RU2665855C1 - Электролит для осаждения покрытия из сплава медь-индий - Google Patents

Электролит для осаждения покрытия из сплава медь-индий Download PDF

Info

Publication number
RU2665855C1
RU2665855C1 RU2017121681A RU2017121681A RU2665855C1 RU 2665855 C1 RU2665855 C1 RU 2665855C1 RU 2017121681 A RU2017121681 A RU 2017121681A RU 2017121681 A RU2017121681 A RU 2017121681A RU 2665855 C1 RU2665855 C1 RU 2665855C1
Authority
RU
Russia
Prior art keywords
electrolyte
copper
indium
ammonium acetate
acid
Prior art date
Application number
RU2017121681A
Other languages
English (en)
Inventor
Мария Сергеевна Матюшенко
Виктор Михайлович Никольский
Татьяна Васильевна Сапрунова
Евгения Сергеевна Логинова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет"
Priority to RU2017121681A priority Critical patent/RU2665855C1/ru
Application granted granted Critical
Publication of RU2665855C1 publication Critical patent/RU2665855C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Изобретение относится к области гальваностегии, в частности к электролитическому осаждению сплава медь-индий, и может быть использовано в приборостроении и при дополнительной антикоррозионной защите углеродистых сталей крупногабаритных узлов, днталей, труб и других сооружений. Электролит содержит сернокислую медь, уксуснокислый аммоний и воду, при этом он дополнительно содержит гексаметилендиаминдиянтарную кислоту при следующем соотношении компонентов, г/л: сернокислая медь 20 – 30; сернокислый индий 10 – 20; уксуснокислый аммоний 20 – 30; гексаметилендиаминдиянтарная кислота 40 – 50. Использование предложенного электролита обеспечивает антикоррозионную стойкость покрытия и повышает экологическую безопасность электролита и процесса. 3 пр.

Description

Изобретение относится к области гальваностегии, в частности к электролитическому осаждению сплава медь-индий и может быть использовано в приборостроении и при дополнительной антикоррозионной защите углеродистых сталей крупногабаритных узлов, деталей, труб и других сооружений.
Известен электролит для осаждения сплава медь-индий, содержащий, сульфаты меди и индия, аммония и битартрат натрия [Марченко Н.А., Терехова Л.С., Райбер З.С. В сб. «Электролитическое осаждение сплавов», ч. 2, Л., 1968, с. 50-57].
Недостатком указанного электролита является невысокая рассеивающая способность электролита и образование темных порошкообразных осадков с низкой коррозионной стойкостью (8,7-10,2 г/м2/ч).
Известен электролит для осаждения сплава медь-индий (RU 2134734 С1, 20.08.1999), в состав которого входят сернокислая медь, сернокислый индий, уксуснокислый аммоний, трилон Б (динатриевая соль этилендиаминтетрауксусной кислоты).,
К недостаткам этого электролита относится загрязняющий окружающую среду комплексон III (динатриевая соль этилендиаминтетрауксусной кислоты, ЭДТА), т.к. ЭДТА практически не поддается разложению в живой природе [S. Metsarinae, T. Tuhkanen, R. Aksela. Photodegradanion of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range // Chemosphere. 45 (2001). P. 949-955; V.M. Nikolskiy, L.N. Toikacheva, A.A. Yakovlev, Y.M. Khalyapina, Т.I. Smirnova. Decrease in Environmental Pollution by Complexones as Factor of Biodiversity Preservation // European Researcher, 2013, vol. (63), №11-2, p. 2675-2680] и накапливается в мировом океане, вызывая растворение отложений токсичных металлов с переходом их в раствор в виде стабильных и часто липидорастворимых комплексонатов, что приводит к отравлению планктона, рыб, птиц и высших животных.
Наиболее близким к заявляемому изобретению по технической сущности и достигаемому эффекту (прототипом) является щавелевокислый электролит [RU 2613838 С1, опубл. 21.03.2017], содержащий экологически безопасный диаминный комплексон - этилендиаминдиянтарную кислоту (ЭДДЯК), который, в условиях сбросов после использования электролита, быстро разлагается [S. Metsarinae, Т. Tuhkanen, R. Aksela. Photodegradanion of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range // Chemosphere. 45 (2001). P. 949-955; V.M. Nikolskiy, L.N. Tolkacheva, A.A. Yakovlev, Y.M. Khalyapina, T.I. Smirnova. Decrease in Environmental Pollution by Complexones as Factor of Biodiversity Preservation // European Researcher, 2013, Vol. (63), №11-2, P. 2675-2680].
Недостатком прототипа является наличие в составе ЭДДЯК значительного количества азота (9,59%), который при разложении этого комплексона может попадать в сточные воды и негативно воздействовать на окружающую среду [Hyvonen Н., Orama М., Saarine Н., Aksela R. Studies on biodegradable chelating ligands: complexation of iminodisuccinic acid (ISA) with Cu(II), Zn(II), Mn(II) and Fe(III) ions in aqueous solution // Green Chemistry. 2003, №5, P. 410-414].
Задачей изобретения является разработка электролита для осаждения покрытия из сплава медь-индий, позволяющего снизить негативное воздействие вредных химических соединений (например, азота) в области гальваностегии на природную среду.
Данная задача решается за счет того, что Электролит для осаждения покрытия из сплава медь-индий, содержащий сернокислую медь, сернокислый индий уксуснокислый аммоний и воду, дополнительно содержит гексаметилендиаминдиянтарную кислоту, при следующем соотношении компонентов, г/л:
- сернокислая медь 20-30;
- сернокислый индий 10-20;
- уксуснокислый аммоний 20-30;
- гексаметилендиаминдиянтарная кислота 40-50
Технический результат заключается в обеспечении коррозионной стойкости получаемых покрытий и повышении экологической безопасности электролита и процесса.
Технический результат при электроосаждении сплава медь-индий достигается благодаря замене в рецептура электролита диаминного комплексона ЭДДЯК на ГМДДЯК. Применяемый в заявляемой рецептуре экологически безопасный диаминный комплексен ГМДДЯК содержит в своем составе 8,05% азота [RU 2527271 С1, опубл. 27.08.2014], что существенно ниже, чем у аналога, описанного в указанном выше патенте на способ синтеза ГМДДЯК, диэтилентриаминтриянтарной кислоты (9,31%) и у ЭДДЯК (9,59%) в рецептуре щавелевокислого электролита [RU 2613838 С1, опубл. 21.03.2017 - прототип].
Гексаметилендиаминдиянтарная кислота в водном растворе предлагаемого электролита обеспечивает образование координационных соединений, где в качестве ионов-комплексообразователей выступают медь и индий, а лигандом является экологически безопасная ГМДДЯК. Присутствие ГМДДЯК препятствует гидролизу солей и обеспечивает стабильность электролита. Процесс осаждения проводят при кислотности электролита рН=4,8-5,2, т.к. это оптимальное значение рН раствора, при котором практически существует только H2L- форма ГМДДЯК, образующая нейтральные комплексы с медью (например, см. рис. 3 распределения комплекных форм ГМДДЯК в зависимости от рН раствора [Логинова Е.С., Никольский В.М., Толкачева Л.Н., Лукьянова Н.И. Синтез и некоторые свойства комплексонов, производных янтарной кислоты // Известия Академии наук. Серия химическая, 2016, №9, С. 2206-2210]. Электролиз осуществляется при катодной плотности тока 1,0-3,0 А/дм2, температуре 20-25°С и непрерывном перемешивании с использованием медных анодов. Электролит готовят следующим образом: комплексообразователь - гексаметилендиаминдиянтарную кислоту растворяют при 80-90°С в 1/4 необходимого для приготовления электролита объема водопроводной воды. В отдельных порциях по 1/4 общего объема воды растворяют соли меди и индия. Затем, половину объема горячего раствора ГМДДЯК при непрерывном перемешивании вливают в полученный раствор соли меди, а другую половину объема горячего раствора ГМДДЯК вливают в полученный раствор соли индия. Смеси растворов оставляют на 10-15 минут для полноты комплексообразования, а затем медленно (при перемешивании) к раствору комплексоната индия добавляют раствор комплексоната меди. К полученной смеси добавляют уксуснокислый аммоний и доводят объем электролита до рабочего водой.
Дополнительное введение уксуснокислого аммония способствует увеличению электропроводности раствора и его буферных свойств, а также улучшает равномерность распределения осаждаемых металлов на катоде за счет образования комплексов с ГМДДЯК.
Возможность осуществления заявляемого изобретения подтверждается следующими примерами.
Пример 1. В 1000 мл воды растворяют 20 г сульфата меди, 10 г сульфата индия, 40 г гексаметилендиаминдиянтарной кислоты, 20 г уксуснокислого аммония. Полученным составом при перемешивании проводят электролиз на платиновых анодах при плотности тока 1,0 а/дм2, температуре 20°С, рН=5,0. В результате чего достигаются следующие эффекты: содержание индия в сплаве 5,9 вес %, выход по току 68%, скорость коррозии 6,5 г/м2⋅ч, электролитическое покрытие светлое, плотное, мелкокристаллическое.
Пример 2. В 1000 мл воды растворяют 25 г сульфата меди, 15 г сульфата индия, 45 г гексаметилендиаминдиянтарной кислоты, 25 г уксуснокислого аммония. Полученным составом при перемешивании проводят электролиз на платиновых анодах при плотности тока 2,0 а/дм2, температуре 22,5°С, рН=4,8. В результате чего достигаются следующие эффекты: содержание индия в сплаве 9,0 вес %, выход по току 75%, скорость коррозии 6,8 г/м2⋅ч, покрытие светлое, плотное, мелкокристаллическое, полублестящие.
Пример 3. В 1000 мл воды растворяют 30 г сульфата меди, 20 г сульфата индия, 50 г гексаметилендиаминдиянтарной кислоты, 30 г уксуснокислого аммония. Полученным составом при перемешивании проводят электролиз на платиновых анодах при плотности тока 3,0 а/дм2, температуре 25°С, рН=5,2. В результате чего достигаются следующие эффекты: содержание индия в сплаве 14,8 вес.%, выход по току 82%, скорость коррозии 7,6 г/м2⋅ч, покрытие - светлое, плотное, мелкокристаллическое.
Таким образом, использование предложенного состава позволяет осаждать светлые, полублестящие, прочно сцепленные с медной подложкой покрытия и уменьшить загрязнение окружающей среды.

Claims (5)

  1. Электролит для осаждения покрытия из сплава медь-индий, содержащий сернокислую медь, уксуснокислый аммоний и воду, отличающийся тем, что он дополнительно содержит гексаметилендиаминдиянтарную кислоту при следующем соотношении компонентов, г/л:
  2. сернокислая медь 20 - 30
  3. сернокислый индий 10 - 20
  4. уксуснокислый аммоний 20 - 30
  5. гексаметилендиаминдиянтарная кислота 40 - 50
RU2017121681A 2017-06-21 2017-06-21 Электролит для осаждения покрытия из сплава медь-индий RU2665855C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121681A RU2665855C1 (ru) 2017-06-21 2017-06-21 Электролит для осаждения покрытия из сплава медь-индий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121681A RU2665855C1 (ru) 2017-06-21 2017-06-21 Электролит для осаждения покрытия из сплава медь-индий

Publications (1)

Publication Number Publication Date
RU2665855C1 true RU2665855C1 (ru) 2018-09-04

Family

ID=63459938

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121681A RU2665855C1 (ru) 2017-06-21 2017-06-21 Электролит для осаждения покрытия из сплава медь-индий

Country Status (1)

Country Link
RU (1) RU2665855C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812020A (en) * 1969-08-11 1974-05-21 Allied Chem Electrolyte and method for electroplating an indium-copper alloy and printed circuits so plated
RU2134734C1 (ru) * 1998-06-02 1999-08-20 Тюменский государственный нефтегазовый университет Электролит для осаждения сплава медь-индий
WO2015000010A1 (de) * 2013-07-05 2015-01-08 Ing. W. Garhöfer Gesellschaft M.B.H. Elektrolytbad sowie objekte bzw. artikel, die mithilfe des bades beschichtet werden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812020A (en) * 1969-08-11 1974-05-21 Allied Chem Electrolyte and method for electroplating an indium-copper alloy and printed circuits so plated
RU2134734C1 (ru) * 1998-06-02 1999-08-20 Тюменский государственный нефтегазовый университет Электролит для осаждения сплава медь-индий
WO2015000010A1 (de) * 2013-07-05 2015-01-08 Ing. W. Garhöfer Gesellschaft M.B.H. Elektrolytbad sowie objekte bzw. artikel, die mithilfe des bades beschichtet werden

Similar Documents

Publication Publication Date Title
Ballesteros et al. Initial stages of the electrocrystallization of copper from non-cyanide alkaline bath containing glycine
JP3816241B2 (ja) 金属を還元析出させるための水溶液
Oliveira et al. Effect of current density, temperature and bath pH on properties of Ni–W–Co alloys obtained by electrodeposition
Kazimierczak et al. Electrodeposition of Sn–Zn and Sn–Zn–Mo layers from citrate solutions
ITTO950840A1 (it) Bagni alcalini elettrolitici e procedimenti per zinco e leghe di zinco
JP6370380B2 (ja) 銀−パラジウム合金の電着のための電解質、及びその析出方法
CN102037162A (zh) Pd-和Pd-Ni-电镀浴
Alesary et al. Effect of sodium bromide on the electrodeposition of Sn, Cu, Ag and Ni from a deep eutectic solvent-based ionic liquid
TWI507571B (zh) 藉由電鑄法但不使用有毒金屬或類金屬而獲致黃金合金沉積的方法
WO2015121790A2 (es) Proceso de cromado trivalente continuo
Smirnova et al. Study of anode processes during development of the new complex thiocarbamide-citrate copper plating electrolyte
RU2665855C1 (ru) Электролит для осаждения покрытия из сплава медь-индий
AT510422B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)- freien elektrolyten
Esfahani et al. Electrodeposition of nanocrystalline zinc‑tin alloy from aqueous electrolyte containing gluconate in the presence of polyethylene glycol and hexadecyltrimethylammonium bromide
CN101565843B (zh) 一种锌镁合金镀层的制备方法
US11946152B2 (en) Method and system for depositing a zinc-nickel alloy on a substrate
CN104862751A (zh) 降低酸铜镀液中氯离子浓度的新方法
KR20190068046A (ko) 이온성 액체 전해질을 이용한 무전해 주석도금액
Bucko et al. The importance of using hydrogen evolution inhibitor during the Zn and Zn-Mn electrodeposition from ethaline
RU2613838C1 (ru) Щавелевокислый электролит для осаждения сплава медь-олово
RU2313621C1 (ru) Электролит низкоконцентрированный для нанесения полублестящего покрытия сплавом олово-цинк
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
JP6517501B2 (ja) ストライク銅めっき液およびストライク銅めっき方法
CN110344107B (zh) 一种电解挂具剥离剂及使用方法
RU2350696C1 (ru) Электролит для осаждения покрытий из сплава кадмий - марганец

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190622