RU2667913C1 - Противотурбулентная присадка - Google Patents

Противотурбулентная присадка Download PDF

Info

Publication number
RU2667913C1
RU2667913C1 RU2017124535A RU2017124535A RU2667913C1 RU 2667913 C1 RU2667913 C1 RU 2667913C1 RU 2017124535 A RU2017124535 A RU 2017124535A RU 2017124535 A RU2017124535 A RU 2017124535A RU 2667913 C1 RU2667913 C1 RU 2667913C1
Authority
RU
Russia
Prior art keywords
additive
inhibitor
turbulent
polymer
polydecene
Prior art date
Application number
RU2017124535A
Other languages
English (en)
Inventor
Андрей Степанович Алябьев
Евгений Федорович Дехтярь
Олег Павлович Кабанов
Геннадий Витальевич Осипов
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Уренгой" filed Critical Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority to RU2017124535A priority Critical patent/RU2667913C1/ru
Application granted granted Critical
Publication of RU2667913C1 publication Critical patent/RU2667913C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/24Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having ten or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)

Abstract

Изобретение относится к противотурбулентной присадке для углеводородных жидкостей и может быть использовано в трубопроводном транспорте нефти, нефтепродуктов и газового конденсата. Присадка содержит полидецен-1 в качестве полимера высших α-олефинов, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции и стеарат кальция в качестве ингибитора термической деструкции. Присадка по изобретению обладает высокими эксплуатационными характеристиками, увеличивает пропускную способность трубопроводов, а также обеспечивает снижение энергетических затрат, возникающих при транспортировке углеводородных жидкостей. 1 з.п. ф-лы, 2 табл., 2 ил., 4 пр.

Description

Изобретение относится к противотурбулентным присадкам для углеводородных жидкостей и может быть использовано при транспортировке в трубопроводном транспорте нефти, нефтепродуктов и газового конденсата с целью увеличения пропускной способности трубопроводов.
Известна противотурбулентная присадка FLO МХА (ТУ 2548-002-17642043-2010), состоящая из суспензии полимера со сверхмолекулярным весом, диспергированным в алкиловом спирте.
Недостатками данной присадки является высокая стоимость, необходимость дополнительного перемешивания присадки перед применением.
Известен состав для уменьшения гидравлического сопротивления, содержащий полимер, например поли-α-олефин, в количестве 1-60% и натуральный жир или масло в количестве 40-99%. Состав предпочтительно содержит также диспергирующе-стабилизирующий агент, например мыло жирной кислоты, в количестве 0,1-50% от общего веса (EA 5628, МПК C08L 23/18, опубликовано 28.04.2005 г.).
Недостатком данной присадки является высокая стоимость состава и низкая стабильность, связанная со склонностью натуральных масел к окислительным процессам при контакте с кислородом воздуха.
Известна жидкая присадка к углеводородной жидкости, содержащая высокомолекулярный полиизобутилен, имеющий молекулярную массу (3,7-4,9)⋅106 а.е.м. (патент РФ №2343187, опубликован 10.01.2009 г.).
К недостаткам изобретения можно отнести низкую растворимость присадки в углеводородной жидкости и высокую длительность ее приготовления, поскольку при получении присадки используют полиизобутилен со сверхвысокой молекулярной массой, кроме того, известная присадка имеет недостаточную продолжительность действия.
Известна противотурбулентная присадка (патент РФ №2277103, опубликован 27.05.2006 г.), получаемая полимеризацией высших α-олефинов в растворе углеводорода, и представляющая собой вязкий раствор. Противотурбулентные присадки на основе высокомолекулярных полимеров α-олефинов, растворимых в углеводородных жидкостях, вследствие возможности получения относительно недорогих сверхвысокомолекулярных, а значит, эффективных в качестве противотурбулентных присадок, полимеров получили широкое распространение. Полиальфаолефины, получаемые из альфаолефиновых мономеров, как правило, включают в себя мономеры от С4 до С16. Установлено, что именно такой состав альфаолефиновых мономеров позволяет получить полимеры, характеризующиеся наивысшим качеством и наибольшей эффективностью.
К недостаткам данного изобретения следует отнести следующее. Сверхвысокомолекулярный полимер получается лишь на начальной стадии полимеризации, и ее приходится прерывать при 20%-ной конверсии мономера, так как дальнейшая полимеризация приводит к образованию балластного полимера, не активного в снижении сопротивления (Г.В. Несын, Ю.В. Сулейманова, Н.М. Полякова, Г.П. Филатов. Антитурбулентная присадка суспензионного типа на основе полимеров высших альфаолефинов. Известия Томского политехнического университета. 2006. т. 309. №3).
Известна противотурбулентная присадка суспензионного типа (Известия Томского политехнического университета. 2006. Т. 309. №3. с. 112-115; Г.В. Несын, Ю.В. Сулейманова и др. Антитурбулентная присадка суспензионного типа на основе высших α-олефинов), приготовление которой включает полимеризацию высших α-олефинов в массе, затем полученный полимер измельчают при криогенных температурах и готовят суспензию измельченного полимера в водной или неводной среде. Однако при криогенном измельчении идет процесс деструкции полимера, что снижает его молекулярную массу и его эффективность как антитурбулентной присадки.
Известна противотурбулентная присадка (патент РФ №2579583, МПК C08F 10/14, опубликовано 10.04.2016 г.), содержащая полиолефин (смесь полиолефинов) и дисперсионную среду в соотношении, равном 1:10÷1:2. В качестве дисперсионной среды используются триглицериды жирных кислот, обладающие низкой стабильностью в связи со склонностью к окислительным процессам при контакте с кислородом воздуха.
Наиболее близким аналогом является противотурбулентная присадка (патент РФ №2505551, опубликован 27.01.2014 г.), для которой приготавливают суспензию смешением высшего поли-α-олефина со средой присадки и антиагломератом. В качестве полимера берут полимер, полученный с использованием осадителя в виде вещества с температурой кипения выше температуры кипения исходного мономера не менее чем на 73°C, а компоненты суспензии противотурбулентной присадки берут в следующем количественном соотношении, мас. %:
Полимер 25,0-55,0
Среда полимера 39,5-72,5
ПАВ 2,5-5,5
Недостатком данного изобретения является возможность большого разброса молекулярных масс макромолекул полимера в процессе его изготовления, что сказывается на нестабильности показателей присадки по сравнению с использованием промышленно производимых полимеров.
Задачей изобретения является разработка состава противотурбулентной присадки с высокими эксплуатационными характеристиками для снижения затрат на транспортировку углеводородных жидкостей.
Технический результат заключается в увеличении пропускной способности трубопроводов, снижении перепада давления и энергетических затрат, возникающих при транспортировке углеводородных жидкостей.
Технический результат достигается противотурбулентной присадкой для углеводородных жидкостей, содержащей полимер высших α-олефинов Полидецен-1, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции, стеарат кальция в качестве ингибитора термической деструкции, при следующем соотношении компонентов, % масс.:
Полидецен-1 30-40
BNX 1076 0,05-0,1
Стеарат кальция 1,0-1,5
Метиловый эфир пропиленгликоля до 100
Технический результат достигается противотурбулентной присадкой, содержащей полимер высших α-олефинов Полидецен-1, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции, стеарат кальция в качестве ингибитора термической деструкции, синтерол АМФ-12 в качестве ингибитора асфальто-смолистых парафиновых отложений, при следующем соотношении компонентов, % масс.:
Полидецен-1 28,3-36,36
BNX 1076 0,05-0,09
Стеарат кальция 1,00-1,36
Синтерол АМФ-12 6-10
Метиловый эфир пропиленгликоля до 100
На фиг. 1 представлена зависимость относительного перепада давления на участке трубопровода опытной установки при перекачке газового конденсата от дозировки противотурбулентной присадки.
На фиг. 2 представлена зависимость относительного снижения потребляемой электроэнергии на участке трубопровода опытной установки при перекачке газового конденсата от дозировки противотурбулентной присадки.
На иллюстрациях обозначены следующие элементы:
1 - присадка без ингибитора АСПО;
2 - присадка с добавлением ингибитора АСПО.
Состав противотурбулентных присадок представлен в табл. 1 и табл. 2, величины снижения перепада давления на участке трубопровода опытной установки в табл. 3.
На движение жидкости по трубопроводу оказывают влияние такие факторы, как скорость движения, диаметр, материал трубопровода, степень шероховатости его поверхности, плотность и вязкость жидкостей. При этом режим движения жидкости, с учетом влияния перечисленных факторов, характеризуется безразмерным параметром - числом Рейнольдса (Re). С увеличением Re эффективность присадок возрастает, и при достаточно больших значениях (турбулентный режим) наблюдается режим максимального снижения сопротивления, когда эффект перестает зависеть от типа полимера присадки, размера трубы и Re. Максимальное снижение сопротивления трения в технически гладких трубах определяется только концентрацией раствора используемого полимера и не зависит от диаметра трубы (Новоселов В.Ф., Муфтахов Е.М. «Технологический расчет нефтепроводов», Уфа: Изд-во УГНТУ, 1996 г. - 43 с., Бударин В.А. «Метод расчета движения жидкости», Одесса: «Астропринт», 2006 г. - 138 с.).
С увеличением вязкости система не переходит из ламинарного в турбулентный режим, поэтому присадки для снижения сопротивления можно применять для углеводородных жидкостей, имеющих кинематическую вязкость не более 15÷20⋅10-6 м2/с.
С увеличением температуры жидкости уменьшается вязкость жидкости и увеличивается эффективность присадок, т.к. повышается их растворимость при введении в поток жидкости. Однако увеличение температуры выше 60-70°C иногда приводит к снижению эффективности присадок, что объясняется снижением растворимости и выпадением из раствора полимеров, имеющих верхнюю критическую температуру смешения.
Заданная величина эффекта снижения гидродинамического сопротивления определяется на основе технико-экономического расчета с учетом типа присадки, гидромеханических параметров, существующих затрат и т.д. После определения оптимальной величины снижения сопротивления с учетом молекулярных характеристик присадок определяется концентрация присадки в углеводородных жидкостях, которая обычно лежит в пределах 50-100 г/т («Композиционные составы для снижения гидравлического сопротивления в системах трубопроводного сбора и транспорта продукции нефтяных скважин», диссертация кандидата технических наук: 02.00.13/ Хуснуллин Руслан Ринатович, Казань, 2015 г. - 149 c.).
С увеличением молекулярной массы полимера при прочих равных условиях эффект снижения сопротивления растет, что связано с увеличением линейного размера молекул с ростом молекулярной массы. Характерным свойством высокомолекулярных полимеров является деструкция (разрушение макромолекул), которая приводит к резкому снижению или полному прекращению их влияния на гидравлическое сопротивление. Деструкция полимеров, как правило, происходит при механическом давяще-трущем воздействии. С увеличением концентрации присадок влияние деструкции на гидродинамическое сопротивление снижается, с ростом температуры раствора - повышается.
Предложенный состав противотурбулентной присадки включает полимер высших α-олефинов - Полидецен-1, который обладает высокой детурбулизирующей способностью, и в сочетании с указанными компонентами обеспечивает высокие эксплуатационные характеристики присадки. Соотношение компонентов определяется необходимой эффективностью присадки, а также требованиями технологичности изготовления, условиями хранения и эксплуатации. В частности, концентрация Полидецена -1 менее 30% приводит к увеличению удельного расхода присадки для достижения необходимой эффективности, концентрация более 40% приводит к повышению вязкости, что вызывает сложности при изготовлении, дозировании и хранении реагентов при низкой температуре окружающей среды. Ингибитор окислительной деструкции - BNX 1076 представляет собой пространственно-затрудненные фенолы. Его содержание менее 0,05% не обеспечивает достаточной эффективности, а более 0,1% использовать нецелесообразно. Аналогично, ингибитор термической деструкции - стеарат кальция, при содержании менее 1% не обеспечивает достаточной эффективности, более 1,5 % использовать нецелесообразно. Метиловый эфир пропиленгликоля - это растворитель, его процентное содержание в составе присадки определяется по остаточному принципу и, в общем, обусловлено предельным значением вязкости и устойчивости суспензии при низких температурах.
Допускается добавка к присадке ингибитора асфальто-смолистых парафиновых отложений (АСПО) на трубах, например синтерола АМФ-12 (оксиэтилированный неонол), который представляет собой натриевую (калиевую) соль карбоксиметилата оксиэтилированного изононилфенола - имеет структурную формулу: C9H19-C6H4-O(-CH2-CH2O)9-CH2-COO-Na. Получают реакцией конденсации оксиэтилированных алкилфенолов, в качестве которых используют соединения марок "неонол" с монохлорацетатом натрия. Синтерол АФМ-12 марки А выпускают по ТУ 2481-007-14331137-2009.
При содержании в количестве менее 5% добавка не проявляет достаточной ингибирующей эффективности, в количестве более 10% использовать нежелательно, т.к. при этом снижается содержание активных компонентов самой противотурбулентной присадки.
Оценка эффективности действия противотурбулентных присадок в композиции с ингибитором АСПО и без него в газовом конденсате Ачимовских отложений Уренгойского НГКМ проводилась на лабораторной установке ООО «НТЦ Салаватнефтеоргсинтез» путем количественного определения:
1) относительного перепада давления на участке трубопровода при перекачке нефти/газового конденсата без и с использованием присадки;
2) относительного изменения потребляемой электроэнергии электроприводом насоса для перекачки 1 м3 нефти/газового конденсата (кВт⋅ч/м3) без и с использованием присадки.
Относительное снижение перепада давления рассчитывается по формуле
Figure 00000001
где
Figure 00000002
- перепад давления в трубопроводе при перекачке продукта в отсутствии присадки, МПа;
Figure 00000003
- перепад давления в трубопроводе при перекачке продукта в присутствии присадки, МПа.
Относительное снижение потребляемой энергии электродвигателем насоса для перекачки нефти/газового конденсата рассчитывается по формуле (2): DRe(%)=(Е0θ)⋅100/Е0,
где E0 - потребляемая энергия для перекачки жидкости объемом 1 м3 в отсутствии присадки, кВт⋅ч/м3;
Еθ - потребляемая энергия для перекачки жидкости объемом 1 м3 в присутствии присадки, кВт⋅ч/м3.
Требуемая скорость потока жидкости была предварительно рассчитана при помощи системы точного моделирования технологических процессов Aspen HYSYS.
Эффективность предлагаемой противотурбулентной присадки без добавления ингибитора АСПО (пример 1) и с добавлением (пример 2) подтверждена испытаниями на лабораторной установке, результаты представлены в таблице 1.
Figure 00000004
Результаты испытаний показали, что после ввода присадки в газовый конденсат как с добавлением ингибитора АСПО, так и без него происходит снижение перепада давления до (20,3-20,5) % и энергозатрат до (13,6-13,8) %. Снижение данных показателей указывает на повышение пропускной способности трубопровода после введения в поток присадки.
На иллюстрациях представлены зависимости относительного перепада давления (фиг. 1) и относительного снижения потребляемой электроэнергии (фиг. 2) от дозировки опытных образцов противотурбулентных присадок.
Эффективность ингибирования АСПО проводилась над используемым ингибитором АСПО и его смесью с противотурбулентной присадкой методом «холодного стержня» («cold finger test»). Суть эксперимента заключалась в следующем: в газовый конденсат добавляли ингибиторы парафиноотложений в дозировке 1000 г/т, охлаждали до температуры 10°C, затем на 30 секунд вносили предварительно взвешенные на аналитических весах металлические пластинки, охлажденные до 0°C. Пластинки вынимали, давали стечь конденсату и взвешивали. Аналогичный опыт проделывали с газовым конденсатом, не содержащим ингибитор парафиноотложений (холостой опыт), и с ингибитором, смешанным с противотурбулентной присадкой.
Эффективность действия ингибитора (Э,%) рассчитывали по формуле (3):Э(%)=(m1-m2)⋅100/m1,
где m1 - масса парафина, отложившегося на пластинке, погруженной в холостую пробу, г;
m2 - масса парафина, отложившегося на пластинке, погруженной в пробу с ингибитором, г.
Полученные данные представлены в таблице 2.
Пример 1 соответствует опыту с использованием противотурбулентной присадки (ПТП) без ингибитора АСПО, пример 2-е использованием смеси противотурбулентной присадки и ингибитора АСПО.
Figure 00000005
Из полученных данных следует, что действие ингибитора наиболее эффективно при дозировке присадки (300-500) г/т.
Готовят присадку следующим образом.
Полидецен-1 в виде полимерных гранул смешивают растворителем - метиловым эфиром пропиленгликоля. Смесь нагревают до температуры 70°C, затем добавляют ингибитор окислительной деструкции - BNX 1076 и ингибитор термической деструкции - стеарат кальция. При этом используют следующее соотношение компонентов, % масс.: Полидецен-1 - 30-40; BNX 1076 - 0,05-0,1; стеарат кальция - 1,0-1,5; метиловый эфир пропиленгликоля - до 100. Далее осуществляют постепенное охлаждение и слабое перемешивание до снижения температуры до 25°C. При этом образуется маловязкая суспензия полимера - противотурбулентной присадки.
Пример 1. Полидецен-1 в количестве 30 г смешали с 68,95 г метилового эфира пропиленгликоля, смесь нагрели до температуры 70°C, затем добавили ингибиторы окислительной и термической деструкции - BNX 1076 и стеарат кальция, соответственно 50 мг и 1 г. Далее, используя поэтапное охлаждение и слабое перемешивание, снизили температуру до 25°C, при этом образовалась маловязкая суспензия полимера.
Пример 2. При указанной в примере 1 последовательности действий используют следующие количества компонентов: Полидецен-1 - 35 г; метиловый эфир пропиленгликоля 63,73 г, BNX 1076 - 70 мг, стеарат кальция - 1,2 г. Получают присадку в виде маловязкой суспензии полимера.
Пример 3. При указанной в примере последовательности действий используют следующие количества компонентов: Полидецен-1 - 40 г; метиловый эфир пропиленгликоля 58,4 г, BNX 1076 - 100 мг, стеарат кальция - 1,5 г. Получают присадку в виде маловязкой суспензии полимера.
Пример 4. Готовят присадку по примеру 1, отмеряют 92 г полученной суспензии и добавляют в нее 8 г ингибитора АСПО - синтерола АМФ-12. После перемешивания получают готовый продукт.
Таким образом, предложенное изобретение позволяет при невысоких затратах и достаточно простой технологии получить противотурбулентную присадку с высокими эксплуатационными характеристиками.

Claims (4)

1. Противотурбулентная присадка для углеводородных жидкостей, содержащая полимер высших α-олефинов Полидецен-1, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции, стеарат кальция в качестве ингибитора термической деструкции, при следующем соотношении компонентов, % масс.:
Полидецен-1 30-40 BNX 1076 0,05-0,1 Стеарат кальция 1,0-1,5 Метиловый эфир пропиленгликоля до 100
2. Противотурбулентная присадка по п. 1, отличающаяся тем, что дополнительно содержит синтерол АМФ-12 в качестве ингибитора асфальто-смолистых парафиновых отложений, при соотношении компонентов, % масс.:
Полидецен-1 28,3-36,36 BNX 1076 0,05-0,09 Стеарат кальция 1,00-1,36 Синтерол АМФ-12 6-10 Метиловый эфир пропиленгликоля до 100
RU2017124535A 2017-07-10 2017-07-10 Противотурбулентная присадка RU2667913C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017124535A RU2667913C1 (ru) 2017-07-10 2017-07-10 Противотурбулентная присадка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017124535A RU2667913C1 (ru) 2017-07-10 2017-07-10 Противотурбулентная присадка

Publications (1)

Publication Number Publication Date
RU2667913C1 true RU2667913C1 (ru) 2018-09-25

Family

ID=63669014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017124535A RU2667913C1 (ru) 2017-07-10 2017-07-10 Противотурбулентная присадка

Country Status (1)

Country Link
RU (1) RU2667913C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2277103C2 (ru) * 2001-01-16 2006-05-27 Энерджи Энд Энвиронментал Интернэшнл, Л.К. Способ получения аморфных полиолефинов со сверхвысоким молекулярным весом, предназначенных для использования в качестве агентов, снижающих сопротивление течению
US7256224B2 (en) * 2005-09-21 2007-08-14 Baker Hughes Incorporated Stabilized polymer drag reducing agent slurries
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
RU2505551C2 (ru) * 2012-01-23 2014-01-27 Миррико Холдинг Лимитед СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ С РЕЦИКЛОМ МОНОМЕРОВ, СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ, СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ ПОЛИ-α-ОЛЕФИНОВ ДЛЯ ЭТИХ СПОСОБОВ И ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА НА ИХ ОСНОВЕ
RU2612834C1 (ru) * 2015-11-24 2017-03-13 Общество с ограниченной ответственностью "КЕМТЕК" Неводная суспензия агента снижения гидродинамического сопротивления течению углеводородных жидкостей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2277103C2 (ru) * 2001-01-16 2006-05-27 Энерджи Энд Энвиронментал Интернэшнл, Л.К. Способ получения аморфных полиолефинов со сверхвысоким молекулярным весом, предназначенных для использования в качестве агентов, снижающих сопротивление течению
US7256224B2 (en) * 2005-09-21 2007-08-14 Baker Hughes Incorporated Stabilized polymer drag reducing agent slurries
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
RU2505551C2 (ru) * 2012-01-23 2014-01-27 Миррико Холдинг Лимитед СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ С РЕЦИКЛОМ МОНОМЕРОВ, СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ, СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ ПОЛИ-α-ОЛЕФИНОВ ДЛЯ ЭТИХ СПОСОБОВ И ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА НА ИХ ОСНОВЕ
RU2612834C1 (ru) * 2015-11-24 2017-03-13 Общество с ограниченной ответственностью "КЕМТЕК" Неводная суспензия агента снижения гидродинамического сопротивления течению углеводородных жидкостей

Similar Documents

Publication Publication Date Title
RU2376452C2 (ru) Ингибиторы образования отложений парафина
AU2018250400B2 (en) Method of controlling gas hydrates in fluid systems
RU2751622C2 (ru) Композиции на основе ингибиторов и депрессоров парафиноотложения и способы
US8450250B2 (en) Drag reduction of asphaltenic crude oils
Popoola et al. Triethanolamine (TEA) as flow improver for heavy crude oils
CA2732289C (en) Drag reducing copolymers for cold fluid applications
US5039432A (en) Copolymers of (meth) acrylic acid esters as flow improvers in oils
EA014587B1 (ru) Дистанционная доставка латексного антифрикционного агента
JPH10237135A (ja) 組成連続変動コポリマーを製造する方法
US20230375143A1 (en) Drag reduction of asphaltenic crude oils
RU2752630C2 (ru) Композиции парафинового супрессанта и способы
CN107236531A (zh) 页岩气压裂用环保型滑溜水降阻剂及其制备方法
US11326085B2 (en) Friction reducers
RU2667913C1 (ru) Противотурбулентная присадка
EA035204B1 (ru) Полимерные композиции, облегчающие работу с ними
CA2714384A1 (en) Core-shell flow improver
WO2005021690A1 (en) Drag reducing agentgs for multiphase flow
US3840352A (en) Method and composition for treating high pour point oils under low ambient temperature conditions
US20200181513A1 (en) Wax Inhibitor Compositions in Winterized Conditions for Petroleum Fluids
RU2771022C2 (ru) Хладостойкие присадки, понижающие температуру застывания
JP2015172186A (ja) 脂肪酸組成物および燃料油組成物
US11692119B2 (en) Low glass transition temperature polymer latex drag reducing agent
US9416331B2 (en) Drag reducing compositions and methods of manufacture and use
EP3947478A1 (en) Self-inverting polymer emulsions
RU2412233C1 (ru) Депрессорная присадка комплексного действия и способ транспортирования парафинистосмолистых и малообводненных нефтей с ее использованием