбавленной суспензии поместили в сатуратор и обработали пропусканием через нее под давлением 1,5 кгс/см2 углекислого газа в количестве 250 г на 1 кг сухого осадка. После чего в 2 цилиндра влили по 1000 мл сапонитовой суспензии: в цилиндр 1 - обработанную CO2; в цилиндр 2 - без обработки. Сгущение суспензии проводилось по общепринятой методике с применением коагулянтов (цилиндр 1 - сернокислый алюминий, цилиндр 2 - оксихлоридный коагулянт) при давлении 1 Бар, температуре 298K. при давлении 1 Бар, температуре 298K. В результате через 1 сутки в цилиндре с раствором, обработанным сернокислым алюминием выделено 110 мл воды, а из цилиндра с раствором, обработанным оксихлоридным коагулянтом, выделено 250 мл воды (фиг 1). Таким образом, применение оксихлоридного коагулянта в технологии сапонитовой суспензии увеличивает скорость ее осаждения при отстаивании без применения карбонизации, определяя преимущество заявляемого способа над прототипом.
Пример 3. Представлен образец в объеме 1,5 литра. Раствор представляет собой слив классификатора - сапонитовую суспензию обогатительной фабрики Ломоносовского ГОКа, имеет красно-коричневый цвет с плотностью сапонитовой суспензии 1658 кг/м3 (180 г/л по твердой фазе). Произвели разбавление водой до плотности 1367 кг/м3 (110 г/л по твердой фазе). После чего 1000 мл суспензии влили в химический стакан. Сгущение суспензии проводилось по общепринятой методике с применением коагулянта (оксихлоридного коагулянта) при давлении 1 Бар, температуре 298K. В результате через 3 суток в химическом стакане с пульпой, обработанной раствором оксихлоридного коагулянта, выделилась вода цветностью 70 град. цв. (ГОСТ 31868-2012) и плотный осадок, (фиг 2, 3) Затем выделившуюся воду слили, осадок собрали в фарфоровую чашку для определения влажности. Содержание твердой фазы в осадке составляет 70%-осадок пригоден для конусного складирования, что продлевает срок эксплуатации хвостохранилища Ломоносовского ГОКа на 12-14 лет.

Claims (1)

  1. Способ сгущения сапонитовой суспензии, включающий осаждение частиц для последующего отделения образующегося осадка и обработку коагулянтом, отличающийся тем, что слив классификатора разбавляется водой в реакторе до плотности от 1250 до 1350 кг/м3, затем поступает в сгуститель, снабженный мешалкой, и обрабатывается коагулянтом, в качестве коагулянта используется оксихлорид алюминия, с концентрацией рабочего коагулянта по Al2O3 15% при перемешивании со скоростью от 80 до 110 об/мин, где происходит разделение твердой и жидкой фазы, жидкая фаза поступает обратно в цикл, а сгущенная твердая фаза в хвостохранилище.
RU2018101348A 2018-01-15 2018-01-15 Способ сгущения сапонитовой суспензии RU2669272C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018101348A RU2669272C1 (ru) 2018-01-15 2018-01-15 Способ сгущения сапонитовой суспензии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018101348A RU2669272C1 (ru) 2018-01-15 2018-01-15 Способ сгущения сапонитовой суспензии

Publications (1)

Publication Number Publication Date
RU2669272C1 true RU2669272C1 (ru) 2018-10-09

Family

ID=63798582

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018101348A RU2669272C1 (ru) 2018-01-15 2018-01-15 Способ сгущения сапонитовой суспензии

Country Status (1)

Country Link
RU (1) RU2669272C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683082C1 (ru) * 2018-05-31 2019-03-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения кальцийалюмосиликатного неорганического коагулянта
RU2780569C1 (ru) * 2021-11-19 2022-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1301785A1 (ru) * 1985-01-03 1987-04-07 Украинский научно-исследовательский углехимический институт Способ очистки сточных вод от взвешенных веществ
WO2000009453A1 (en) * 1998-08-12 2000-02-24 Clear Value, Inc. Clarification of water and wastewater
US6120690A (en) * 1997-09-16 2000-09-19 Haase; Richard Alan Clarification of water and wastewater
RU2448052C1 (ru) * 2010-11-08 2012-04-20 Александр Вадимович Утин Способ сгущения сапонитовой суспензии
RU2535048C2 (ru) * 2012-12-27 2014-12-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ извлечения сапонитсодержащих веществ из оборотной воды и устройство для его реализации
RU2618007C1 (ru) * 2016-04-21 2017-05-02 Сергей Алексеевич Бахарев Способ сгущения пульпы с использованием акустических волн

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1301785A1 (ru) * 1985-01-03 1987-04-07 Украинский научно-исследовательский углехимический институт Способ очистки сточных вод от взвешенных веществ
US6120690A (en) * 1997-09-16 2000-09-19 Haase; Richard Alan Clarification of water and wastewater
WO2000009453A1 (en) * 1998-08-12 2000-02-24 Clear Value, Inc. Clarification of water and wastewater
RU2448052C1 (ru) * 2010-11-08 2012-04-20 Александр Вадимович Утин Способ сгущения сапонитовой суспензии
RU2535048C2 (ru) * 2012-12-27 2014-12-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ извлечения сапонитсодержащих веществ из оборотной воды и устройство для его реализации
RU2618007C1 (ru) * 2016-04-21 2017-05-02 Сергей Алексеевич Бахарев Способ сгущения пульпы с использованием акустических волн

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683082C1 (ru) * 2018-05-31 2019-03-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения кальцийалюмосиликатного неорганического коагулянта
RU2780569C1 (ru) * 2021-11-19 2022-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка
RU2800757C1 (ru) * 2022-12-19 2023-07-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ осветления сапонитовой глинистой суспензии
RU2810425C1 (ru) * 2023-08-16 2023-12-27 Акционерное общество "Севералмаз" (АО "Севералмаз") Способ осветления сапонитовой глинистой суспензии

Similar Documents

Publication Publication Date Title
Kowalski Treatment of chromic tannery wastes
Ayeche Treatment by coagulation-flocculation of dairy wastewater with the residual lime of National Algerian Industrial Gases Company (NIGC-Annaba)
US20210292198A1 (en) Treatment of tailings streams with one or more dosages of lime, and associated systems and methods
US11718543B2 (en) Geotechnical characteristics of tailings via lime addition
RU2448052C1 (ru) Способ сгущения сапонитовой суспензии
CN106630307A (zh) 一种处理煤气化灰水的系统和方法
US20190337825A1 (en) Treatment of tailings
RU2669272C1 (ru) Способ сгущения сапонитовой суспензии
EP1928569B1 (en) A cost-effective process for the preparation of solar salt having high purity and whiteness
CN113698002A (zh) 一种反渗透浓盐水回收处理新工艺
CN111547886A (zh) 一种煤矿废水资源化综合处理系统
BR112021016365A2 (pt) Sistema de gestão de água para operação de mineração de minério
Oladoja et al. Tapping into the ballast potential of sparingly soluble salts for enhanced floc physiognomies in algae biomass harvesting
Turek et al. Utilization of coal mine brines in the chlorine production process
RU2675871C1 (ru) Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
RU2780569C1 (ru) Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка
US20230241533A1 (en) Gravity separation of slurries
CN114524558B (zh) 一种煤矿废水的处理方法及处理系统
US20230143928A1 (en) Water management system for ore mining operation
Budykina Treatment of wastewater resulting from iron ore beneficiation
SU685594A1 (ru) Способ гидротранспорта твердых материалов
SU874668A1 (ru) Способ обработки осадков первичных отстойников и избыточного ила
CN111547887A (zh) 一种煤矿废水资源化综合处理方法
CN116036725A (zh) 一种磷肥生产中酸解液的助滤方法
JP2014018783A (ja) 廃棄物からのリン酸の回収方法