RU2662320C1 - Способ преобразования энергии при энергоснабжении космического аппарата - Google Patents

Способ преобразования энергии при энергоснабжении космического аппарата Download PDF

Info

Publication number
RU2662320C1
RU2662320C1 RU2017110013A RU2017110013A RU2662320C1 RU 2662320 C1 RU2662320 C1 RU 2662320C1 RU 2017110013 A RU2017110013 A RU 2017110013A RU 2017110013 A RU2017110013 A RU 2017110013A RU 2662320 C1 RU2662320 C1 RU 2662320C1
Authority
RU
Russia
Prior art keywords
battery
energy
oxygen
hydrogen
mechanical energy
Prior art date
Application number
RU2017110013A
Other languages
English (en)
Inventor
Владимир Семёнович Ковтун
Надежда Владимировна Ковтун
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2017110013A priority Critical patent/RU2662320C1/ru
Application granted granted Critical
Publication of RU2662320C1 publication Critical patent/RU2662320C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Изобретение относится к системам энергоснабжения космических аппаратов (КА). Способ преобразования энергии при энергоснабжении КА включает подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из компонент для преобразования энергии электрохимических связей в механическую энергию, подключение к электродам аккумулятора токовой нагрузки при его разряде путем преобразования в кислородно-водородном цикле механической энергии указанной газовой смеси в энергию электрохимических связей, измерение давления и температуры сжатых газов смеси в процессе заряда и разряда аккумулятора. По измеренным значениям давления и температуры газовой смеси в конце заряда и последующего разряда определяют соотношение количества кислорода к количеству водорода, сравнивают указанное соотношение с номинальным коэффициентом избытка окислителя. При преобразовании в кислородно-водородном цикле механической энергии в тепловой вид и при выполнении условия К0≥Кду производят полный указанный заряд аккумулятора механической энергией смеси с последующим преобразованием механической энергии в тепловой вид энергии в кислородно-водородном цикле. Техническим результатом изобретения является повышение энергетического ресурса КА. 3 ил.

Description

Изобретение относится к способам и системам энергоснабжения космических аппаратов (КА), содержащим вторичные химические металл-водородные источники тока (электрохимические аккумуляторы), обладающие свойством накапливать энергию в виде токообразующих электрохимических связей и преобразовывать ее в электрический вид в обратимых химических реакциях кислородно-водородного цикла. Кроме этого изобретение относится к системам энергоснабжения реактивных двигателей КА, работающих на кислородно-водородном топливе, получаемом на борту аппарата.
Известен способ преобразования энергии в кислородно-водородном цикле энергоснабжения космического аппарата в обратимой химической реакции на борту, связанной с получением и использованием на борту топлива для реактивных двигательных установок (РДУ) (см. Кочанов А.В., Оглоблина И.С. Перспективы создания и применения для управления КА двигательных установок на базе электролиза воды // Полет. 2012. №4. С. 9-15) [1]. В прямом направлении реакция протекает в виде горения водорода при его соединении с кислородом в РДУ, а в обратном - при электролизе воды в окислительно-восстановительном процессе, протекающем на электродах при прохождении постоянного электрического тока через воду
Figure 00000001
В прямом направлении происходит выделение большого количества энергии в виде тепла, которая в РДУ преобразуется в кинетическую энергию направленного движения газового потока. В обратном направлении производится накопление механической энергии в виде газообразных кислорода и водорода путем разложения воды в электролизной установке с выделением водорода на катоде и кислорода на аноде за счет преобразования энергии электрохимических связей воды (слабого электролита) при прохождении через нее постоянного электрического тока. При этом установка запитывается электроэнергией на борту КА от солнечных батарей (СБ) или электрических аккумуляторов.
Недостаток способа заключатся в том, что накопленная механическая энергия сжатых газов преобразуется в тепловой вид, который не является основным видом энергии на борту КА. Основным является электрический вид энергии, который в наибольшей степени востребован для работы бортовой аппаратуры КА.
В настоящее время на борту летательных аппаратов различных классов и назначения нашли широкое применение металл-водородные аккумуляторы и в частности на борту КА - никель-водородные аккумуляторные батареи (НВАБ). Известен выбранный в качестве прототипа способ преобразования энергии при энергоснабжении КА от НВАБ с общим газовым коллектором (см. Баранчиков В.А., Железняков А.Г., Ковтун B.C., Сагина Ж.В. Ресурсные характеристики никель-водородных аккумуляторных батарей в общем корпусе при эксплуатации космического аппарата на геостационарной орбите // Изв. РАН. Энергетика. 2006. №1. С. 59-66) [2]. Способ включает в себя подачу на электроды металл-водородного аккумулятора (НВАБ) постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из кислородной и водородной компонент для преобразования энергии электрохимических связей в механическую энергию, подключение к электродам аккумулятора токовой нагрузки при его разряде путем преобразования в кислородно-водородном цикле механической энергии указанной газовой смеси в энергию электрохимических связей, измерение давления и температуры сжатых газов смеси в процессе заряда и разряда аккумулятора.
Недостаток способа заключается в том, что в конце срока эксплуатации батареи, при ее утилизации в составе КА, часть механической энергии в виде кислородно-водородной газовой смеси, находящейся в корпусе батареи под давлением, является невостребованной.
Технический результат изобретения заключается в получении дополнительного энергетического ресурса КА за счет преобразования накопленной в металл-водородных аккумуляторах механической энергии кислородно-водородной смеси (сжатых газов, находящихся под давлением в корпусе батареи) в дополнительный (по отношению к основному электрическому виду) вид тепловой энергии, используемой на борту КА. При этом указанная смесь может являться топливом для кислородно-водородных РДУ.
Для достижения технического результата в способе преобразования энергии при энергоснабжении космического аппарата, включающем подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из кислородной и водородной компонент для преобразования энергии электрохимических связей в механическую энергию, подключение к электродам аккумулятора токовой нагрузки при его разряде путем преобразования в кислородно-водородном цикле механической энергии указанной газовой смеси в энергию электрохимических связей, измерение давления и температуры сжатых газов смеси в процессе заряда и разряда аккумулятора, по измеренным значениям давления и температуры газовой смеси в конце заряда и последующего разряда определяют в ней количество кислорода и водорода, определяют соотношение количества К0 кислорода к количеству водорода, сравнивают указанное соотношение с номинальным коэффициентом избытка окислителя Кду при преобразовании в кислородно-водородном цикле механической энергии в тепловой вид и при выполнении условия К0≥Кду, производят полный указанный заряд аккумулятора механической энергией смеси с последующим преобразованием механической энергии в тепловой вид энергии в кислородно-водородном цикле, а при К0ду производят перезаряд аккумулятора электрическим током, при этом продолжительность перезаряда контролируют по предельно допустимому значению температуры смеси сжатых газов из компонент и в момент достижения предельного значения, осуществляют указанный разряд аккумулятора номинальной токовой нагрузкой, с одновременным охлаждением аккумулятора до номинальных температурных значений смеси компонент, далее производят повторный зарядно-разрядный цикл, по результатам которого определяют значение коэффициента К1, обуславливающего указанное соотношение компонент в аккумуляторе после проведенного перезаряда, и, если выполняется условие К1≥Кду, производят полный заряд батареи с последующим преобразованием механической энергии в тепловой вид энергии, а при К1ду повторяют n-е число зарядно-разрядных циклов с предварительным указанным перезарядом аккумулятора, где n=2, 3, …, и определением коэффициентов Кn до выполнения условия Кn≥Кду, с последующим преобразованием механической энергии в тепловой вид энергии после полного заряда аккумулятора.
В качестве примера для пояснения технической сущности способа преобразования энергии при энергоснабжении КА выбран НВАБ с общим газовым коллектором (объемом) [2].
Для пояснения сути предложенного технического решения, представлены:
Фиг. 1 - графики зависимости емкости аккумуляторного элемента (АЭ) от электролитосодержания.
Фиг. 2 - графики измеренных значений основных параметров НВАБ, полученные в течение полетных суток (время, час), включающих проведение зарядно-разрядного теста батареи после девяти летнего срока эксплуатации в составе КА «Ямал-100» на геостационарной орбите (ГСО).
Фиг. 3 - графики измеренных значений основных параметров НВАБ, полученные в течение полетных суток (время, час), включающих проведение зарядно-разрядного теста батареи после пяти летнего срока эксплуатации в составе КА «Ямал-100» на ГСО.
На представленных графиках фиг. 1 отражается емкость АЭ с накоплением молекулярного кислорода (O2) 1 и без накопления O2 2.
На представленных графиках фиг. 2, фиг. 3 отражены: давление (P) 3 в газовом коллекторе НВАБ; температуры (t, °C): на корпусе батареи 4, поверхности радиационного теплообменника (РТО) 5 и тепловых трубах 6.
Известно, что процесс заряда НВАБ сопровождается выделением молекулярного кислорода на положительном окисно-никелевом электроде (ОНЭ) (см. Центер Б.И., Лызлов Н.Ю. Металл-водородные электрохимические системы. Ленинград. «Химия», Ленинградское отделение, 1989 г.) [3, стр. 265-266]. В конце заряда часть зарядного тока тратится на реакцию выделения кислорода. В идеальном случае весь образующийся на ОНЭ кислород при разряде должен восстанавливаться (рекомбинировать) с водородом на катализаторе водородного отрицательного электрода (ВЭ) с образованием воды. В состоянии термодинамического равновесия процессы генерации и рекомбинации носителей зарядов должны быть взаимно уравновешены. Таким образом, вместе с токообразующей реакцией обеспечивается замкнутый кислородно-водородный цикл [3, стр. 19]
Figure 00000002
Figure 00000003
Однако, как показывают испытания и опыт эксплуатации батареи, восстанавливается не весь выделившийся на ОНЭ кислород, а лишь некоторая большая его часть, в то время как остальной газ постепенно накапливается в коллекторе НВАБ. Транспорт кислорода по газовой фазе протекает в двух направлениях: тангенциальном - вдоль поверхности ОНЭ с выходом в газовую фазу и нормальном, формируя каналы подачи газа в сепараторе. В первом случае кислород поступает в общий объем коллектора. Во втором - газ накапливается в пористом объеме ОНЭ.
Наличие газообразного кислорода в порах положительного электрода отрицательно влияет на основные электрические характеристики аккумулятора. Протекающие в ОНЭ во время зарядно-разрядного цикла процессы влияют на его пористую структуру. Так, выделяющийся при заряде кислород помимо «локальных» эффектов (выдавливания электролита из ОНЭ и уменьшения рабочей поверхности его активного слоя, затопления ВЭ и повышения температуры при рекомбинации кислорода с водородом на ВЭ), оказывает механическое воздействие на пористую структуру ОНЭ. При этом, выделяющийся на ОНЭ кислород может отслаивать частицы активной массы от никелевого каркаса и выносить их к сепаратору.
В соответствии с законами образования новой газовой фазы в жидкой среде, выделяющийся в конце заряда кислород обладает большим давлением, чем давление жидкости в капиллярах и, тем более, большим давлением, чем давление водорода в общем газовом коллекторе. Таким образом, ОНЭ в конце каждого заряда испытывает «внутреннее» избыточное давление, максимум которого наступает в первые моменты времени разряда, когда давление водорода, окружающего батарею, начинает падать. Периодичность зарядно-разрядных циклов является причиной циклического характера этого воздействия. Этот процесс вызывает усталостные дефекты в материале электрода и приводит к появлению и росту трещин, что вместе с ростом крупных пор способствует изменению (увеличению) пористости в ходе наработки ресурса.
Было исследовано влияние выделения и накопления кислорода на характеристики НВАБ, установленных на КА «Ямал-100». Испытания проводились на малоформатных АЭ диаметром 49 мм, состоявших из одной электрохимической группы (ЭХГ) биполярной конструкции, стянутой между двумя фланцами в специальной оснастке. ЭХГ состояла из одного ОНЭ, ВЭ и сепаратора. При этом электрохимическая часть ЭХГ НВАБ состоит из 18 последовательно соединенных ЭХГ.
Выделение кислорода на ОНЭ начиналось по достижении уровня заряженности, соответствующего 0,6-0,7 C (C - номинальный уровень заряженности). После заряда до 0,8 C давление кислорода превысило постоянно поддерживаемое давление водорода в водородной полости, продолжая быстро возрастать вплоть до заряда 1,2 C. В этот момент наступил газовый пробой сепаратора: кислород начал перетекать (через освобожденные перепадом давления крупные поры сепаратора) из полости ОНЭ на ВЭ и в общий объем установки.
В результате исследований, определено влияние накапливающегося кислорода на электрическую емкость АЭ при различном электролитосодержании в ЭХГ. Зависимость электрической емкости АЭ от электролитосодержания с накоплением в полости ОНЭ кислорода и без него приведены на графиках фиг. 1. Как видно из графиков, при наличии перепада давления со стороны ОНЭ емкость АЭ уменьшается на ~20%.
Эти исследования убедительно свидетельствовали о том, что при накоплении кислорода в ОНЭ и образовании перепада давлений между кислородной и водородной полостями происходит некоторое передавливание электролита с ОНЭ на ВЭ, что приводит к уменьшению «рабочей» поверхности активной массы ОНЭ и возрастанию газодиффузионной поляризации ВЭ вследствие его затопления электролитом.
Результаты исследований были положены в основу эксплуатации НВАБ на верхних уровнях заряженности [4]. Заряд НВАБ находился в пределах 100-110% C (перезаряд более чем на 10% не допускался), что считалось оптимальным верхним уровнем заряженности.
Однако, по мере выработки ресурса батарей, происходило постепенное накопление в их коллекторах не рекомбинированного кислорода. Об этом свидетельствовал рост остаточного давления в коллекторе в конце тестовых разрядов, в зарядно-разрядных циклах, проводимых по два раза в год перед прохождением КА весенних и осенних теневых участков орбиты ([2], стр. 64, рис. 7). Расчетная формула энергоемкости (Wp) НВАБ (см. [2], стр. 60)
Figure 00000004
включает в себя К - коэффициент сжимаемости и расхода водорода в токообразующей электрохимической реакции; P - давление в коллекторе на момент времени окончания заряда, Па; Pк - давление в коллекторе на момент времени окончания разряда, Па.
При этом в конце разряда принимается условие использования всего водорода (переход в Ni(OH)2) в электрохимической реакции, о чем косвенно свидетельствует резкое падение напряжения на батареи (см. [2], стр. 63, рис. 4), фиксируемое датчиком. Частичные остатки водорода можно принять как не значительные и ими в расчетах можно пренебречь. Таким образом, падение давления, связанное с расходом водорода в электрохимической реакции, составило
Figure 00000005
Остаточное давление Pк создается смесью газообразного кислорода и паров воды. Общее давление смеси (из условия идеальных газов по закону Дальтона) равно сумме парциальных давлений газов в смеси
Figure 00000006
В начале эксплуатации батареи пары воды в коллекторе практически отсутствуют. Однако, при определенных температурных условиях дальнейшей эксплуатации, может происходить «высушивание» ЭХГ (см. Ковтун B.C., Железняков А.Г., Сагина Ж.В. Характеристики никель-водородных аккумуляторных батарей после десяти лет эксплуатации в космосе // Изв. РАН. Энергетика. 2011. №3. С. 12-22) [4], с выпадение влаги на внутренних поверхностях корпуса НВАБ. При этом часть влаги находится в газообразном состоянии внутри корпуса. Процент ее незначителен (по проведенным оценкам, после пяти лет эксплуатации НВАБ и далее не более 4% от Pк), так как она либо конденсируется на внутренних поверхностях корпуса, либо за счет капиллярных сил, создаваемых пористыми структурами АЭ, восстанавливает состав щелочного электролита (КОН). Таким образом, с учетом всех конструктивных особенностей и условий эксплуатации батарей на конечном этапе их эксплуатации, можно принять за парциальное давление кислорода в НВАБ значение
Figure 00000007
где k - коэффициент, учитывающий наличие влаги в составе кислородно-водородной смеси, в рассматриваемом примере k≈0,96.
Проанализируем проведенный в конце срока эксплуатации батареи, тестовый зарядно-разрядного цикл, для определения по полученным значениям давления и температуры в конце заряда и конце разряда батареи, количества кислорода и водорода в НВАБ1 [2, 4] (фиг. 2).
Как следует из измеренных значений, отражаемых в виде графиков, в разрядно-зарядном цикле НВАБ получены значения
P1≈46,8 кгс/см2≈4,68⋅106 Па; P≈21,0 кгс/см2≈2,1⋅106 Па.
При этом температура корпуса в конце заряда составила T1≈0°C≈273 К. Определим массу водорода в конце заряда батареи, с учетом (2), по выражению
Figure 00000008
где μ1=2⋅10-3 кг/моль - молярная масса водорода;
V=15⋅10-3 м3 - объем газового коллектора НВАБ;
R=8,31 Дж/моль⋅K - универсальная газовая постоянная.
Определим массу кислорода в конце заряда батареи, с учетом (4), по выражению
Figure 00000009
где μ2=32⋅10-3 кг/моль - молярная масса кислорода.
Аналогичный тест проводился в конце пятилетнего срока эксплуатации НВАБ1 (фиг. 3, см. [2]., стр. 64, рис. 7]). По результатам теста получены исходные данные для расчета P'1≈55,1 кгс/см2≈5,51⋅106 Па; P'≈15,0 кгс/см2≈1,5⋅106 Па; T2≈60°C≈279К. Далее производим аналогично по (5) и (6) определение массы водорода и кислорода
Figure 00000010
Figure 00000011
Определим соотношение количества кислорода к количеству водорода в объеме батареи (К0) для первого случая
Figure 00000012
Выберем в качестве преобразователя энергии РДУ, работающую на кислородно-водородном топливе, в которой можно было бы использовать полученную смесь. Для этого можно использовать экспериментальную двигательную установку, разработанную в Центре Келдыша [1], для применения на КА. Получение топлива для РДУ производится за счет электролиза воды. Коэффициент избытка окислителя (Кду) РДУ (соотношение компонентов топлива O2 к H2) Кду=7,94.
Для эффективного преобразования механической энергии в тепловой вид необходимо добиться в преобразователе полного сжигания водорода в кислороде. Как видно, соотношение (7) больше примерно в полтора раза коэффициента избытка окислителя разработанной РДУ. Использование такого состава смеси приведет к повышенному расходу окислителя и уменьшению удельного импульса тяги. Изменить указанное соотношение, за счет управляющих воздействий на НВАБ, физически не возможно.
Поэтому сравнивают указанное соотношение (7) с номинальным коэффициентом избытка окислителя Кду при преобразовании в кислородно-водородном цикле механической энергии в тепловой вид и при выполнении условия К0≥Кду производят полный указанный заряд аккумулятора механической энергией смеси с последующим преобразованием механической энергии в тепловой вид энергии в кислородно-водородном цикле путем сжигания водорода в кислороде.
В другом случае тестирования НВАБ получим соотношение
Figure 00000013
В данном варианте коэффициент меньше заданного, что также приведет к уменьшению удельного импульса тяги из-за неполного сгорания горючего. Значения величин, полученные в (7) и (8), образуют интервал, в котором находится коэффициент Кду. Следовательно, по мере выработки ресурса НВАБ, можно достичь номинального соотношения кислородно-водородной смеси в коллекторе батареи для выбранной РДУ. В случае завершения полета КА и прекращения эксплуатации батареи в качестве источника электроэнергии при соотношении (8), сокращения сроков получения смеси в соотношении, близком к значению Кду, производится за счет эксплуатации НВАБ в режиме перезаряда.
Как указывалось ранее, перезаряд батареи на величину больше 1,2 С, приводит к быстрой генерации кислорода с экзотермической реакцией и накоплением кислорода в газовой фазе. При этом высокое тепловыделение, приводит к быстрому росту температуры в зоне электрохимических реакций, который приводит к росту температуры газовой смеси. Указанный рост температуры может привести к «тепловому разгону батареи» [2-4] с разрушением структуры АЭ. Поэтому контроль завершения перезаряда производят по допустимому температурному значению газовой смеси (которое можно принять примерно равным температуре на корпусе батареи). В рассматриваемом примере предельной являлась температура газовой смеси 450°C. По достижении предельно допустимого температурного значения газовой смеси для исключения разрушения АЭ производится разряд батареи номинальным током с одновременным охлаждением ЭХБ через РТО [2].
Таким образом, при К0ду производим перезаряд аккумулятора электрическим током, при этом продолжительность перезаряда контролируем по предельно допустимому значению температуры смеси сжатых газов из компонент и в момент достижения предельного значения осуществляем указанный разряд аккумулятора номинальной токовой нагрузкой, с одновременным охлаждением аккумулятора до номинальных температурных значений смеси компонент (15-200°C) [2, 4]. Далее производим повторный зарядно-разрядный цикл, по результатам которого определяем значение коэффициента К1, обуславливающего указанное соотношение компонент в аккумуляторе после проведенного перезаряда, и, если выполняется условие К1≥Кду, производим полный заряд батареи с последующим преобразованием механической энергии в тепловой вид энергии. Если условие не выполняется (К1ду), производится «дополнительное накачивание» батареи кислородом. Для этого повторяется n-е число зарядно-разрядных циклов с указанным перезарядом батареи, где n=2, 3, …, и с определением коэффициентов Кn до выполнения условия Кn≥Кду, с последующим преобразованием механической энергии в тепловой вид энергии после полного заряда аккумулятора. При этом осуществляется перепуск кислородно-водородной смеси из батареи в преобразователь (магистраль подачи топлива в РДУ [1]) после полного заряда батареи.
Реализация способа может быть осуществлена с использованием существующей НВАБ, с общим газовым коллектором, конструктивные особенности которой не потребуют специальной доработки (см. Баженов М.Д., Железняков А.Г., Кондратьев Д.Г. Никель-водородная аккумуляторная батарея с общим газовым коллектором // Изв. РАН. Энергетика. 2003. №5. С. 21-37) [5]. К штуцеру заправки водорода НВАБ подключается магистраль системы подачи смеси в РДУ. При этом в магистраль системы последовательно включены электропневмоклапан открытия магистрали, газожидкостный сепаратор воды, понижающий рабочий редуктор. Указанные элементы системы представлены на рис. 3б в [1]. На выходе магистраль соединяется со штуцером подачи кислорода в РДУ (см. [1], рис 2). А на штуцер подачи водорода в РДУ ставится заглушка.
Проведем оценку эффективности применения способа. Для этого используем основные параметры разработанного экспериментального двигателях [1] - расчетную тягу F=0,1H; расход компонентов топлива: кислорода - 27 мг/с, водорода 3,4 мг/с (суммарный секундный массовый расход
Figure 00000014
); расчетный удельный импульс тяги 3730 м/с.
В результате использования способа в НВАБ может быть образована кислородно-водородная смесь общей массой Mc1~41,5 г, при соотношении компонентов топлива 36,9 г O2 и 4,6 г H2 (К'ду≈8). Всего на борту КА «Ямал-100» находится две НВАБ, следовательно, можно использовать суммарную массу смеси Mc≈83 г. Общая продолжительность работы двигателя на образованной смеси
Figure 00000015
Для КА «Ямал-100» массой МК=103 кг величина характеристической скорости увода на орбиту захоронения составит
ΔV≈FΔτ/МК≈0,27 м/с.
Указанная оценка приводится для существующих устройств, на базе которых может быть реализован предложенный способ. Отдельное рассмотрение технического решения, с разработкой специальных устройств для его реализации могут повысить эффективность способа. Необходимо также отметить, что реализация предложенного способа преобразования энергии может использоваться на борту КА совместно с двигательной установкой на базе электролиза воды. Преимущество такой реализации заключается в уменьшении общей массы исполнительных устройств.
Литература
1. Кочанов А.В., Оглоблина И.С. Перспективы создания и применения для управления КА двигательных установок на базе электролиза воды // Полет. 2012. №4. С. 9-15.
2. Баранчиков В.А., Железняков А.Г., Ковтун B.C., Сагина Ж.В. Ресурсные характеристики никель-водородных аккумуляторных батарей в общем корпусе при эксплуатации космического аппарата на геостационарной орбите // Изв. РАН. Энергетика. 2006. №1. С. 59-66.
3. Центер Б.И., Лызлов Н.Ю. Металл-водородные электрохимические системы. Л.: «Химия», Ленинградское отделение, 1989 г.
4. Ковтун B.C., Железняков А.Г., Сагина Ж.В. Характеристики никель-водородных аккумуляторных батарей после десяти лет эксплуатации в космосе // Изв. РАН. Энергетика. 2011. №3. С. 12-22.
5. Баженов М.Д., Железняков А.Г., Кондратьев Д.Г. Никель-водородная аккумуляторная батарея с общим газовым коллектором // Изв. РАН. Энергетика. 2003. №5. С. 21-37.

Claims (1)

  1. Способ преобразования энергии при энергоснабжении космического аппарата, включающий подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из кислородной и водородной компонент для преобразования энергии электрохимических связей в механическую энергию, подключение к электродам аккумулятора токовой нагрузки при его разряде путем преобразования в кислородно-водородном цикле механической энергии указанной газовой смеси в энергию электрохимических связей, измерение давления и температуры сжатых газов смеси в процессе заряда и разряда аккумулятора, отличающийся тем, что по измеренным значениям давления и температуры газовой смеси в конце заряда и последующего разряда определяют в ней количество кислорода и водорода, определяют соотношение количества К0 кислорода к количеству водорода, сравнивают указанное соотношение с номинальным коэффициентом избытка окислителя Кду при преобразовании в кислородно-водородном цикле механической энергии в тепловой вид и при выполнении условия К0≥Кду производят полный указанный заряд аккумулятора механической энергией смеси с последующим преобразованием механической энергии в тепловой вид энергии в кислородно-водородном цикле, а при К0ду производят перезаряд аккумулятора электрическим током, при этом продолжительность перезаряда контролируют по предельно допустимому значению температуры смеси сжатых газов из компонент и в момент достижения предельного значения осуществляют указанный разряд аккумулятора номинальной токовой нагрузкой, с одновременным охлаждением аккумулятора до номинальных температурных значений смеси компонент, далее производят повторный зарядно-разрядный цикл, по результатам которого определяют значение коэффициента К1, обуславливающего указанное соотношение компонент в аккумуляторе после проведенного перезаряда, и, если выполняется условие K1ду, производят полный заряд батареи с последующим преобразованием механической энергии в тепловой вид энергии, а при K1ду повторяют n-е число зарядно-разрядных циклов с предварительным указанным перезарядом аккумулятора, где n=2,3,…, и определением коэффициентов Кn до выполнения условия Кn≥Кду, с последующим преобразованием механической энергии в тепловой вид энергии после полного заряда аккумулятора.
RU2017110013A 2017-03-24 2017-03-24 Способ преобразования энергии при энергоснабжении космического аппарата RU2662320C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017110013A RU2662320C1 (ru) 2017-03-24 2017-03-24 Способ преобразования энергии при энергоснабжении космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017110013A RU2662320C1 (ru) 2017-03-24 2017-03-24 Способ преобразования энергии при энергоснабжении космического аппарата

Publications (1)

Publication Number Publication Date
RU2662320C1 true RU2662320C1 (ru) 2018-07-25

Family

ID=62981789

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017110013A RU2662320C1 (ru) 2017-03-24 2017-03-24 Способ преобразования энергии при энергоснабжении космического аппарата

Country Status (1)

Country Link
RU (1) RU2662320C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395706A (en) * 1994-01-14 1995-03-07 Space Systems/Loral, Inc. Satellite battery thermal/capacity design
RU2291819C2 (ru) * 2005-01-24 2007-01-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Способ управления энергообеспечением космического аппарата
RU2392700C1 (ru) * 2008-11-20 2010-06-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника земли

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395706A (en) * 1994-01-14 1995-03-07 Space Systems/Loral, Inc. Satellite battery thermal/capacity design
RU2291819C2 (ru) * 2005-01-24 2007-01-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Способ управления энергообеспечением космического аппарата
RU2392700C1 (ru) * 2008-11-20 2010-06-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ эксплуатации никель-водородной аккумуляторной батареи в составе искусственного спутника земли

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
В.А. Баранчиков и др. Ресурсные характеристики никель-водородных аккумуляторных батарей в общем корпусе при эксплуатации космического аппарата на геостационарной орбите. Известия Российской академии наук. Энергетика. - М.: Наука, 2006, N 1, с. 59-66. *

Similar Documents

Publication Publication Date Title
Uno et al. Accelerated charge–discharge cycling test and cycle life prediction model for supercapacitors in alternative battery applications
Burke Fuel cells for space science applications
CN101542804B (zh) 燃料电池系统
Heidari et al. Technical feasibility of a proton battery with an activated carbon electrode
CN101689658B (zh) 燃料电池系统
RU2001128887A (ru) Аккумуляторная батарея, устройство, содержащее аккумуляторную батарею, способ локально-распределенной выработки электроэнергии и устройство выработки электроэнергии указанным способом
Choi et al. Novel hydrogen production and power generation system using metal hydride
JPH02502499A (ja) 長寿命ニッケル‐水素蓄電池
EP2869383B1 (en) Large-capacity power storage device
JP5594744B2 (ja) リバーシブル燃料電池
Likit-Anurak et al. The performance and efficiency of organic electrolyte redox flow battery prototype
RU2313160C1 (ru) Способ подготовки никель-водородной аккумуляторной батареи к штатной эксплуатации в системе электропитания искусственного спутника земли
RU2662320C1 (ru) Способ преобразования энергии при энергоснабжении космического аппарата
CN110085808B (zh) 一种具有电解液非接触式贮氢合金负极的镍氢电池
Kim et al. Compact PEM fuel cell system using chemical hydride hydrogen source for portable power generators
KR102151721B1 (ko) 이동식 에너지 가역 충방전 시스템
Smithrick et al. Nickel-hydrogen batteries-An overview
US10553916B2 (en) Johnson ambient heat engine
WO2021100112A1 (ja) 直流電源システム
Garche et al. Regenerative fuel cells
KR102358856B1 (ko) 전기 에너지를 생산하기 위한 충전가능한 전기화학 디바이스
CN216720003U (zh) 一种氢动力电池系统
Ghezel-Ayagh et al. Hybrid SOFC-battery power system for large displacement unmanned underwater vehicles
CN113067009B (zh) 一种水下装备复合能源高效利用系统及使用方法
RU2324262C2 (ru) Способ управления энергоемкостью металл-водородной аккумуляторной батареи с общим газовым коллектором