RU2663022C1 - Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты - Google Patents
Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты Download PDFInfo
- Publication number
- RU2663022C1 RU2663022C1 RU2017126916A RU2017126916A RU2663022C1 RU 2663022 C1 RU2663022 C1 RU 2663022C1 RU 2017126916 A RU2017126916 A RU 2017126916A RU 2017126916 A RU2017126916 A RU 2017126916A RU 2663022 C1 RU2663022 C1 RU 2663022C1
- Authority
- RU
- Russia
- Prior art keywords
- coating
- copper
- explosion
- formation
- composite
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 68
- 239000010949 copper Substances 0.000 title claims abstract description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 16
- 239000004332 silver Substances 0.000 title claims abstract description 16
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 title description 2
- 229910052793 cadmium Inorganic materials 0.000 title 1
- 239000011248 coating agent Substances 0.000 claims abstract description 41
- 239000002131 composite material Substances 0.000 claims abstract description 27
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 19
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000004880 explosion Methods 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 9
- 238000010894 electron beam technology Methods 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims abstract description 5
- 230000004927 fusion Effects 0.000 claims abstract description 4
- 238000005303 weighing Methods 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 3
- 238000004870 electrical engineering Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002360 explosive Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000003628 erosive effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- WUUZKBJEUBFVMV-UHFFFAOYSA-N copper molybdenum Chemical compound [Cu].[Mo] WUUZKBJEUBFVMV-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Contacts (AREA)
Abstract
Изобретение относится к формированию на медных электрических контактах покрытий на основе оксида кадмия и серебра, которые могут быть использованы в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской серебряной оболочки массой 60-360 мг и сердечника в виде порошка оксида кадмия массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы CdO-Ag и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см, длительности импульсов 150-200 мкс и количестве импульсов 10-30. Изобретение направлено на получение электроэрозионностойких покрытий с высокой электропроводностью, электроэрозионной стойкостью и адгезией с подложкой на уровне когезии. 2 пр., 2 ил.
Description
Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности к технологии получения на медных электрических контактах покрытий на основе оксида кадмия и серебра, которые могут быть использованы в электротехнике как электроэрозионностойкие покрытия с высокой электропроводностью и адгезией с подложкой на уровне когезии.
Известен способ [1] нанесения на контактные поверхности электроэрозионностойких молибден-медных композиционных покрытий с наполненной структурой, включающий использование концентрированного потока энергии для испарения исходных материалов молибдена и меди и конденсацию их на контактную поверхность, отличающийся тем, что в качестве исходных материалов попеременно используют сначала фольгу меди массой 4…5 мг с навеской порошка молибдена массой 0,8…0,9 г, затем одну фольгу меди массой 175…185 мг, испарение осуществляют при пропускании по фольге электрического тока, вызывающего ее электрический взрыв, а конденсацию продуктов взрыва на контактную поверхность осуществляют при значении поглощаемой плотности мощности на упрочняемой поверхности 4,5…5,0 и 7,6…8,1 ГВт/м2 соответственно.
Недостатком способа является низкая стабильность структуры в процессе эксплуатации электрических контактов с такими покрытиями. В процессе эксплуатации электрических контактов с такими покрытиями происходит оплавление их поверхности, под воздействием искрообразования и возникновения электрической дуги возникает локальное оплавление и разбрызгивание металла, в результате чего металлическое изделие нарушает свою целостность, изменяет размеры и форму. Поскольку вольфрам и медь являются несмешивающимися компонентами во всем температурном и концентрационном интервале, при взаимодействии искры или дуги при коммутации контактов на поверхности покрытия возникают различного вида дефекты. В процессе испытаний легкоплавкая медь испаряется и основным элементом покрытия становится вольфрам, который образует матрицу с включениями меди с размерами порядка нескольких микрометров [2]. Это может стать причиной преждевременного отказа в работе электрических контактов.
Наиболее близким к заявляемому является способ [3] нанесения электроэрозионностойких покрытий на основе вольфрама и меди на медные электрические контакты, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошка вольфрама массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней композиционного покрытия системы W-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.
Недостатком способа является низкая стабильность структуры в процессе эксплуатации электрических контактов с такими покрытиями, а также их низкая электропроводность. В процессе эксплуатации электрических контактов с такими покрытиями происходит оплавление их поверхности, под воздействием искрообразования и возникновения электрической дуги возникает локальное оплавление и разбрызгивание металла, в результате чего металлическое изделие нарушает свою целостность, изменяет размеры и форму. Поскольку вольфрам и медь являются несмешивающимися компонентами во всем температурном и концентрационном интервале, при взаимодействии искры или дуги при коммутации контактов на поверхности покрытия возникают различного вида дефекты. В процессе испытаний легкоплавкая медь испаряется и основным элементом покрытия становится вольфрам, который образует матрицу с включениями меди с размерами порядка нескольких микрометров [2]. Это может стать причиной преждевременного отказа в работе электрических контактов. Низкая электропроводность покрытий вызывает перегрев электрических контактов в процессе эксплуатации, в результате чего уменьшается ресурс их работы.
Задачей заявляемого изобретения является получение композиционных покрытий на основе оксида кадмия и серебра с наполненной микрокристаллической структурой, обладающих высокой стабильностью структуры, когезией между фазами оксида кадмия и серебра, высокой степенью гомогенизации структуры их поверхностного слоя, зеркальным блеском поверхности и высокой электропроводностью вследствие применения серебра и электроэрозионной стойкостью.
Поставленная задача реализуется способом нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской серебряной оболочки массой 60-360 мг и сердечника в виде порошка оксида кадмия массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней композиционного покрытия системы CdO-Ag и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30 имп.
Продукты разрушения композиционного электрически взрываемого проводника образуют плазменную струю, служащую инструментом формирования на поверхности медного электрического контакта композиционного покрытия с наполненной структурой [4], образованного сплавом монооксида кадмия и серебра. Применение серебра вместо меди обеспечивает высокую электропроводность формируемых покрытий. Последующая импульсно-периодическая электронно-пучковая обработка (ЭПО) покрытия сопровождается переплавлением его поверхностного слоя толщиной 20-30 мкм. Дефекты в виде микропор и микротрещин, выявляемые после электровзрывного напыления (ЭВН) [2], в нем не наблюдаются. Импульсно-периодическая ЭПО приводит к формированию в покрытии высокодисперсной и однородной структуры. Размеры включений CdO в серебряной матрице уменьшаются в 2-12 раз по сравнению с их размерами сразу после ЭВН. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с низкой шероховатостью, повышенной адгезией и электропроводностью по сравнению с электровзрывными покрытиями, получаемыми в способе [3] и гомогенизированной структурой, что увеличивает срок их службы и расширяет область практического применения контактов в электротехнической аппаратуре.
Способ поясняется чертежом, где на фиг. 1 представлена структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы CdO-Ag без воздействия ЭПО, на фиг. 2 - структура поперечного сечения поверхностного слоя электровзрывного композиционного покрытия системы CdO-Ag после воздействия ЭПО.
Исследования методом сканирующей электронной микроскопии показали, что при ЭВН на поверхности медного электрического контакта путем электрического взрыва композиционного электрически взрываемого проводника при поглощаемой плотности мощности 4,5-6,5 ГВт/м2 происходит формирование покрытия с композиционной наполненной структурой, когда в серебряной матрице, располагаются включения CdO с размерами от 0,5 до 5,0 мкм (фиг. 1). В покрытии наблюдаются дефекты в виде микропор и микротрещин. Указанный режим, при котором поглощаемая плотность мощности составляет 4,5-6,5 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 4,5 ГВт/м2 не происходит образование рельефа между покрытием и медным электрическим контактом, вследствие чего возможно отслаивание покрытия, а выше 6,5 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы серебряной фольги менее 60 мг становится невозможным изготовление из нее композиционного электрически взрываемого проводника. При значении массы серебряной фольги более 360 мг покрытие с композиционной наполненной структурой на медных электрических контактах обладает большим количеством дефектов. При значении массы сердечника композиционного электрически взрываемого материала менее 0,5 или более 2,0 массы фольги покрытие с композиционной наполненной структурой на медных электрических контактах также обладает дефектной структурой. Граница электровзрывного покрытия с основой не является ровной, что позволяет увеличить адгезию покрытия с основой.
Импульсно-периодическая ЭПО поверхности электровзрывного покрытия с поверхностной плотностью поглощаемой энергии 40-60 Дж/см2, длительностью импульсов 150-200 мкс, количеством импульсов 10-30 приводит к выглаживанию рельефа поверхности до образования зеркального блеска. Толщина модифицированных слоев после ЭПО изменяется в пределах от 20 до 40 мкм и незначительно увеличивается с ростом плотности энергии пучка электронов. Электронно-пучковая обработка, сопровождающаяся переплавлением слоя покрытия, приводит к формированию композиционной наполненной [4] структуры (фиг. 2). Дефекты в виде микропор и микротрещин в нем не наблюдаются. Размеры включений CdO в серебряной в пределах от 0,1 до 0,2 мкм. Импульсно-периодическая ЭПО поверхностного слоя приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 40 Дж/см, длительности импульсов короче 150 мкс, количестве импульсов менее 10 имп. не происходит образования однородной структуры на основе CdO и серебра и диспергирования CdO в покрытии. При поверхностной плотности энергии больше 60 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 30 имп. происходит формирование рельефа поверхности.
Электроэрозионную стойкость покрытий, полученных заявленным способом, в условиях дуговой эрозии измеряли на контактах электромагнитных пускателей марки ПМА 4100. Испытания на коммутационную износостойкость в режиме АС-4 согласно ГОСТу [5] проводили на испытательном комплексе ФГБОУ ВО Сибирский государственный индустриальный университет (г. Новокузнецк) при токе коммутирования 378 А, который в 6 раз превышал номинальный, и cosϕ=0,35. Число циклов включений-отключений до полного разрушения составило ~10000-11000. Это соответствует требованиям ГОСТа [5] для таких контактов.
Испытания покрытий на электроэрозионную стойкость в условиях искровой эрозии проводили при точечном контакте. Ток составлял 3 А и напряжение - 220 В. После 10000 включений-отключений измеряли потерю массы образца. Формирующееся при ЭВН покрытия обладают большей электроэрозионную стойкость в условиях искрового разряда по сравнению с исходной для меди марки М00 и покрытиями, полученными по способу [3]. Относительное изменение электроэрозионной стойкости в условиях искровой эрозии покрытий с композиционной наполненной структурой mэ/m составляет 10,93, где mэ - потеря массы меди марки М00, принятой за эталон при 10000 циклов включений-отключений.
Измерение удельной электропроводности покрытий производили с использованием измерителя электропроводности Константа К6. Значение удельной электропроводности покрытий системы CdO-Ag превышает на 20% удельную электропроводность покрытий системы W-Ni-Cu, полученных по патенту [3].
Примеры конкретного осуществления способа:
Пример 1.
Обработке подвергали контактную поверхность медного электрического контакта командоконтроллера ККТ 61 площадью 1,5 см2. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошка CdO, при этом оболочка состояла из двух слоев электрически взрываемой плоской серебряной фольги массой 60 мг, а масса сердечника составляла 30 мг. Сформированной плазменной струей оплавляли поверхность медного электрического контакта при поглощаемой плотности мощности 4,5 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы CdO-Ag. После самозакалки покрытия при теплоотводе в объем основы медного контакта осуществляли импульсно-периодическую ЭПО поверхности электровзрывного покрытия при поверхностной плотности энергии 40 Дж/см2, длительности импульсов - 150 мкс, количестве импульсов - 10 имп.
Получили электроэрозионностойкое покрытие с высокой адгезией покрытия с основой на уровне когезии. На ОАО «ВЕСТ-2002» медные контакты, упрочненные заявляемым способом, показали увеличенный ресурс коммутационного износа в 1,7…2,2 раза по сравнению с серийными контактами.
Пример 2.
Обработке подвергали медную электроконтактную поверхность контактов пускателей марок ПВИ-320А площадью 0,8 см. Использовали композиционный электрически взрываемый проводник, состоящий из оболочки и сердечника в виде порошка CdO, при этом оболочка состояла из двух слоев электрически взрываемой плоской серебряной фольги массой 360 мг, а масса сердечника составляла 720 мг. Сформированной плазменной струей оплавляли медную электроконтактную поверхность контактов пускателей марок ПВИ-320А при поглощаемой плотности мощности 6,5 ГВт/м2 и формировали на ней композиционное электровзрывное покрытие системы CdO-Ag. После самозакалки покрытия при теплоотводе в объем основы медного контакта осуществляли импульсно-периодическую ЭПО электровзрывного покрытия при поверхностной плотности энергии 60 Дж/см2, длительности импульсов - 200 мкс, количестве импульсов - 30 имп.
Получили электроэрозионностойкое покрытие с высокой адгезией покрытия с основой на уровне когезии. На ОАО «Ремкомплект», г. Новокузнецк медные контакты, упрочненные заявляемым способом, показали ресурс коммутационного износа на уровне в 2,2 раза выше контактов пускателей марок ПВИ-320А.
Источники информации
1. Патент РФ №2451111 на изобретение «Способ нанесения на контактные поверхности электроэрозионностойких молибден-медных композиционных покрытий с наполненной структурой» / Романов Д.А., Будовских Е.А., Громов В.Е.; заявл. 31.01.2011; опубл. 20.05.2012, Бюл. №14. 8 с.
2. Электровзрывное напыление износо- и электроэрозионностойких покрытий / Д.А. Романов, Е.А. Будовских, В.Е. Громов, Ю.Ф. Иванов. - Новокузнецк: Изд-во ООО «Полиграфист», 2014. - 203 с.
3. Патент РФ №2546939 на изобретение «Способ нанесения электроэрозионностойких покрытий на основе вольфрама и меди на медные электрические контакты» / Романов Д.А., Олесюк О.В., Будовских Е.А., Громов В.Е.; заявл. 16.12.2013; опубл. 10.04.2015, Бюл. №10. 8 с.
4. Мэттьюз М., Ролингс Р. Композиционные материалы. Механика и технология. - М.: Техносфера, 2004. - 408 с.
5. ГОСТ 2933-83. Испытание на механическую и коммутационную износостойкость. Аппараты электрические низковольтные методы испытаний. - М.: Изд-во стандартов, 1983. - 26 с.
Claims (1)
- Способ нанесения электроэрозионностойкого покрытия на основе оксида кадмия и серебра на медные электрические контакты, включающий электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской серебряной оболочки массой 60-360 мг и сердечника в виде порошка оксида кадмия массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированим на ней композиционного покрытия системы СdO-Аg и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017126916A RU2663022C1 (ru) | 2017-07-26 | 2017-07-26 | Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017126916A RU2663022C1 (ru) | 2017-07-26 | 2017-07-26 | Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2663022C1 true RU2663022C1 (ru) | 2018-08-01 |
Family
ID=63142772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017126916A RU2663022C1 (ru) | 2017-07-26 | 2017-07-26 | Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2663022C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2699487C1 (ru) * | 2018-11-29 | 2019-09-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе оксида цинка и серебра на медные электрические контакты |
RU2699486C1 (ru) * | 2018-11-29 | 2019-09-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе оксида меди и серебра на медные электрические контакты |
RU2750255C1 (ru) * | 2020-10-27 | 2021-06-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе серебра, карбидов вольфрама и мононитрида вольфрама на медные электрические контакты |
RU2750256C1 (ru) * | 2020-11-03 | 2021-06-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе серебра, никеля и нитридов никеля на медные электрические контакты |
RU2809288C1 (ru) * | 2023-05-03 | 2023-12-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ электровзрывного напыления электроэрозионностойких покрытий на основе молибдена и золота на медный электрический контакт |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3859491A (en) * | 1973-08-31 | 1975-01-07 | Gen Electric | Contact assembly and method of manufacture of having silver-cadmium oxide contacts affixed to a brass carrier |
KR20120046516A (ko) * | 2010-11-02 | 2012-05-10 | 한국화학공업 주식회사 | 다층 접점 재료 및 그 제조 방법 |
RU2545842C1 (ru) * | 2014-04-10 | 2015-04-10 | Олег Иванович Квасенков | Способ производства пломбира кофейного (варианты) |
RU2617190C2 (ru) * | 2015-10-13 | 2017-04-21 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ нанесения электроэрозионностойких покрытий на основе вольфрама, меди и никеля на медные электрические контакты |
RU2623546C2 (ru) * | 2015-10-13 | 2017-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты |
-
2017
- 2017-07-26 RU RU2017126916A patent/RU2663022C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3859491A (en) * | 1973-08-31 | 1975-01-07 | Gen Electric | Contact assembly and method of manufacture of having silver-cadmium oxide contacts affixed to a brass carrier |
KR20120046516A (ko) * | 2010-11-02 | 2012-05-10 | 한국화학공업 주식회사 | 다층 접점 재료 및 그 제조 방법 |
RU2545842C1 (ru) * | 2014-04-10 | 2015-04-10 | Олег Иванович Квасенков | Способ производства пломбира кофейного (варианты) |
RU2617190C2 (ru) * | 2015-10-13 | 2017-04-21 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ нанесения электроэрозионностойких покрытий на основе вольфрама, меди и никеля на медные электрические контакты |
RU2623546C2 (ru) * | 2015-10-13 | 2017-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" | Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2699487C1 (ru) * | 2018-11-29 | 2019-09-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе оксида цинка и серебра на медные электрические контакты |
RU2699486C1 (ru) * | 2018-11-29 | 2019-09-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе оксида меди и серебра на медные электрические контакты |
RU2750255C1 (ru) * | 2020-10-27 | 2021-06-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе серебра, карбидов вольфрама и мононитрида вольфрама на медные электрические контакты |
RU2750256C1 (ru) * | 2020-11-03 | 2021-06-24 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ нанесения электроэрозионностойких покрытий на основе серебра, никеля и нитридов никеля на медные электрические контакты |
RU2809288C1 (ru) * | 2023-05-03 | 2023-12-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ электровзрывного напыления электроэрозионностойких покрытий на основе молибдена и золота на медный электрический контакт |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2623546C2 (ru) | Способ нанесения электроэрозионностойких покрытий на основе молибдена, меди и никеля на медные электрические контакты | |
RU2663022C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе оксида кадмия и серебра на медные электрические контакты | |
RU2750255C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе серебра, карбидов вольфрама и мононитрида вольфрама на медные электрические контакты | |
RU2546939C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе вольфрама и меди на медные электрические контакты | |
RU2750256C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе серебра, никеля и нитридов никеля на медные электрические контакты | |
RU2663023C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе оксида олова и серебра на медные электрические контакты | |
Anders et al. | Triggerless' triggering of vacuum arcs | |
JP4667378B2 (ja) | 極紫外放射又は軟x線放射を生成する方法及び装置 | |
RU2545852C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе молибдена и меди на медные электрические контакты | |
SU1069611A3 (ru) | Электрод-инструмент дл электроэрозионной вырезки | |
RU2699487C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе оксида цинка и серебра на медные электрические контакты | |
Romanov et al. | Structure and Electrical Erosion Resistance of An Electro-Explosive Coating of the ZnO-Ag System | |
RU2546940C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе углеродистого вольфрама, вольфрама и меди на медные электрические контакты | |
RU2422555C1 (ru) | Способ электровзрывного нанесения металлических покрытий на контактные поверхности | |
RU2537687C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе углеродистого молибдена, молибдена и меди на медные электрические контакты | |
RU2617190C2 (ru) | Способ нанесения электроэрозионностойких покрытий на основе вольфрама, меди и никеля на медные электрические контакты | |
RU2583227C1 (ru) | Способ нанесения износостойких покрытий на основе диборида титана и молибдена на стальные поверхности | |
Wu et al. | The influences of the electrode dimension and the dielectric material on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air | |
RU2699486C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе оксида меди и серебра на медные электрические контакты | |
RU2767326C1 (ru) | СПОСОБ НАНЕСЕНИЯ ЭЛЕКТРОЭРОЗИОННОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ SnO2- In2O3-Ag-N НА МЕДНЫЕ ЭЛЕКТРИЧЕСКИЕ КОНТАКТЫ | |
RU2539138C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе диборида титана и меди на медные электрические контакты | |
RU2768806C1 (ru) | Способ нанесения электроэрозионностойких покрытий на основе серебра, кобальта и нитридов кобальта на медные электрические контакты | |
RU2768068C1 (ru) | СПОСОБ НАНЕСЕНИЯ ЭЛЕКТРОЭРОЗИОННОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ Cd-Ag-N НА МЕДНЫЕ ЭЛЕКТРИЧЕСКИЕ КОНТАКТЫ | |
RU2769782C1 (ru) | СПОСОБ НАНЕСЕНИЯ ЭЛЕКТРОЭРОЗИОННОСТОЙКИХ ПОКРЫТИЙ СИСТЕМЫ Ni-C-Ag-N НА МЕДНЫЕ ЭЛЕКТРИЧЕСКИЕ КОНТАКТЫ | |
RU2451111C1 (ru) | Способ нанесения на контактные поверхности электроэрозионно-стойких молибден-медных композиционных покрытий с наполненной структурой |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200727 |