RU2668218C1 - Катализатор и способ алкилирования бифенила олефинами C2-C6 - Google Patents

Катализатор и способ алкилирования бифенила олефинами C2-C6 Download PDF

Info

Publication number
RU2668218C1
RU2668218C1 RU2018120918A RU2018120918A RU2668218C1 RU 2668218 C1 RU2668218 C1 RU 2668218C1 RU 2018120918 A RU2018120918 A RU 2018120918A RU 2018120918 A RU2018120918 A RU 2018120918A RU 2668218 C1 RU2668218 C1 RU 2668218C1
Authority
RU
Russia
Prior art keywords
biphenyl
alkylation
catalysts
olefins
catalyst
Prior art date
Application number
RU2018120918A
Other languages
English (en)
Inventor
Андрей Леонидович Тарасов
Леонид Модестович Кустов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2018120918A priority Critical patent/RU2668218C1/ru
Application granted granted Critical
Publication of RU2668218C1 publication Critical patent/RU2668218C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/12Polycyclic non-condensed hydrocarbons
    • C07C15/16Polycyclic non-condensed hydrocarbons containing at least two phenyl groups linked by one single acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области органического синтеза и, в частности, к катализаторам и реакциям алкилирования бифенила олефинами С-С. Предложены катализаторы алкилирования бифенила олефинами С-С, в которых в качестве носителя используют фторированный AlOили SiO, а в качестве модификатора используют гетерополикислоты HPWOили HSiWO, при этом содержание гетерополикислот на поверхности носителя составляет 10-20% масс. Также предложены способы (варианты) алкилирования бифенила олефинами С-Сс использованием заявленного катализатора. Технический результат заключается в разработке катализаторов, которые при более низких температурах в течение короткого времени способны алкилировать бифенил и другие полициклические у/в олефинами С-Сс высокой конверсией и выходом алкилароматики. 3 н.п. ф-лы, 2 табл., 7 пр.

Description

Изобретение относится к области органического синтеза и, в частности, к катализаторам и реакциям селективного алкилирования бифенила олефинами C2-C6 с использованием суперкислотных катализаторов. В настоящем изобретении предлагаются гетерогенные катализаторы, полученные путем пропитки носителей F-Al2O3 и SiO2 водными растворами гетерополикислот H3PW12O41 или H4SiW12O41 с последующей сушкой и прокаливанием на воздухе.
Алкилирование ароматических углеводородов олефинами широко используется для производства алкилароматических соединений, которые служат прекурсорами детергентов, основных продуктов органического синтеза и в других областях. В большинстве случаев твердые сильнокислотные катализаторы кислоты, такие как Н-формы цеолитов, аморфные алюмосиликаты, AlCl3 и др. оказываются эффективными в процессе алкилирования.
Существует значительное количество публикаций и патентов, связанных с алкилированием бензола и других моноциклических ароматических углеводородов олефинами и спиртами. С другой стороны, существует лишь небольшое количество работ, посвященных алкилированию олефинами полициклических у/в, таких как бифенил, нафталин и др., с использованием кислотных катализаторов. Этот процесс не реализован в промышленном масштабе. В большинстве ссылок алкилирование бифенила пропиленом было выбрано в качестве тестовой реакции для оценки активности и селективности различных гетерогенных катализаторов кислотной природы (цеолиты, аморфные оксиды, глины и др.). Так, в работе [J. Aguilar, A. Corma, F.V. Melo, E.Sastre // Alkylation of biphenyl with propylene using acid catalysts // Catalysis Today, V. 55, Is. 3, 2000, P. 225-232] исследована взаимосвязь между структурой пор и каталитическими свойствами кислотных катализаторов в реакции алкилирования бифенила пропиленом. Показано, что активность катализаторов расположена в ряду: Y > Beta ≈ SSZ-26 > МСМ-22 > SSZ-25 > ZSM-5.
В работе [V.R. R. Pendyala, G.Jacobs, W.D. Shafer, R.A. Keogh, J. Kang, D. E. Sparks, В. H. Davis // Shape-selective alkylation of biphenyl with propylene using zeolite and amorphous silica-alumina catalysts // Applied Catalysis A: General 453 (2013) 195-203] в автоклаве с мешалкой изучали влияние структуры цеолита на алкилирование бифенила пропиленом на различных цеолитах, таких как HY, HZSM-5 и деалюминированный морденит (DMOR), а также на аморфный SiO2/Al2O3. Было обнаружено, что конверсия бифенила возрастает с временем реакции цеолитов HZSM-5 и DMOR и достигают предела через 4 часа, тогда как для HY и SiO2/Al2O3 это происходило в течение часа. DMOR показал наивысшую селективность для 4,4'-диизопропилбифенила при температуре 300°C (около 60%), тогда как для HY, HZSM-5 и SiO2/Al2O3 селективность была в диапазоне 10-35%.
В более ранней работе [T.Matsuda, E.Kikuchi // Selective Synthesis of 4,4'-Diisopropylbiphenyl Using Mordenite Catalysts // Studies in Surface Science and Catalysis, V.83, 1994, P. 295-302] сообщалось о взаимодействии пропилена с бифенилом, катализируемом глиноземами, кислотоочищенной глиной (монтмориллонит K-10), а также такими цеолитами, как USY, Н-морденит, SAPO-11 и ZSM-12. Микропористые глиноземы обеспечивали довольно высокие выходы мета- и пара-моноалкилароматики. Широкопористый Н-морденит наоборот более селективно (80%) образовывал 4,4'-диизопропилбифенил, при этом селективность уменьшалась с увеличением температуры реакции, что объясняли образование при повышенных температурах более термодинамически стабильных 3,3'- и 3,4'-диизопропилбифенилов. В инкапсулированных продуктах селективность по отношению к 4,4'-диизопропилбифенилу достигала 85-90% только при повышенных температурах (250-350°C). Эти различия авторы также объясняли различиями в структуре пор исследуемых цеолитов.
Т.о., традиционные цеолитные катализаторы алкилирования бициклических ароматических углеводородов имеют ряд недостатков. Так, почти все известные катализаторы работая при довольно высоких температурах (250-400°C) страдают от возникновения побочных реакций, таких как крекинг и диспропорционирование. Образование кокса является еще одной очень сложной проблемой. Наконец, поскольку рассматриваемые углеводороды имеют довольно высокие температуры плавления и могут быть сильно адсорбированы на поверхности гетерогенных катализаторов с сильными кислотными центрами, алкилирование бифенила и объемных ароматических у/в сталкивается с проблемой диффузионных ограничений. Например, в случае цеолитов HZSM-5 и Н-морденит, имеющих размер пор сравнимый с размером ароматического кольца (~ 6А).
В последнее время в реакции алкилирования ароматики широко исследуются суперкислотные катализаторы различной природы. Так, в патенте США №7,674,945 (опубл. 9.03.2010) для реакции алкилирования бензола пропиленом предложен катализатор 20%H3PW12O40/SiO2 на основе гетерополикислоты, нанесенной на селикагель Реакцию проводили в автоклаве при 75°C в течение 2,5 часов. Реакцию проводили при мольном избытке бензола (загрузка составляла 50 г бензола и 7.69 г пропилена). Конверсия пропилена составляла 100%, однако для активации катализатора и достижения такой конверсии в автоклав добавляют 110 ppm сильной кислоты (HF), что является несомненным недостатком способа.
В патенте США №9,611,188 (опубл. 4.04.2017) для реакции алкилирования толуола пропиленом и гексеном-1 предложен катализатор в виде фторированных Al2O3 и кремний покрытой Al2O3. Реакцию проводили при 80°C и постоянном давлении пропилена (0,275 МПа). Достигнута достаточно высокая конверсия толуола (около 60%). В жидких продуктах реакции содержалось около 32, 19 и 10% моно-, ди- и три-изопропилтолуолов, при этом олигомеров пропилена не наблюдали.
Однако, патентная информация об алкилировании полициклической ароматики на подобных катализаторах практически отсутствует, а в тоже время такие суперкислотные катализаторы являются потенциально привлекательными для алкилирования полициклической ароматики с образованием высокозамещенных продуктов из-за низких ограничений по диффузии объемных молекул.
Наиболее близким к настоящему изобретению является патент США №5,900,519 (опубл. 4.05.1999), в котором алкилирование бифенила пропиленом осуществляют с использованием микро и широкопористых цеолитов, типа деалюминированных морденитов, модифицированных щелочноземельными металлами. Реакцию проводят в автоклаве с перемешиванием при 250°C в течение 5 часов и содержании катализатора 5% масс., по отношению к 1,1-бифенилу. В ряде примеров были получены практически полные конверсии бифенила, однако недостатком способа являлась высокая температура и продолжительность реакции.
Техническим результатом настоящего изобретения является разработка катализаторов, которые при более низких температурах в течение короткого времени способны алкилировать бифенил и другие полициклические у/в олефинами C2-C6 с высокой конверсией и выходом алкилароматики, в т.ч полиалкилароматики, а также разработка эффективного способа алкилирования бифенила и других полициклических у/в, обеспечивающего селективное образование алкилароматики при минимизации вклада побочных реакций крекинга, изомеризации и диспропорционирования, приводящих к нежелательным продуктам, в т.ч. к коксообразованию.
Для достижения поставленного технического результата предложены катализаторы алкилирования бифенила олефинами С26, в которых в качестве носителя используют Al2O3 фторированный или SiO2, а в качестве модификатора используют гетерополикислоты H3PW12O41 или H4SiW12O41, при этом содержание гетерополикислот на поверхности носителя составляет 10-20% масс.
Предложен способ алкилирования бифенила олефинами С26, который осуществляют в автоклаве при контактировании указанных выше катализаторов со смесью бифенила и пропилена при температуре 120-140°C и перемешивании жидкой фазы при массовом соотношении бифенил / катализатор = 15 и постоянном давлении пропилена 0,3-0,7 МПа.
Предложен также способ алкилирования бифенила олефинами С26, который осуществляют в автоклаве при атмосферном давлении при контактировании указанных выше катализаторов со смесью бифенила и циклогексена при температуре 200°C и перемешивании жидкой фазы при массовом соотношении бифенил / катализатор = 15 и мольном отношении бифенил / олефин = 1:1.
В соответствии с настоящим изобретением недостатки известных катализаторов, в т.ч традиционных цеолитных, преодолевают с использованием нового типа твердых суперкислот - оксидных катализаторов на основе фторированного оксида алюминия (F-Al2O3) или SiO2 с кислотными добавками, нанесенными на их поверхность. В качестве кислотных добавок используют водорастворимые гетерополикислоты. Получение катализаторов согласно настоящему изобретению осуществляют путем модифицирования носителей кислотными добавками в ходе пропитки носителей с последующей сушкой и прокаливанием на воздухе.
Отличительной особенностью предлагаемого способа алкилирования бифенила олефинами является то, что в качестве алкилирующего агента вместо пропилена и циклогексена могут использоваться другие газообразные олефины, например, этилен и бутилены, а также жидкие олефины, типа пентенов и циклопентена. В качестве субстрата могут использоваться другие полициклические ароматические углеводороды, включая производные бифенила, нафталина, антрацена и т.д.
Изобретение иллюстрируется следующими примерами, не ограничивающими его объем:
Примеры 1-5. Приготовление катализаторов.
Перед нанесением на носители коммерческие формы гетерополикислот (ГПК) H3PW12O41 ⋅ xH2O и H4SiW12O40 ⋅ хН2О, производства фирмы "Acros Chemical", сушили в вакууме при 50°C в течение 4 часов для получения H3PW12O41 ⋅ 6Н2О и H4SiW12O40 ⋅ 6H2O.
Пример 1. Катализатор HPWO/SiO2 готовили путем пропитки фракции 0,5-1 мм SiO2, марки КСКГ с удельной поверхностью 260 м2/г, водным раствором H3PW12O41 ⋅ 6H2O с последующей сушкой при 90°C в течение 2-х часов и прокаливанием на воздухе при 350°C в течение 3-х часов.
Пример 2. Катализатор HPWO/F-Al2O3 готовили по аналогии с примером 1, за исключением того, что в качестве носителя использовали промышленный образец фторированного Al2O3 (3,5% F) с удельной поверхностью 210 м2/г.
Пример 3. Катализатор HSiWO/SiO2 готовили по аналогии с примером 1, за исключением того, что использовали водный раствор H4SiW12O40 ⋅ 6H2O.
Пример 4. Катализатор HSiWO/F-Al2O3 готовили по аналогии с примером 2, за исключением того, что использовали водный раствор H4SiW12O40 ⋅ 6Н2О.
Количество ГПК, нанесенных на поверхность носителей, составляло 20% масс. в примерах 1 и 3, и 10% масс. в примерах 2 и 4.
Пример 5 (сравнительный). Катализатор Н-морденит (НМ-25) с силикатным модулем SiO2/Al2O3=25 получали обработкой 300 г Na-морденита с силикатным модулем SiO2/Al2O3=19 тремя литрами 1М раствора HCl в течение 30 минут при комнатной температуре. Продукт промывали на фильтре 3-мя порциями воды объемом 2 литра и сушили при 150°C в течение ночи. Сухое твердое вещество перемешивают в 1,5 литра 6М HNO3 и нагревали с обратным холодильником в течение 2 часов. Продукт промывали на фильтре 2-мя порциями воды объемом 2 литра, сушили при температуре 150°C на воздухе в течение ночи и прокаливали на воздухе при 450°C в течение 2-х часов.
Примеры 6-7. Осуществление реакции.
Пример 6. Алкилирование бифенила пропиленом проводили в 300-мл автоклаве PARR-300. Бифенил (15 г) и катализатор (1 г) загружали в реактор и нагревали до 90°C. Затем автоклав продували пропиленом из баллона и с помощью редуктора поддерживали постоянное давление пропилена в автоклаве, равное 0,3 или 0,7 МПа. Жидкую фазу в автоклаве перемешивали с помощью U-образной лопастной мешалки при 400 об/мин. Далее в течение 10-15 минут повышали температуру до необходимой для проведения реакции и выдерживали в течение 2-16 часов.
Пример 7. Алкилирование бифенила циклогексеном проводили по аналогии с примером 6, за исключением того, что использовали атмосферное давление и температуру 200°C. Мольное отношение циклогексен: бифенил составляло 1:1. Реакцию осуществляли в течение 3-х часов.
После проведения реакции по примерам 6-7 автоклав охлаждали до комнатной температуры, разгружали его и анализировали жидкие продукты хроматографическим методом с использованием хроматографа модели "3700", производства НПО "Гранат", на капиллярной колонке SE-54 и пламенно ионизационным детектором.
Результаты испытаний катализаторов представлены в таблицах 1 и 2.
Figure 00000001
Figure 00000002
Из таблиц 1 и 2 видно, что во всех случаях использование предлагаемых в настоящем изобретении катализаторов приводит к значительному увеличению активности в алкилировании бифенила, по сравнению с традиционными цеолитными катализаторами. Так, в реакции алкилирования бифенила пропиленом все предлагаемые в настоящем изобретении катализаторы (примеры 1-4, табл. 1) обеспечивают более высокую конверсию бифенила при более низкой температуре 140°C и в течение более короткого времени (2 часа), по сравнению к модифицированными металлами II группы катализаторами на основе морденита, заявленными в изобретении прототипе. Это подтверждают также данные, полученные в сравнительном примере №5 для приготовленного нами цеолитного катализатора НМ-25 (табл. 1). Из сравнения результатов видно, что НМ-25 обеспечивает конверсию бифенила близкую к 100% при температуре 250°C при проведении реакции в течение 5 часов, в то время как заявляемые в настоящем изобретении катализаторы достигают этого показателя при температуре 120-140°C в течение 2-х часов. Кроме того, заявленные в настоящем изобретении катализаторы более глубоко проводят реакцию с образованием ди- и три-алкилбифенилов.
В случае алкилирования бифенила циклогексеном (более объемной молекулой, чем пропилен) использование предлагаемых катализаторов приводит главным образом к образованию моноалкилированных бифенилов, тогда как традиционный цеолитный катализатор НМ-25 практически неактивен в реакции (табл. 2).
Следует отметить, что предлагаемые катализаторы могут быть регенерированы промывкой подходящим растворителем, например петролейным эфиром или циклогексаном.
Т.о., технический результат, получаемый при реализации настоящего изобретения, состоит в создании более эффективных катализаторов, работающих в более мягких температурных условиях, и способа алкилирования бифенила и других полициклических у/в, обеспечивающего селективное образование алкилароматики, в т.ч и поли-алкилароматики, при отсутствии других продуктов побочных реакций крекинга, изомеризации и диспропорционирования, имеющих место при использовании пористых кислотных цеолитных катализаторов.
Изобретение соответствует критерию «новизна», так как в известной научно-технической и патентной литературе отсутствует полная совокупность существенных признаков, характеризующих предлагаемое изобретение, например, такого как использование суперкислотных катализаторов для алкилирования различной полициклической ароматики, в т.ч. бифенила.
Изобретение также соответствует критерию «изобретательский уровень», так как неочевидным было достижение высокой активности в алкилировании бифенила при атмосферном давлении такой объемной молекулой, как циклогексен с получением только моноалкилированной ароматики в виде циклогексилбифенилов.

Claims (3)

1. Катализатор алкилирования бифенила олефинами С26, содержащий носитель и модификатор, отличающийся тем, что в качестве носителя используют Al2O3 фторированный или SiO2, а в качестве модификатора используют гетерополикислоты H3PW12O41 или H4SiW12O41, при этом содержание гетерополикислот на поверхности носителя составляет 10-20% масс.
2. Способ алкилирования бифенила олефинами С26 с использованием катализатора по п. 1, который осуществляют в автоклаве при контактировании катализатора со смесью бифенила и пропилена при температуре 120-140°С и перемешивании жидкой фазы при массовом соотношении бифенил / катализатор, равном 15, и постоянном давлении пропилена 0,3-0,7 МПа.
3. Способ алкилирования бифенила олефинами С26 с использованием катализатора по п. 1, который осуществляют в автоклаве при атмосферном давлении при контактировании катализатора со смесью бифенила и циклогексена при температуре 200°С и перемешивании жидкой фазы при массовом соотношении бифенил / катализатор, равном 15, и мольном отношении бифенил / олефин 1:1.
RU2018120918A 2018-06-06 2018-06-06 Катализатор и способ алкилирования бифенила олефинами C2-C6 RU2668218C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018120918A RU2668218C1 (ru) 2018-06-06 2018-06-06 Катализатор и способ алкилирования бифенила олефинами C2-C6

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018120918A RU2668218C1 (ru) 2018-06-06 2018-06-06 Катализатор и способ алкилирования бифенила олефинами C2-C6

Publications (1)

Publication Number Publication Date
RU2668218C1 true RU2668218C1 (ru) 2018-09-27

Family

ID=63669098

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018120918A RU2668218C1 (ru) 2018-06-06 2018-06-06 Катализатор и способ алкилирования бифенила олефинами C2-C6

Country Status (1)

Country Link
RU (1) RU2668218C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368935A (zh) * 2022-08-25 2022-11-22 河南本色化工科技有限责任公司 一种多环芳烃类化合物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900519A (en) * 1991-08-21 1999-05-04 Solutia Inc. Catalytic process for the selective alkylation of polycyclic aromatic compounds
RU2165790C1 (ru) * 2000-03-13 2001-04-27 Институт катализа им. Г.К. Борескова СО РАН Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира
RU2179166C2 (ru) * 1996-02-08 2002-02-10 Хантсмэн Петрокемикал Корпорейшн Способ и устройство для алкилирования бензола
US9611188B1 (en) * 2016-02-17 2017-04-04 Chevron Phillips Chemical Company Lp Aromatic alkylation using chemically-treated solid oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900519A (en) * 1991-08-21 1999-05-04 Solutia Inc. Catalytic process for the selective alkylation of polycyclic aromatic compounds
RU2179166C2 (ru) * 1996-02-08 2002-02-10 Хантсмэн Петрокемикал Корпорейшн Способ и устройство для алкилирования бензола
RU2165790C1 (ru) * 2000-03-13 2001-04-27 Институт катализа им. Г.К. Борескова СО РАН Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира
US9611188B1 (en) * 2016-02-17 2017-04-04 Chevron Phillips Chemical Company Lp Aromatic alkylation using chemically-treated solid oxides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368935A (zh) * 2022-08-25 2022-11-22 河南本色化工科技有限责任公司 一种多环芳烃类化合物的制备方法

Similar Documents

Publication Publication Date Title
TWI268917B (en) Process for producing cumene
KR101186912B1 (ko) 나노결정 제올라이트 와이 촉매를 이용한 탄화수소 알킬화 방법
Yadav et al. Sulfated zirconia and its modified versions as promising catalysts for industrial processes
US7420098B2 (en) Dual zone aromatic alkylation process
CN102387861B (zh) 对芳烃烷基化有用的催化剂
US4870222A (en) Alkylation/transalkylation process
CA2385328C (en) Aromatics alkylation
JP6021905B2 (ja) C1〜c8アルコールを用いた芳香族炭化水素のアルキル化のための方法
MX2007006532A (es) Proceso para la alquilacion de benceno y transalquilacion de aromaticos polialquilados sobre catalizadores de zeolita beta mejorados.
KR20080024225A (ko) Uzm-8 제올라이트를 사용한 알킬화 방법
KR101731165B1 (ko) 에탄올 탈수 촉매 및 이를 이용한 에틸렌 제조방법
Narayanan et al. Vapour phase aniline alkylation activity and selectivity over H-ZSM-5
RU2668218C1 (ru) Катализатор и способ алкилирования бифенила олефинами C2-C6
CA1173865A (en) Process
CA2265099C (en) Process for the preparation of monoalkylated aromatic compounds
US20150218063A1 (en) Process for dimerization of olefins
JP4774813B2 (ja) プロピレンの製造方法
JP3061897B2 (ja) 合成結晶アルミノケイ酸塩および石油化学プロセスで炭化水素を触媒反応させる方法
RU2779556C1 (ru) Способ получения изопропилбензола трансалкилированием диизопропилбензолов с бензолом
RU2818090C2 (ru) Способ обработки полиалкилароматических углеводородов
US11840494B2 (en) Process for treating polyalkylaromatic hydrocarbons
Levesque et al. Alkylation of benzene using an aqueous solution of ethanol
US20050187417A1 (en) Process for the production of phenylalkanes using a hydrocarbon fraction that is obtained from the Fischer-Tropsch process
RU2119473C1 (ru) Способ очистки этиленсодержащего газа от олефинов c3 и выше
WO2008014904A1 (en) Alkylation of aromatic compounds using zeolite itq-33