RU2662512C2 - Аустенитная жаропрочная и коррозионно-стойкая сталь - Google Patents

Аустенитная жаропрочная и коррозионно-стойкая сталь Download PDF

Info

Publication number
RU2662512C2
RU2662512C2 RU2015130171A RU2015130171A RU2662512C2 RU 2662512 C2 RU2662512 C2 RU 2662512C2 RU 2015130171 A RU2015130171 A RU 2015130171A RU 2015130171 A RU2015130171 A RU 2015130171A RU 2662512 C2 RU2662512 C2 RU 2662512C2
Authority
RU
Russia
Prior art keywords
less
resistant
steel
nitrogen
corrosion
Prior art date
Application number
RU2015130171A
Other languages
English (en)
Other versions
RU2015130171A (ru
RU2015130171A3 (ru
Inventor
Георгий Павлович Карзов
Алексей Сергеевич Кудрявцев
Юрий Михайлович Трапезников
Дарина Александровна Артемьева
Кирилл Алексеевич Охапкин
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей")
Priority to RU2015130171A priority Critical patent/RU2662512C2/ru
Publication of RU2015130171A publication Critical patent/RU2015130171A/ru
Publication of RU2015130171A3 publication Critical patent/RU2015130171A3/ru
Application granted granted Critical
Publication of RU2662512C2 publication Critical patent/RU2662512C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в следующем соотношении, мас.%: углерод (С) 0,01-0,06, кремний (Si) 0,3÷0,8, марганец (Мn) 1,0÷1,7, хром(Сr) 15,0÷17,0, никель (Ni) 10÷12, молибден (Мо) 2,0÷2,5, титан (Ti) 0,05÷0,10, ниобий (Nb) 0,03-0,2, азот (N) 0,03÷0,10, сера (S) 0,01 и менее, фосфор (Р) 0,015 и менее, медь (Сu) 0,2 и менее, кальций (Са) 0,004-0,015, олово (Sn) 0,005 и менее, сурьма (Sb) 0,005 и менее, мышьяк (As) 0,005 и менее, свинец (Рb) 0,005 и менее, висмут (Bi) 0,005 и менее, железо – остальное. Для компонентов стали выполняется следующее условие: (Nb+Ti)/C≥3. Повышаются кратковременные и длительные механические свойства при высоких температурах, а также стойкость против питтинговой и межкристаллитной коррозии. 4 табл.

Description

Изобретение относится к области металлургии и изысканию сталей, используемых в атомной энергетике, машиностроении, в установках, работающих длительное время при повышенных температурах и флюенсе.
Известны применяемые в настоящее время марки аустенитных сталей, эксплуатируемых при повышенных температурах (AISI 321, AISI 316, AISI 304, 03Х16Н15М3, 08Х16Н11М3, 08Х16Н13М2Б) [1-5]. Основными недостатками указанных сталей являются более низкие кратковременные и длительные механические свойства. Низкая стойкость против питтинговой коррозии и межкристаллитной коррозии (МКК) в воде, имеющей повышенную концентрацию хлоридов.
Наиболее близкой по составу ингредиентов и назначению к предлагаемой стали является сталь по WO 2011155296 А1, С22С 38\58, 15.12.2011, содержащая, масс. %:
углерод 0,2 или менее
кремний 2,0 или менее
марганец 0,1-3,0
хром 14÷28
никель 6,0÷30
молибден 5,0 или менее
титан 0,5 или менее
ванадий 1,0 или менее
азот 0,3 или менее
кальций 0,02 или менее
железо и примеси остальное
Известная сталь имеет недостаточно высокие кратковременные и длительные прочностные характеристики, как при комнатной, так и при повышенных температурах, а также низкую стойкость против МКК и питтинговой коррозии в контакте с водой, имеющей повышенную концентрацию хлоридов.
Техническим результатом изобретения является повышение кратковременных и длительных механических свойств, повышение стойкости против МКК и питтинговой коррозии.
Для выполнения поставленной задачи необходимо вводить такие элементы, которые способствуют появлению дисперсных частиц в структуре, как при изготовлении, так и при эксплуатации материала. Необходимо также очистить металл от легкоплавких соединений серы, фосфора свинца, сурьмы, мышьяка, олова, висмута и соединений, быстро коагулирующих (Cr23С6) в процессе эксплуатации в реакторах при температурах 500-650°С. С этой целью в сталь, содержащую углерод, кремний, марганец, хром, никель, молибден, титан, азот, кальций, железо, серу, и фосфор, дополнительно введены ниобий, мышьяк, сурьма, олово, свинец, медь и висмут при следующем соотношении компонентов, мас. %:
углерод (С) 0,01-0,06
кремний (Si) 0,3÷0,8
марганец (Мn) 1,0÷1,7
хром(Сr) 15,0÷17,0
никель (Ni) 10÷12
молибден (Мо) 2,0÷2,5
титан (Ti) 0,05÷0,10
ниобий (Nb) 0,03-0,2
азор(N) 0,03÷0,10
сера (S) 0,01 и менее
фосфор (Р) 0,015 и менее
медь (Сu) 0,2 и менее
кальций (Са) 0,004-0,015
олово (Sn) 0,005 и менее
сурьма (Sb) 0,005 и менее
мышьяк (As) 0,005 и менее
свинец (Рb) 0,005 и менее
висмут (Bi) 0,005 и менее
Основное отличие изобретения от аналога заключается во введении и контроле ниобия, меди, олова, сурьмы, мышьяка, свинца, висмута, серы и фосфора
При введении ниобия в слитки при остывании образуются мелкодисперсные карбонитриды, что способствует увеличению центров кристаллизации и получению более мелкого зерна.
Частичная замена углерода азотом и введение ниобия позволяет не допускать появления и роста карбидов Ме23С6 в процессе изготовления полуфабрикатов и эксплуатации.
Атомы меди олова, свинца, сурьмы, мышьяка и висмута находятся на границах зерен, они имеют низкую температуру плавления, к тому же создают легкоплавкие эвтектики. Границы зерен ослабляются, и по ним происходит разрушение при длительном высокотемпературном нагружении.
Ограничение содержания меди, олова, сурьмы, мышьяка, свинца, висмута, серы и фосфора позволяет получать более чистые границы зерен и более высокую высокотемпературную длительную пластичность и прочность.
Атомы углерода с атомами хрома образуют крупные карбиды, коагулирующие при высокотемпературной эксплуатации. После термической обработки (аустенизация) при отсутствии ниобия выделяются карбиды размером 0,03-0,3 мкм. Длительная высокотемпературная эксплуатация приводит к укрупнению карбидов и значительному выделению их по границам зерен. Размеры выделений карбидов подрастают до 0,3-0,5 мкм, а их количество снижается в несколько раз. Увеличение расстояния между карбидами за счет их укрупнения приводит к снижению прочностных характеристик (кратковременных и длительных) [1].
Атомы азота равномерно распределены в γ и α-твердых растворах и базируются на дислокациях. Атомы азота взаимодействуют с титаном, ниобием, имеющими большее сродство к азоту, чем к углероду. При этом образуются мелкие термостойкие нитриды и карбонитриды, равномерно распределенные в теле зерен.
При легировании азотом и ниобием дисперсность частиц (Nb, N) значительно меньше, чем карбида Ме23С6.
Максимальный размер нитридной фазы, распределенной преимущественно внутри зерен, составляет 0,01-0,05 мкм [5].
Таким образом, частичная замена углерода на азот и добавление ниобия и титана приводят к снижению дисперсности выделившихся частиц и повышению устойчивости к коагуляции упрочняющей фазы. Следствием этого является повышение высокотемпературной кратковременной и длительной прочности.
Для повышения технологической пластичности в аустенитной стали необходимо снижение содержания серы и фосфора. Они образуют легкоплавкие эвтектики и окислы, понижающие высокотемпературную пластичность. Поэтому в заявляемой стали необходимо ограничить содержание серы (до 0,010 мас. %).
Вредное влияние фосфора на горячую пластичность проявляется при содержании его больше 0,015 мас. %. Поэтому в заявляемой стали необходимо ограничить содержание фосфора до 0,015 мас. %.
Кальций имеет большое сродство с серой, образуя соединение CaS. Для очищения стали от серы и фосфора и связывания остатков этих элементов в высокотемпературные тугоплавкие соединения в заявляемую сталь необходимо вводить при выплавке кальций (0,004-0,015 мас. %). Очищение границ зерен от серы и фосфора с помощью кальция приводит к повышению высокотемпературной пластичности, длительной прочности.
Для изделий, применяемых в энергомашиностроении и атомной энергетике, необходимо также обеспечение стойкости против МКК и питтингообразования. Известно [6, 7], что введение азота в аустенитную сталь повышает температуру начала питтингообразования.
Аустенитная сталь марки 03Х16Н15М3 может быть не склонна к МКК после аустенизации и провоцирующего отпуска при 650°С в течение 2 часов. Однако при эксплуатации (после 1000 ч при температуре 500-600°С) склонность к МКК проявляется, так как образуются крупные карбиды хрома на границах зерен и наблюдается обеднение хромом приграничных зон. При введении ниобия происходит образование термодинамически устойчивых карбидов, при этом хром остается в твердом растворе и МКК отсутствует.
Для обеспечения получения мелкозернистой структуры и стойкости против МКК необходимо иметь определенное соотношение ниобия и титана к углероду (Nb+Ti)/C≥3 Это соотношение обеспечивает мелкозернистую структуру и стойкость против МКК.
В заявляемой стали изменено содержание молибдена с 2,5-3,0 мас. % до 2,0-2,5 мас. %. Это объясняется тем, что молибден при высокотемпературной эксплуатации образует интерметаллиды (Fe2Mo, Сr2Мо) и повышает содержание α-фазы, что приводит к снижению длительной прочности и пластичности. Тем не менее, содержание молибдена должно быть достаточным для обеспечения образования пассивной пленки, устойчивой к воздействию хлоридов. Качественным показателем стойкости стали к питтинговой коррозии является индекс PREN (pitting resistant equivalent number [8]), который для стали аустенитного класса определяется выражением: PREN=%Сr+3,3×%Mo+30×%N, где содержание химических элементов выражено в массовых процентах. Следовательно, стойкость к питтинговой коррозии стали (с учетом дополнительного легирования азотом) возможно обеспечить при содержании молибдена не менее 2,0-2,5 мас. %, при одновременном повышении содержания азота.
В промышленных условиях на ОАО «ЧМК» были выплавлены плавки в вакуумно-индукционной и основной дуговой печах. Масса слитков после вакуумно-индукционной выплавки не превышала 300 кг. Из слитков изготовлены листовые заготовки (сутунки) размером 50×190×1010 мм и термически обработаны (аустенизация при 1050°С), затем были изготовлены образцы для испытаний. Химический состав предлагаемых плавок приведен в таблице 1.
Испытания на растяжение проводились по ГОСТ 1497-84 и ГОСТ 9651-84 при температурах 20, 600 и 550°С. Определены кратковременные свойства заявляемой и известной стали при комнатной температуре на цилиндрических образцах по ГОСТ 1497-84 и при 600 и 650°С по ГОСТ 9651-84 (по три образца на каждую температуру каждой плавки). В таблице 2 представлены результаты испытаний, которые свидетельствуют о явном преимуществе заявляемой стали по временному сопротивлению, пределу текучести и относительному удлинению при 20,550 и 600°С.
Были проведены испытания на длительную прочность при температурах 550 и 600°С на 3 образцах заявляемых плавок и известной плавки. На базе этих испытаний определяли время до разрушения и длительную пластичность.
Результаты представлены в таблице 3, из которой следует, что все плавки заявляемой стали имеют более высокие пределы длительной прочности. Испытания при 550°С показали, что время до разрушения у плавок заявляемой стали на 25% выше чем у известной. Это свидетельствует о преимуществе заявляемой стали.
Для оценки коррозионной стойкости было проведено изучение стойкости против питтингообразования ускоренным методом по ГОСТ 9.912-89.
Метод заключается в выдерживании образцов в растворе 10% FeCl3⋅6H2O при (20±1)°С в течение 5 ч с последующим определением потери массы образцов (не менее 5 шт.). Чем больше потери массы, тем меньше стойкость против питтинговой коррозии.
Снижение содержания серы и фосфора и наличие азота при достаточном уровне содержания молибдена способствует снижению скорости питтинговой коррозии. В таблице 4 представлены результаты ускоренных испытаний на коррозионную стойкость стали с содержанием серы 0,003 мас. %, 0,006 мас. %, 0,010 мас. % и известной стали с 0,014 мас. % S. Сравнение коррозионной стойкости показывает, что заявляемая сталь (плавка 1-3) характеризуется более высокими результатами, чем известная (плавка 4), то есть, чем больше серы (сульфидов), тем меньше стойкость к питтингообразованию. Кальций, взаимодействуя с серой и создавая тугоплавкие соединения (CaS), позволяет увеличивать стойкость к питтингообразованию.
Были проведены испытания на стойкость против МКК. Испытания проводили по ГОСТ 6032-89 в исходном состоянии и после выдержки образцов при температуре 600°С в течение 500 ч.
Образцы выдерживали в кипящем водном растворе сернокислой меди, серной кислоты и металлической меди в течение 24 часов. После кипячения образцы загибали на (90±3)°С и проводили осмотр при увеличении 8-12 крат. Результаты испытаний, представленные в таблице 4, свидетельствуют, что заявляемая сталь не подвержена МКК, в то время как известная сталь склонна к МКК после выдержки при 600°С.
Figure 00000001
Figure 00000002
Figure 00000003
*- Образцы не разрушены, испытания продолжаются
Figure 00000004
Примечание. В таблице приведены потери массы и стойкости против МКК средние по 5 образцам на каждую плавку.
Таким образом, введение в сталь ниобия, меди, и ограничение содержания углерода, серы, фосфора, олова, сурьмы, свинца, висмута и мышьяка позволяет повысить прочностные и коррозионные свойства заявляемой стали.
Кроме того, замена углерода на азот и связывание азота ниобием позволит уменьшить старение (падение механических свойств в процессе эксплуатации при повышенных температурах).
Технико-экономическая эффективность предлагаемого изобретения по сравнению с прототипом выразится в повышении эксплуатационных характеристик за счет повышения кратковременной и длительной прочности и повышения стойкости против МКК и питтингообразования.
ЛИТЕРАТУРА
1. Марочник сталей и сплавов. Изд-во «Машиностроение», М., 2001, 230 стр.
2. ГОСТ 5632-75 «Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные», изд-во «Госстандарт», М., 1975.
3. Журавлев В.Н., Николаева О.И. «Машиностроительные стали. Справочник». Изд-во «Машиностроение», М., 1989.
4. Спецификация кода ASME, №SA-508/SA-508M/1995.
5. Ю.З. Колвер. «Сталь» №4, 2010 г., с. 85.
6. Dae Wham Kim. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel. J. of Nucl. Materials, 420 (2012), 473-478.
7. J.Ganesh Kumar and coauthors. High temperatures dasign curves for high nitrogen grades of 316LN stainless steel. Nucl. Eng. And Design 240 (2010), 1363-1370.
8. P.A. Schweitzer., Encyclopedia of corrosion technology., 2004, 671 P.

Claims (22)

  1. Аустенитная жаропрочная и коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, титан, азот, кальций, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит ниобий, мышьяк, сурьму, олово, свинец, медь и висмут при следующем соотношении компонентов, мас.%:
  2. углерод (С) 0,01-0,06
  3. кремний (Si) 0,3÷0,8
  4. марганец (Мn) 1,0÷1,7
  5. хром (Сr) 15,0÷17,0
  6. никель (Ni) 10÷12
  7. молибден (Мо) 2,0÷2,5
  8. титан (Ti) 0,05÷0,10
  9. ниобий (Nb) 0,03-0,2
  10. aзoт (N) 0,03÷0,10
  11. cepa (S) 0,01 и менее
  12. фосфор (Р) 0,015 и менее
  13. медь (Сu) 0,2 и менее
  14. кальций (Са) 0,004-0,015
  15. олово (Sn) 0,005 и менее
  16. сурьма (Sb) 0,005 и менее
  17. мышьяк (As) 0,005 и менее
  18. свинец (Рb) 0,005 и менее
  19. висмут (Bi) 0,005 и менее
  20. железо остальное,
  21. при соблюдении следующего условия:
  22. (Nb+Ti)/C≥3.
RU2015130171A 2015-07-21 2015-07-21 Аустенитная жаропрочная и коррозионно-стойкая сталь RU2662512C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130171A RU2662512C2 (ru) 2015-07-21 2015-07-21 Аустенитная жаропрочная и коррозионно-стойкая сталь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130171A RU2662512C2 (ru) 2015-07-21 2015-07-21 Аустенитная жаропрочная и коррозионно-стойкая сталь

Publications (3)

Publication Number Publication Date
RU2015130171A RU2015130171A (ru) 2017-01-25
RU2015130171A3 RU2015130171A3 (ru) 2018-03-27
RU2662512C2 true RU2662512C2 (ru) 2018-07-26

Family

ID=58450657

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130171A RU2662512C2 (ru) 2015-07-21 2015-07-21 Аустенитная жаропрочная и коррозионно-стойкая сталь

Country Status (1)

Country Link
RU (1) RU2662512C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716922C1 (ru) * 2019-08-14 2020-03-17 Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") Аустенитная коррозионно-стойкая сталь с азотом

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273104A (zh) * 2019-07-29 2019-09-24 哈尔滨锅炉厂有限责任公司 应用于先进超超临界锅炉的奥氏体耐热钢

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
JP2004043902A (ja) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼材
EP2581464A1 (en) * 2010-06-09 2013-04-17 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel tube having excellent steam oxidation resistance, and method for producing same
RU2507294C2 (ru) * 2011-11-18 2014-02-20 Сумитомо Метал Индастриз, Лтд. Аустенитная нержавеющая сталь
RU2553112C1 (ru) * 2011-06-28 2015-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Труба из аустенитной нержавеющей стали

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098652A (en) * 1989-06-13 1992-03-24 Kabushiki Kaisha Toshiba Precision parts of non-magnetic stainless steels
JP2004043902A (ja) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼材
EP2581464A1 (en) * 2010-06-09 2013-04-17 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel tube having excellent steam oxidation resistance, and method for producing same
RU2553112C1 (ru) * 2011-06-28 2015-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Труба из аустенитной нержавеющей стали
RU2507294C2 (ru) * 2011-11-18 2014-02-20 Сумитомо Метал Индастриз, Лтд. Аустенитная нержавеющая сталь

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716922C1 (ru) * 2019-08-14 2020-03-17 Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") Аустенитная коррозионно-стойкая сталь с азотом

Also Published As

Publication number Publication date
RU2015130171A (ru) 2017-01-25
RU2015130171A3 (ru) 2018-03-27

Similar Documents

Publication Publication Date Title
KR101698075B1 (ko) 우수한 가공성, 내크리프성 및 내부식성을 갖는 니켈-크롬 합금
CA1194346A (en) Corrosion resistant high strength nickel-base alloy
KR20050044557A (ko) 슈퍼 오스테나이트계 스테인레스강
JPH0563544B2 (ru)
JP5838933B2 (ja) オーステナイト系耐熱鋼
US10883160B2 (en) Corrosion and creep resistant high Cr FeCrAl alloys
TWI551699B (zh) 沃斯田鐵型合金
RU2662512C2 (ru) Аустенитная жаропрочная и коррозионно-стойкая сталь
JP6212920B2 (ja) 金属材料
JP6547599B2 (ja) オーステナイト系耐熱鋼
JP2010159438A (ja) 耐粒界腐食性に優れた高耐食合金
RU2451588C2 (ru) Сварочная проволока для автоматической сварки теплоустойчивых сталей перлитного класса
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
CA3032772A1 (en) Austenitic stainless steel
JP2014012877A (ja) オーステナイト系耐熱合金
JP2014040669A (ja) 耐粒界腐食性に優れた高耐食合金
RU2633408C1 (ru) Теплостойкая и радиационно-стойкая сталь
RU2188109C2 (ru) Состав сварочной ленты и проволоки
RU2790717C1 (ru) Нестабилизированная аустенитная сталь, устойчивая к локальной коррозии в скд-воде
RU2782832C1 (ru) Высокопрочная маломагнитная нестабилизированная свариваемая сталь, устойчивая к локальным видам коррозии в зонах термического влияния сварки и длительного нагрева в области опасных температур
RU2807233C2 (ru) Жаропрочный сплав на основе никеля и изделие, изготовленное из него
RU2798479C1 (ru) Нестабилизированная аустенитная сталь, коррозионно-стойкая в жидком свинце и пароводяной среде
RU2515716C1 (ru) Малоактивируемая жаропрочная радиационностойкая сталь
RU2716922C1 (ru) Аустенитная коррозионно-стойкая сталь с азотом
JP2014031526A (ja) 金属材料

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant