RU2663978C1 - Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта - Google Patents

Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта Download PDF

Info

Publication number
RU2663978C1
RU2663978C1 RU2018115269A RU2018115269A RU2663978C1 RU 2663978 C1 RU2663978 C1 RU 2663978C1 RU 2018115269 A RU2018115269 A RU 2018115269A RU 2018115269 A RU2018115269 A RU 2018115269A RU 2663978 C1 RU2663978 C1 RU 2663978C1
Authority
RU
Russia
Prior art keywords
protective layer
thickness
development
extraction
coal mining
Prior art date
Application number
RU2018115269A
Other languages
English (en)
Inventor
Цзисюн ЧЖАН
Цян Чжан
Цян СУНЬ
Сяньчэн МЭЙ
Original Assignee
Китайский Университет Горного Дела И Технологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Китайский Университет Горного Дела И Технологии filed Critical Китайский Университет Горного Дела И Технологии
Application granted granted Critical
Publication of RU2663978C1 publication Critical patent/RU2663978C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Soil Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к методам разработки верхнего защитного слоя угольного пласта и предлагает метод разработки цельнопородного или близкого к цельнопородному верхнего защитного слоя. На основе информации об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива рассчитывают толщину разработки защитного слоя М и толщину промежутка H между защитным и защищенным слоем методом количественного анализа так, чтобы коэффициент деформации при расширении φ для защищенного слоя, глубина отказа K в зоне пластической деформации защитного слоя и давление рудничного газа P соответствовали положениям Регламента по предотвращению и контролю выбросов угля и газа. Затем в соответствии с процентными данными о толщине почти цельнопородного защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием. Этот метод подводит теоретическую основу для безопасной разработки низкопроницаемых угольных пластов, богатых газом, без постоянного защитного слоя и представляет собой усовершенствование методов разработки горных пород путем добавления защитного слоя. Настоящий метод экономичен, безопасен, эффективен и обладает широким спектром применения. 1 з.п. ф-лы, 7 ил., 2 табл.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к методам разработки верхнего защитного слоя угольного пласта, в частности к методу разработки близкого к цельнопородному верхнего защитного слоя угольного пласта.
СУЩЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
При разработке богатого газом угольного пласта, как правило, сначала осуществляется разгрузочный дренаж газа из защитного слоя, а затем ведется разработка защищенного слоя. Отвод газа от угольного пласта, т.е. защищенного слоя, эффективно ведется путем разработки верхнего защитного слоя, смещения перекрывающих пластов и дренажа газа из защищенного слоя через скважины. В настоящее время в связи с тем, что в верхнем защитном слое может и не быть защищенного слоя в виде пригодного для традиционной разработки угольного пласта, не существует метода точной разработки близкого к цельнопородному верхнего защитного слоя с высоким процентом отвала. Способ разработки защитного слоя – критический фактор, влияющий на качество добычи угля из близкого к цельнопородному верхнего защитного слоя. Таким образом, установление толщины разработки в близком к цельнопородному верхнем защитном слое и промежутка между защитным и защищенным слоями с учетом процентного соотношения толщины разработки к толщине породы в близком к цельнопородному верхнем защитном слое позволяет выбрать для разработки близкого к цельнопородному верхнего защитного слоя подходящий способ из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием. Выбор правильного способа очень важен для безопасной разработки богатых газов угольных пластов.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Техническая задача: Задача настоящего изобретения заключается в том, чтобы предложить экономичный, безопасный и надежный способ разработки близкого к цельнопородному верхнего защитного слоя угольного пласта, решив тем самым существующую проблему в виде разработки низкопроницаемых угольных пластов, богатых газом, без постоянного защитного слоя.
Техническое решение: В предлагаемом методе разработки близкого к цельнопородному верхнего защитного слоя на основе информации об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива рассчитывают толщину разработки защитного слоя М и толщину промежутка H между защитным и защищенным слоем методом количественного анализа так, чтобы коэффициент деформации при расширении φ для защищенного слоя, глубина отказа K в зоне пластической деформации защитного слоя и давление рудничного газа P соответствовали положениям Регламента по предотвращению и контролю выбросов угля и газа. Затем в соответствии с процентными данными о толщине почти цельнопородного защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием. Метод включает в себя следующие этапы:
(1) сбор данных об инженерно-геологических условиях забоя защитного слоя и отбор проб породного массива;
(2) отбор стандартного образца от пробы породного массива и геомеханическое исследование физико-механических свойств образца породного массива;
(3) построение числовой модели разработки для близкого к цельнопородному верхнего защитного слоя на основе данных об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива с использованием программного приложения для конечно-элементного анализа FLAC3D;
(4) моделирующий расчет и анализ изменений коэффициента деформации при расширении φ для защищенного слоя, глубины отказа K в зоне пластической деформации защитного слоя и давления рудничного газа P для двух вариантов: толщина промежутка H не меняется, а толщина разработки M изменяется и толщина разработки М остается неизменной, а толщина промежутка Н меняется;
(5) определение нужных значений толщины разработки защитного слоя М и промежутка Н между защитным и защищенным слоями на основе результатов моделирующего расчета;
(6) на основе процентных данных о толщине близкого к цельнопородному защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием.
Близкий к цельнопородному верхний защитный слой расположен над защищенным слоем, а процент отвала для него составляет до 80%, при этом толщина разработки защитного слоя составляет от 1,5 м до 3,0 м.
Полезный эффект: При использовании предложенного метода разработки близкого к цельнопородному верхнего защитного слоя на практике требуется определить только толщину разработки верхнего защитного слоя и толщину промежутка между защитным слоем и защищенным слоем для выбора подходящего способа разработки близкого к цельнопородному верхнего защитного слоя в соответствии с процентными данными о толщине, которая приходится на породу. Этот метод является эталонным для разработки верхнего защитного слоя и подводит теоретическую основу для безопасной разработки низкопроницаемых угольных пластов, богатых газом, без постоянного защитного слоя. Настоящий метод экономичен, безопасен, эффективен и обладает широким спектром применения.
Краткое описание чертежей
Фигура 1 схематично изображает функциональную схему метода разработки близкого к цельнопородному верхнего защитного слоя согласно настоящему изобретению.
Фигура 2 изображает расчетную числовую модель разработки близкого к цельнопородному верхнего защитного слоя согласно настоящему изобретению.
Фигура 3 изображает график изменений коэффициента деформации при расширении φ для защищенного слоя согласно настоящему изобретению.
Фигура 4 изображает график изменений глубины отказа K в зоне пластической деформации защитного слоя согласно настоящему изобретению.
Фигура 5 изображает гистограмму изменений давления рудничного газа согласно настоящему изобретению.
Фигура 6 схематично изображает расположение однорядных взрывных скважин согласно настоящему изобретению.
Фигура 7 схематично изображает расположение двухрядных спиральных взрывных скважин согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Ниже приводится описание одного осуществления настоящего изобретения согласно нижеприведенным чертежам.
В предлагаемом методе разработки близкого к цельнопородному верхнего защитного слоя на основе информации об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива рассчитывают толщину разработки защитного слоя М и толщину промежутка H между защитным и защищенным слоем методом количественного анализа так, чтобы коэффициент деформации при расширении φ для защищенного слоя, глубина отказа K в зоне пластической деформации защитного слоя и давление рудничного газа P соответствовали положениям Регламента по предотвращению и контролю выбросов угля и газа. Затем в соответствии с процентными данными о толщине почти цельнопородного защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием. Метод включает в себя следующие этапы:
(1) сбор данных об инженерно-геологических условиях забоя защитного слоя и отбор проб породного массива;
(2) отбор стандартного образца от пробы породного массива и геомеханическое исследование физико-механических свойств образца породного массива;
(3) построение числовой модели разработки для близкого к цельнопородному верхнего защитного слоя на основе данных об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива с использованием программного приложения для конечно-элементного анализа FLAC3D;
(4) моделирующий расчет и анализ изменений коэффициента деформации при расширении φ для защищенного слоя, глубины отказа K в зоне пластической деформации защитного слоя и давления рудничного газа P для двух вариантов: толщина промежутка H не меняется, а толщина разработки M изменяется и толщина разработки М остается неизменной, а толщина промежутка Н меняется;
(5) определение нужных значений толщины разработки защитного слоя М и промежутка Н между защитным и защищенным слоями на основе результатов моделирующего расчета;
(6) на основе процентных данных о толщине близкого к цельнопородному защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием.
Вариант осуществления 1
На примере угольного рудника показаны следующие этапы конкретного варианта осуществления:
(1) Выполнение инженерно-геологических изысканий на участке разработки защитного слоя угольного рудника, сбор данных об инженерно-геологических условиях забоя защитного слоя и отбор проб породного массива.
(2) Отбор стандартного образца от пробы породного массива и геомеханическое исследование физико-механических свойств образца породного массива, как показано в Таблице 1.
Figure 00000001
(3) построение числовой модели разработки для близкого к цельнопородному верхного защитного слоя на основе данных об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива с использованием программного приложения для конечно-элементного анализа FLAC3D, как показано на Фигуре 2.
Длина x ширина x высота модели – 300 м x 250 м x 100 м. Горизональное смещение ограничено окружением. Горизонтальное и перпендикулярное смещение ограничено нижним уровнем разработки. Определяющее соотношение рассчитано на основе модели Мора-Кулона.
(4) моделирующий расчет и анализ изменений коэффициента деформации при расширении φ для защищенного слоя, глубины отказа K в зоне пластической деформации защитного слоя и давления рудничного газа P для двух вариантов: толщина промежутка H не меняется, а толщина разработки M изменяется, и толщина разработки М остается неизменной, а толщина промежутка Н меняется. Конкретный моделирующий расчет показан в Таблице 2, а результаты моделирования – на фигурах 3, 4 и 5.
Figure 00000002
(5) Определение толщины разработки защитного слоя на основе данных моделирования и комплексного анализа существующих инженерно-геологических условий на руднике. Для данного осуществления толщина разработки защитного слоя составляет 2,0 м, а промежуток между защитным и защищенным слоями – 12 м.
(6) Исходя из установленной толщины разработки защитного слоя и промежутка между защитным и защищенным слоями, на основе процентных данных о толщине пласта породы в защитном слое выполнялось прямое дробление породы способом механизированной угледобычи при рабочей толщине пласта породы менее 0,6 м; традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования применяется при рабочей толщине пласта породы от 0,6 м до 0,8 м, а традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием используется при рабочей толщине пласта породы от 0,8 м. Расположение однорядных и двухрядных спиральных взрывных скважин показано на фигуре 6 и фигуре 7 соответственно.

Claims (8)

1. Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта, согласно которому на основе информации об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива рассчитывают толщину разработки защитного слоя М и толщину промежутка Н между защитным и защищенным слоем методом количественного анализа так, чтобы коэффициент деформации при расширении ϕ для защищенного слоя, глубина отказа K в зоне пластической деформации защитного слоя и давление рудничного газа Р соответствовали положениям Регламента по предотвращению и контролю выбросов угля и газа, а затем в соответствии с процентными данными о толщине почти цельнопородного защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием, включающий в себя следующие этапы:
(1) сбор данных об инженерно-геологических условиях забоя защитного слоя и отбор проб породного массива;
(2) отбор стандартного образца от пробы породного массива и геомеханическое исследование физико-механических свойств образца породного массива;
(3) построение числовой модели разработки для близкого к цельнопородному верхнего защитного слоя на основе данных об инженерно-геологических условиях забоя защитного слоя и физико-механических свойствах образца породного массива с использованием программного приложения для конечно-элементного анализа FLAC3D;
(4) моделирующий расчет и анализ изменений коэффициента деформации при расширении ϕ для защищенного слоя, глубины отказа K в зоне пластической деформации защитного слоя и давления рудничного газа Р для двух вариантов: толщина промежутка Н не меняется, а толщина разработки М изменяется и толщина разработки М остается неизменной, а толщина промежутка Н меняется;
(5) определение нужных значений толщины разработки защитного слоя М и промежутка Н между защитным и защищенным слоями на основе результатов моделирующего расчета;
(6) на основе процентных данных о толщине близкого к цельнопородному защитного слоя, которая приходится на породу, выбирают способ разработки защитного слоя из следующих вариантов: традиционная механизированная угледобыча, традиционная механизированная угледобыча с однорядным взрыванием при условии предварительного щелеобразования и традиционная механизированная угледобыча с двухрядным взрыванием и спиральным щелеобразованием.
2. Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта по п. 1, при котором близкий к цельнопородному верхний защитный слой расположен над защищенным слоем, а процент отвала для него составляет до 80%, при этом толщина разработки защитного слоя составляет от 1,5 м до 3,0 м.
RU2018115269A 2016-04-29 2016-11-18 Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта RU2663978C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610278563.6A CN105927217B (zh) 2016-04-29 2016-04-29 一种煤层开采中近全岩上保护层开采设计方法
CN201610278563.6 2016-04-29
PCT/CN2016/106341 WO2017185723A1 (zh) 2016-04-29 2016-11-18 一种煤层开采中近全岩上保护层开采设计方法

Publications (1)

Publication Number Publication Date
RU2663978C1 true RU2663978C1 (ru) 2018-08-14

Family

ID=56836678

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115269A RU2663978C1 (ru) 2016-04-29 2016-11-18 Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта

Country Status (6)

Country Link
US (1) US20190071967A1 (ru)
CN (1) CN105927217B (ru)
AU (1) AU2016405113A1 (ru)
CA (1) CA3000576C (ru)
RU (1) RU2663978C1 (ru)
WO (1) WO2017185723A1 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927217B (zh) * 2016-04-29 2019-06-25 中国矿业大学 一种煤层开采中近全岩上保护层开采设计方法
CN108090313B (zh) * 2018-02-05 2021-03-19 东北大学 一种复杂岩石裂隙模型建模识别方法
CN108625852B (zh) * 2018-04-18 2020-03-24 中国矿业大学 短壁开采法回收水体下边角煤开采参数的确定方法
CN109236373B (zh) * 2018-08-27 2024-04-16 清华大学 一种普适煤矿地下水库及其建造方法
CN110173263B (zh) * 2019-05-24 2020-12-29 中国矿业大学 一种柱式充填开采关键参数设计方法
CN110630328B (zh) * 2019-08-19 2020-11-27 天地科技股份有限公司 一种开采保护层保护范围测定方法及系统
CN111680896B (zh) * 2020-05-27 2023-06-20 北京科技大学 一种煤矿地下水库安全距离确定方法
CN111859781A (zh) * 2020-06-16 2020-10-30 重庆大学 一种采动煤岩多场响应快速获取方法
CN112231801A (zh) * 2020-09-25 2021-01-15 深圳市华阳国际工程设计股份有限公司 基于bim的孔洞防护生成方法、装置以及计算机存储介质
CN112364519B (zh) * 2020-11-19 2023-08-25 山西工程技术学院 一种用于抽采上隅角瓦斯的大直径钻孔参数确定方法
CN112881170B (zh) * 2021-01-11 2021-10-26 中国矿业大学 一种煤炭地下气化实际采厚的计算方法
CN113914858B (zh) * 2021-02-07 2024-04-12 中国矿业大学 一种浅埋双硬特厚煤层基本顶与顶煤同步预裂设计方法
CN112832848B (zh) * 2021-03-05 2022-05-20 湖南科技大学 一种防止极松软煤层钻孔施工过程中钻孔喷孔的施工方法
CN113294199B (zh) * 2021-04-07 2022-08-02 淮南矿业(集团)有限责任公司 开采下保护层瓦斯治理巷道布置方法
CN113449415B (zh) * 2021-06-07 2023-02-24 西安科技大学 一种基于双层结构底板滑移破坏深度的计算方法
CN114674596A (zh) * 2022-03-18 2022-06-28 陈葱葱 一种地质矿产勘查取样方法
CN114754648B (zh) * 2022-04-25 2023-03-14 福州大学 一种确定岩石爆破时临近保护体侧的保护柱厚度的方法
CN114856567A (zh) * 2022-05-16 2022-08-05 中国矿业大学(北京) 一种近距离变层间距下煤层回采巷道布置位置确定方法
CN115030702B (zh) * 2022-06-16 2023-05-12 中国矿业大学 一种瓦斯非稳定赋存煤层精准卸压增透方法
CN116241326B (zh) * 2022-11-09 2024-04-26 华能煤炭技术研究有限公司 保护层充填开采关键参数设计方法
CN116877078A (zh) * 2023-07-21 2023-10-13 中国矿业大学 一种基于能量单元切割的突出煤层消突方法
CN117211762B (zh) * 2023-09-15 2024-03-29 中国矿业大学 一种确定深部开采安全煤柱保护层厚度的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU998771A1 (ru) * 1980-07-18 1983-02-23 Государственный Макеевский Ордена Октябрьской Революции Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Способ выемки выбросоопасного угольного пласта
SU1093828A1 (ru) * 1983-04-15 1984-05-23 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Горной Геомеханики И Маркшейдерского Дела Способ разработки мощных пластов угл ,склонных к газодинамическим влени м
RU2108600C1 (ru) * 1997-04-28 1998-04-10 Анатолий Вениаминович Торсунов Способ прямого поиска и разведки нефтегазовых залежей в тектонически осложненных структурах осадочной толщи
CN102797465A (zh) * 2012-09-10 2012-11-28 河南理工大学 煤矿井下超薄虚拟保护层水力开采方法
CN104047629A (zh) * 2014-06-25 2014-09-17 中国矿业大学 薄煤层综采沿空留巷定向钻进抽采临近下煤层瓦斯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU710245A1 (ru) * 1975-04-02 1988-08-23 Всесоюзный Научно-Исследовательский Институт Использования Газа В Народном Хозяйстве,Подземного Хранения Нефти,Нефтепродуктов И Сжиженных Газов Способ подземной газификации угл
CN1542257A (zh) * 2003-04-30 2004-11-03 淮南矿业(集团)有限责任公司 应用在煤层群开采中的多重上保护层防突开采法
CN102536301B (zh) * 2010-12-10 2013-02-13 平安煤矿瓦斯治理国家工程研究中心有限责任公司 保护层开采与瓦斯抽排管理系统及其使用方法
CN105927217B (zh) * 2016-04-29 2019-06-25 中国矿业大学 一种煤层开采中近全岩上保护层开采设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU998771A1 (ru) * 1980-07-18 1983-02-23 Государственный Макеевский Ордена Октябрьской Революции Научно-Исследовательский Институт По Безопасности Работ В Горной Промышленности Способ выемки выбросоопасного угольного пласта
SU1093828A1 (ru) * 1983-04-15 1984-05-23 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Горной Геомеханики И Маркшейдерского Дела Способ разработки мощных пластов угл ,склонных к газодинамическим влени м
RU2108600C1 (ru) * 1997-04-28 1998-04-10 Анатолий Вениаминович Торсунов Способ прямого поиска и разведки нефтегазовых залежей в тектонически осложненных структурах осадочной толщи
CN102797465A (zh) * 2012-09-10 2012-11-28 河南理工大学 煤矿井下超薄虚拟保护层水力开采方法
CN104047629A (zh) * 2014-06-25 2014-09-17 中国矿业大学 薄煤层综采沿空留巷定向钻进抽采临近下煤层瓦斯的方法

Also Published As

Publication number Publication date
CA3000576C (en) 2020-02-25
CN105927217A (zh) 2016-09-07
CN105927217B (zh) 2019-06-25
CA3000576A1 (en) 2017-11-02
WO2017185723A1 (zh) 2017-11-02
US20190071967A1 (en) 2019-03-07
AU2016405113A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
RU2663978C1 (ru) Метод разработки близкого к цельнопородному верхнего защитного слоя угольного пласта
He et al. Deep-hole directional fracturing of thick hard roof for rockburst prevention
Ren et al. Model development and simulation study of the feasibility of enhancing gas drainage efficiency through nitrogen injection
Saiang Stability analysis of the blast-induced damage zone by continuum and coupled continuum–discontinuum methods
Zhang et al. Using stress path-dependent permeability law to evaluate permeability enhancement and coalbed methane flow in protected coal seam: a case study
Bukowski Evaluation of water hazard in hard coal mines in changing conditions of functioning of mining industry in Upper Silesian Coal Basin–USCB (Poland)
Zhang et al. Longwall mining–induced damage and fractures: Field measurements and simulation using FDM and DEM coupled method
Bahrami et al. Numerical modelling of the groundwater inflow to an advancing open pit mine: Kolahdarvazeh pit, Central Iran
Park et al. A pressure-monitoring method to warn CO 2 leakage in geological storage sites
Su Numerical modeling of cuttability and shear behavior of chisel picks
Zhang et al. Investigation of water-flow fracture zone height in fully mechanized cave mining beneath thick alluvium
Wang et al. Fracture law of different overlying strata in mining of protective seam under close distance coal seam
Li et al. Gas migration law and precision extraction in close distance coal seam goaf: a case study
Latham et al. Numerical modelling of the influence of in-situ stress, rock strength and hole-profile geometry on the stability of Radial Water Jet Drill (RJD) boreholes
Akdağ et al. Stability analysis and optimized slope angle for the iron ore open-pit mine
Si An investigation into gas emission and outburst control in thick seam coal mining
Liu et al. Non-uniform Distributions of Gas Pressure and Coal Permeability in Coalbed Methane Reservoirs Induced by the Loess Plateau Geomorphology: A Case Study in Ordos Basin, China
Watson 8. Containment Risk Assessment
Cakici et al. Well, Reservoir and Facilities Management (WRFM) and Surveillance Planning in a Multi-Stacked Mature Oil and Gas Field in Baram Delta
Çelik Investigation of LTCC Efficiency in Horizontal and Near-Horizontal Thick Coal Seams with a 2D Physical Model
Zhao et al. Elastic wave prospecting of water-conducting fractured zones in coal mining
Suman Slope stability analysis using numerical modelling
Lin et al. Numerical and experimental studies on dynamic gas emission characteristics of boreholes
Zhou et al. Study on the pressure relief effect in gob‐side coal body during mining an inclined longwall panel
Hao et al. Study on the disturbance characteristics and control strategies of coordinated exploitation of superimposed resources of coal and oil‐type gas in Ordos Basin