RU2668978C1 - Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина - Google Patents

Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина Download PDF

Info

Publication number
RU2668978C1
RU2668978C1 RU2018120891A RU2018120891A RU2668978C1 RU 2668978 C1 RU2668978 C1 RU 2668978C1 RU 2018120891 A RU2018120891 A RU 2018120891A RU 2018120891 A RU2018120891 A RU 2018120891A RU 2668978 C1 RU2668978 C1 RU 2668978C1
Authority
RU
Russia
Prior art keywords
thiadiazole
thiadiazolo
pyridazine
dibromo
dicarboxylic acid
Prior art date
Application number
RU2018120891A
Other languages
English (en)
Inventor
Тимофей Николаевич Чмовж
Екатерина Александровна Князева
Олег Алексеевич Ракитин
Original Assignee
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) filed Critical ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН)
Priority to RU2018120891A priority Critical patent/RU2668978C1/ru
Application granted granted Critical
Publication of RU2668978C1 publication Critical patent/RU2668978C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Abstract

Изобретение относится к области органической химии, а именно к способу получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина (1), заключающегося в том, что диаминомалетонитрил обрабатывают тионилхлоридом в ацетонитриле в присутствии пиридина при пониженной температуре, затем полученный 1,2,5-тиадиазол-3,4-дикарбонитрил кипятят в разбавленной соляной кислоте, образующийся при этом 1,2,5-тиадиазол-3,4-дикарбоновой кислоты обрабатывают метанолом в присутствии хлористого тионила с образованием диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты, который обрабатывают гидразин-гидратом в изопропаноле, полученный при этом 1,2,5-тиадиазол-3,4-дикарбогидразид нагревают в разбавленной соляной кислоте с образованием 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона с последующей обработкой его смесью трехбромистого фосфора и брома либо оксобромидом фосфора в среде диметилформамида при температуре от 0 до 105°C. Технический результат: разработан способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина, который может быть полезен в качестве исходного соединения для получения компонентов солнечных ячеек с улучшенными значениями ширины запрещенной зоны, плотности тока короткого замыкания и коэффициентом заполнения и, в конечном счете, фотовольтаической эффективности солнечной ячейки. 2 пр.

Description

Предлагаемое изобретение относится к области органической химии, а именно, к способу получения неописанного в литературе 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина (1), который может найти применение в качестве исходного соединения в синтезе органических солнечных ячеек с объемным гетеропереходом с повышенными значениями ширины запрещенной зоны, плотности тока короткого замыкания и коэффициентом заполнения, от которых напрямую зависит значение фотовольтаической эффективности солнечной ячейки -величины, которая характеризует производительность фотовольтаического устройства.
Фотовольтаический метод преобразования солнечной энергии в электрическую, по мнению лауреата Нобелевской премии по физике академика Ж.И. Алферова, является одним из наиболее эффективных. Одной из наиболее перспективных альтернатив кремниевых и других неорганических преобразователей солнечной энергии являются солнечные батареи на основе органических фотосенсибилизаторов. Существует несколько типов органических фотовольтаических структур, среди которых можно выделить ячейки с объемным гетеропереходом, когда фрагменты донора и акцептора находятся в одном фотоактивном слое и формируют трехмерные взаимопроникающие наноразмерные сети из доменов с дырочной и электронной проводимостью, а также ячейки слоистого типа, в которых фотоактивные компоненты образуют отдельные слои. Фотовольтаические структуры с объемным гетеропереходом, как правило, содержат в качестве донора полисопряженные гетероциклические соединения, а в качестве акцептора производные фуллерена. Для увеличения эффективности преобразования света необходимо получать красители как с высокой плотностью тока короткого замыкания для увеличения ширины спектра поглощения, так и с высоким напряжением холостого хода для уменьшения ширины запрещенной зоны. Поэтому сегодня в мире широко исследуются новые компоненты для органических фотоактивных материалов, которые будут удовлетворять этим требованиям. Одной из наиболее перспективных групп такого рода соединений являются структуры полициклического характера, содержащие электронодефицитные гетероциклы в своей структуре. В литературе описаны соединения на основе 2,1,3-бензотиадиазолов (В. А. D. Neto, А. А. М. Lapis, Е. N. da Silva
Figure 00000001
, J. Dupont, 2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules. Eur. J. Org. Chem., 2013, 228; L. S. Konstantinova, E. A. Knyazeva, O. A. Rakitin, Recent Developments in the Synthesis and Applications of 1,2,5-Thia- and Selenadiazoles. A Review. Org. Prep. Proc. Int., 2014, 46, 475). Для этих соединений достигнуты значения эффективности преобразования солнечного света в электричество до 5.8%. Между тем, считается, что коммерциализация органических солнечных элементов возможна при значениях эффективности действия солнечного света не менее 10-15%. Недавними расчетами (D. Wang, X. Zhang, W. Ding, X. Zhao, Z. Geng, Density functional theory design and characterization of D-A-A type electron donors with narrow band gap for small-molecule organic solar cells. Comp. Theoret. Chem., 2014, 1029, 68) было показано, что солнечные элементы на основе [1,2,5]тиадиазоло[3,4-d]пиридазинов могут достигать высоких значений эффективности преобразования солнечного света в электричество. Этот гетероцикл является практически идеальным билдинг-блоком с точки зрения значений ширины запрещенной зоны, плотности тока короткого замыкания и коэффициентом заполнения, величин от которых напрямую зависит фотовольтаическая эффективность солнечной ячейки.
Известен способ получения 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона (2) (I. Sekikawa, Oxidation of 5-Methyl-2,1,3-benzothiadiazole with Potassium Permanganate. Bull. Chem. Soc. Japan, 1960, 33, 1229). Известное соединение 2 является наиболее близким по структуре предлагаемому 1 и по способу получения. 5,6-Дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-дион получают путем нагревания 1,2,5-тиадиазол-3,4-дикарбогидразида в разбавленной соляной кислоте в течение 8 часов при 75°C с выходом 48%. В свою очередь 1,2,5-тиадиазол-3,4-дикарбогидразид, который не является коммерчески доступным реагентом, получают пятистадийным синтезом из коммерчески доступных диметилового эфира ацетилендикарбоновой кислоты и дихлорида дисеры. Всего общий способ получения 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона 2 включает 6 стадий и заключается в обработке дихлорида дисеры хлором в четыреххлористом углероде с образованием дихлорида серы с выходом 100%, с последующей обработкой дихлорида серы газообразным аммиаком с образованием тетранитрида тетрасеры с 14%-ным выходом (М. Villena-Blanco, W. L. Jolly, Tetrasulfur tetranitride, S4N4. Inorganic syntheses, 1967, Volume IX, 98), с последующей реакцией тетранитрида тетрасеры с хлористым тионилом с образованием тритиазил трихлорида с 95%-ным выходом (G. G. Alange, А. J. Banister, В. Bell, Reactions of Tetrasulphur Tetranitride with Halides. Part III. Two New Methods of Preparing Trichlorocyclotrithiazene. J. Chem. Soc., Dalton Trans., 1972, 2399), с последующей реакцией с диметиловым эфиром ацетилендикарбоновой кислоты с образованием диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты с 84%-ным выходом (X.-G. Duan, X.-L. Duan, С.W. Rees, T.-Y. Yue, Reaction of trithiazyl trichloride with alkenes and alkynes. J. Chem. Soc., Perkin Trans. 1, 1997, 2597), с последующей реакцией с гидразин гидратом в изопропаноле с образованием 1,2,5-тиадиазол-3,4-дикарбогидразида с 94%-ным выходом (S. Mataka, K. Takahashi, Y. Yamada, М. Tashiro, Sulfur nitride in organic chemistry. 6. Preparation of 3,4-disubstituted 1,2,5-thiadiazoles by the reaction of sulfur nitride with acetylenes. J. Heterocycl. Chem., 1979, 16, 1009). Недостатками известного процесса являются общий низкий выход продукта 2 5% в расчете на коммерчески доступный дихлорид дисеры, необходимость использования в процессе шести стадий, применение взрывоопасного соединения тетранитрида тетрасеры и высокотоксичного и неудобного в обращении хлора. Кроме этого, соединение 2 не представляет интерес в качестве непосредственного исходного субстрата для получения фотовольтаических структур, так как не содержит в своей молекуле активных атомов брома, способных замещаться на фрагменты, влияющие на фотовольтаическую эффективность.
Технической задачей настоящего изобретения является создание ранее неизвестного 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина (1) - потенциального полупродукта для получения фотовольтаических структур, а также разработка безопасного способа его получения с улучшенным выходом промежуточного продукта 2.
Поставленная техническая задача достигается предлагаемым способом получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина (1), заключающимся в том, что диаминомалетонитрил подвергают взаимодействию с тионилхлоридом в ацетонитриле в присутствии пиридина при пониженной температуре и полученный при этом 1,2,5-тиадиазол-3,4-дикарбонитрил подвергают кипячению в разбавленной соляной кислоте, с последующей обработкой полученной при этом 1,2,5-тиадиазол-3,4-дикарбоновой кислоты метанолом в присутствии хлористого тионила с образованием диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты и взаимодействием его с гидразин-гидратом в изопропаноле и образующийся при этом 1,2,5-тиадиазол-3,4-дикарбогидразид подвергают нагреванию в разбавленной соляной кислоте с образованием 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона с последующей обработкой его смесью трехбромистого фосфора и брома либо оксобромидом фосфора в среде диметилформамида при температуре от 0 до 105°C. Процесс протекает по следующей схеме:
Figure 00000002
4,7-Дибром[1,2,5]тиадиазоло[3,4-d]пиридазин 1 получают в несколько стадий из коммерчески доступного диаминомалетонитрила и тионилхлорида. На первой стадии диаминомалетонитрил 3 обрабатывают тионилхлоридом в ацетонитриле в присутствии пиридина с образованием 1,2,5-тиадиазол-3,4-дикарбонитрила 4 с выходом 79%, с последующим кипячением 1,2,5-тиадиазол-3,4-дикарбонитрила 4 в разбавленной соляной кислоте в течение 24 часов с образованием 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 5 с 90%-ным выходом, с последующей этерификацией 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 5 метанолом в присутствии хлористого тионила с образованием диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 6 с 77%-ным выходом, с последующей реакцией с гидразин-гидратом в изопропаноле с образованием 1,2,5-тиадиазол-3,4-дикарбогидразида 7 с 98%-ным выходом, с последующим нагреванием в разбавленной соляной кислоте в течение 8 часов с образованием 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона 2 с 70%-ным выходом с последующей обработкой 2 смесью трехбромистого фосфора и брома либо оксобромидом фосфора в среде диметилформамида при температуре от 0 до 105°C в течении 9-10 часов и выделением целевого продукта с выходом 75% методом хроматографии на силикагеле.
Общий выход продукта 1 составляет 11-28% в расчете на коммерчески доступный диаминомалеонитрил (3). При этом общий выход известного промежуточного продукта 2 составляет 37% в расчете на коммерчески доступный диаминомалеонитрил (3), что почти в семь с половиной раз выше в сравнении с известным способом (с 5% до 37%). Техническим результатом предлагаемого изобретения является разработка способа получения нового, неописанного в литературе, 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина с использованием коммерчески доступного и дешевого исходного диаминомалетонитрила вместо диметилового эфира ацетилендикарбоновой кислоты и малодоступного дисеры дихлорида, что позволило сократить количество стадий получения промежуточного продукта 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона 2 с шести до пяти и увеличить общий выход его почти в семь с половиной раз с 5% до 37% и повысить безопасность процесса в целом путем исключения из процесса взрывоопасного тетранитрида тетрасеры и высокотоксичного и неудобного в обращении хлора.
4,7-Дибром[1,2,5]тиадиазоло[3,4-d]пиридазин (1) может представить интерес в качестве непосредственного исходного соединения для получения компонентов солнечных ячеек с улучшенными значениями ширины запрещенной зоны, плотности тока короткого замыкания, и коэффициентом заполнения и, в конечном счете, фотовольтаической эффективности солнечной ячейки, так как содержит в своей молекуле одновременно как [1,2,5]тиадиазоло[3,4-d]пиридазиновый фрагмент, отвечающий за высокие фотовольтаические характеристики, так и высоко реакционноспособные атомы брома, которые позволяют вводить в молекулу заместители, влияющие на фотовольтаическую эффективность.
Изобретение иллюстрируется следующими примерами, не ограничивающими его объем.
Пример 1. Получение 4.7-дибром[1,2,5]тиадиазоло[3<4-d]пиридазина.
А. Синтез 1,2,5-тиадиазол-3,4-дикарбонитрила 4.
К диаминомалетонитрилу 3 (1000 мг, 9.26 ммоль) в 10 мл ацетонитрила и 2.2 мл пиридина при перемешивании при 0°C добавляли по каплям раствор (1210 мг, 10.18 ммоль) тионилхлорида в 3 мл ацетонитрила, следя за тем, чтобы температура реакционной среды не превышала 5°C. После прибавления всего тионилхлорида температуру реакционной среды довели до 25°C и перемешивали еще 3 часа. Затем растворитель отогнали при пониженном давлении при 35-40°C на роторном испарителе. Полученное темное масло растворили в 25 мл хлористого метилена и хорошо промыли (3×20 мл) 1.5 N раствором соляной кислоты, затем раствором соли, органический слой сушили над сульфатом магния. Растворитель упарили при пониженном давлении, получив 1000 мг (79%) 1,2,5-тиадиазол-3,4-дикарбонитрила 4 в виде желтых кристаллов.
Б. Синтез 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 5.
К 1,2,5-тиадиазол-3,4-дикарбонитрилу 4 (2500 мг, 18.38 ммоль) добавили 27 мл 6N соляной кислоты. Смесь кипятили в течении 24 часов. После охлаждения до комнатной температуры осадок отфильтровали, а водный слой экстрагировали горячим этилацетатом (5×30 мл). Органический слой сушили над сульфатом магния. Отфильтрованный осадок осушили при пониженном давлении. Растворитель упарили при пониженном давлении. В результате получили белое твердое вещество, которое объединили с отфильтрованным осадком.
Выход 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 5 составил 2878 мг (90%).
В. Синтез диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 6.
К 1,2,5-тиадиазол-3,4-дикарбоновой кислоте 5 (2000 мг, 11.49 ммоль) в 20 мл метанола добавили при 0°C по каплям хлористый тионил (732 мг, 6.15 ммоль). Реакционную смесь кипятили при перемешивании в течение 4 часов. После завершения кипячения реакционную смесь охладили до комнатной температуры. Растворитель упарили при пониженном давлении. Остаток растворили в 40 мл хлористого метилена, промыли водой (5×30 мл), органический слой сушили над сульфатом магния. Растворитель упарили при пониженном давлении. В результате был получен чистый диметиловый эфир 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 6 в виде бесцветного масла 1800 мл (77%).
Г. Синтез 1,2,5-тиадиазол-3,4-дикарбогидразида 7.
К диметиловому эфиру 1,2,5-тиадиазол-3,4-дикарбоновой кислоты 12 (1207 мг, 5.97 ммоль) в 20 мл изопропилового спирта добавили по каплям при комнатной температуре 1.42 мл гидразин гидрата. Смесь перемешивали в течение 9 часов при комнатной температуре. Образовавшийся осадок отфильтровали, высушили на воздухе. В результате получили 1,2,5-тиадиазол-3,4-дикарбогидразид 7 1189 мг (98%) в виде оранжевого твердого вещества.
Д. Синтез 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона 2.
К раствору 3.3 мл концентрированной соляной кислоты в 110 мл воды добавляли небольшими порциями 1,2,5-тиадиазол-3,4-дикарбогидразид 9 (2200 мг, 10.89 ммоль). После растворения всего 1,2,5-тиадиазол-3,4-дикарбогидразида 7, смесь перемешивали при кипячении в течение 8 часов. После завершения кипячения реакционную смесь охладили до комнатной температуры, осадок отфильтровали, высушили под вакуумом. В результате был получен 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-дион 2 1300 мг (70%) в виде белых кристаллов.
Е. Синтез 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина 1.
5,4-Дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-дион 2 (650 мг, 3.82 ммоль) добавляли к смеси трехбромистого фосфора (2.16 мл, 22.92 ммоль) и брома (1.18 мл, 22.92 ммоль) при 0°C. Реакционную смесь перемешивали в течение 9 ч при 105°C. Затем смесь охлаждали до комнатной температуры, выливали на лед, промывали четыреххлористым углеродом, экстрагировали хлороформом (3×40 мл) и сушили над сульфатом магния. Хлороформ упарили при пониженном давлении. Остаток очищали с помощью колоночной хроматографии на силикагеле (элюент - хлористый метилен). Выход 845 мг (75%), желтое твердое вещество. Т. пл.=199-200°C. (Rf=0.5, CH2Cl2). Найдено (%): С, 16.37; N, 19.05. C4Br2N4S. Вычислено (295.94): С, 16.23; N, 18.93. ИК-спектр νmax (KBr, cm-1): 1369, 1361, 1343, 1257, 959, 863, 504. Спектр ЯМР 13С (75 МГц, CDCl3): δ 142.5, 149.6. Масс-спектр высокого разрешения (ESI-TOF), m/z: вычислено для C4 81Br2HN4S [М+Н]+, 296.8262, найдено, 296.8269. Масс-спектр, m/z (%): 298 ([М+2]+, 22), 296 (М+, 49), 294 ([М-2]+, 28), 217 (27), 215 (28), 136 (52), 84 (67), 32(100)
Пример 2. Получение 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина.
Аналогично примеру 1 получают 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазин, но 5,4-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-дион 2 (500 мг, 2.9 ммоль) обрабатывают оксобромидом фосфора (1.18 мл, 22,92 ммоль) в диметилформамиде (40 мл) при 0°C. Реакционную смесь перемешивали в течение 6 ч при 80°C. Затем смесь охлаждали до комнатной температуры, выливали на лед, экстрагировали хлороформом (3×40 мл) и сушили над сульфатом магния. Хлороформ упарили при пониженном давлении. Остаток очищали с помощью колоночной хроматографии на силикагеле (элюент - хлористый метилен). Выход 256 мг (30%), желтое твердое вещество.

Claims (1)

  1. Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина, заключающийся в том, что диаминомалетонитрил подвергают взаимодействию с тионилхлоридом в ацетонитриле в присутствии пиридина при пониженной температуре и полученный при этом 1,2,5-тиадиазол-3,4-дикарбонитрил подвергают кипячению в разбавленной соляной кислоте, с последующей обработкой полученной при этом 1,2,5-тиадиазол-3,4-дикарбоновой кислоты метанолом в присутствии хлористого тионила с образованием диметилового эфира 1,2,5-тиадиазол-3,4-дикарбоновой кислоты и взаимодействием его с гидразин-гидратом в изопропаноле и образующийся при этом 1,2,5-тиадиазол-3,4-дикарбогидразид подвергают нагреванию в разбавленной соляной кислоте с образованием 5,6-дигидро[1,2,5]тиадиазоло[3,4-d]пиридазин-4,7-диона с последующей обработкой его смесью трехбромистого фосфора и брома либо оксобромидом фосфора в среде диметилформамида при температуре от 0 до 105°С.
RU2018120891A 2018-06-06 2018-06-06 Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина RU2668978C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018120891A RU2668978C1 (ru) 2018-06-06 2018-06-06 Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018120891A RU2668978C1 (ru) 2018-06-06 2018-06-06 Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина

Publications (1)

Publication Number Publication Date
RU2668978C1 true RU2668978C1 (ru) 2018-10-05

Family

ID=63798550

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018120891A RU2668978C1 (ru) 2018-06-06 2018-06-06 Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина

Country Status (1)

Country Link
RU (1) RU2668978C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850929A (en) * 1973-03-19 1974-11-26 Dow Chemical Co (1,2,5)thiadiazolo(3,4-b)pyrazines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850929A (en) * 1973-03-19 1974-11-26 Dow Chemical Co (1,2,5)thiadiazolo(3,4-b)pyrazines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tong Y.C.: ''1,2,5-Thiadiazolo[3,4-b]pyrazines'', Journal of Heterocyclic Chemistry, 1975, 12(3), стр. 451-453. *

Similar Documents

Publication Publication Date Title
CN103548167B (zh) 有机化合物及包含其的光电器件
JP6240748B2 (ja) フラーレン誘導体、これを用いた有機太陽電池およびその製造方法
Sun et al. Thieno [3, 2-b] thiophene fused BODIPYs: synthesis, near-infrared luminescence and photosensitive properties
Xue et al. Multicolour-and high-colour-contrast switching in response to force and acid vapour by introducing an asymmetric D–π–A–π–D structure
Wu et al. Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells
WO2015194152A1 (ja) 光増感剤および光電変換素子
EP2964704B1 (en) Heterocyclic fluorescent dyes and method of production thereof
Mao et al. Regioisomerically pure multiaryl coronene derivatives: highly efficient synthesis via bay-extended perylene tetrabutylester
CN102002037A (zh) 三苯胺类化合物及其用途
Luo et al. Room-temperature discotic liquid crystals based on oligothiophenes—attached and fused triazatruxenes
Yin et al. Simultaneous Ring Contraction and Expansion Reaction: Electrosynthesis of Heterocycle‐Fused Fulleroids and Photovoltaic Application
Zeng et al. Dopant-free dithieno [3′, 2': 3, 4; 2 ″, 3'': 5, 6] benzo [1, 2-d] imidazole-based hole-transporting materials for efficient perovskite solar cells
US4026905A (en) Electrically conducting organic salts
RU2668978C1 (ru) Способ получения 4,7-дибром[1,2,5]тиадиазоло[3,4-d]пиридазина
Wei et al. A facile approach toward 1, 2-diazabenzo [ghi] perylene derivatives: structures and electronic properties
Xia et al. Oligofluorene with multiple spiro-connections: its and their use in blue and white OLEDs
Irgashev et al. A new synthetic approach to fused nine-ring systems of the indolo [3, 2-b] carbazole family through double Pd-catalyzed intramolecular C–H arylation
JP6419838B2 (ja) 共重合体およびこれを含む有機太陽電池
EP3103801B1 (en) Fullerene derivative, organic solar cell using same, and preparation method therefor
JPWO2020162345A1 (ja) ジベンゾピロメテンホウ素キレート化合物、近赤外光吸収材料、有機薄膜及び有機エレクトロニクスデバイス
Bakiev et al. Novel thiophene-containing push-pull chromophores that include carbazole and triphenylamine moieties: study of optical and electrochemical properties
Knyazeva et al. Suzuki cross-coupling reactions of 4, 7-dibromo [1, 2, 5] selenadiazolo [3, 4-c] pyridine–a path to new solar cell components
Peng et al. Simultaneous enhancement of fluorescence and solubility by N-alkylation and functionalization of 2-(2-thienyl) imidazo [4, 5-f][1, 10]-phenanthroline with heterocyclic bridges
Tamur et al. Thiazolo [3, 2‐b]‐s‐triazole
EP2583956B1 (en) A method of preparation of polycyclic, fused aromatic and heteroaromatic hydrocarbons and intermediates