RU2658450C1 - Способ факельного сжигания низкосортных углей в котельных установках - Google Patents

Способ факельного сжигания низкосортных углей в котельных установках Download PDF

Info

Publication number
RU2658450C1
RU2658450C1 RU2017124067A RU2017124067A RU2658450C1 RU 2658450 C1 RU2658450 C1 RU 2658450C1 RU 2017124067 A RU2017124067 A RU 2017124067A RU 2017124067 A RU2017124067 A RU 2017124067A RU 2658450 C1 RU2658450 C1 RU 2658450C1
Authority
RU
Russia
Prior art keywords
coal
stage
low
combustion
grade
Prior art date
Application number
RU2017124067A
Other languages
English (en)
Inventor
Анатолий Петрович Бурдуков
Виталий Исакович Попов
Артём Валерьевич Кузнецов
Евгений Борисович Бутаков
Егор Николаевич Яганов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН)
Priority to RU2017124067A priority Critical patent/RU2658450C1/ru
Application granted granted Critical
Publication of RU2658450C1 publication Critical patent/RU2658450C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q13/00Igniters not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Изобретение относится к области теплоэнергетики и может быть использовано для сжигания низкосортных углей и отходов их переработки в энергетических пылеугольных котлах. Способ факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, затем продукты сгорания угля микропомола и основную фракцию низкосортного угля вводят во вторую ступень, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя его теплоту сгорания. Технический результат - эффективный и надежный способ розжига, стабилизация горения и факельного сжигания низкосортных углей в котельных установках. 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области теплоэнергетики и может быть использовано для сжигания низкосортных углей и отходов их переработки в энергетических пылеугольных котлах.
Низкосортные угольные топлива - это топлива с высокой зольностью и низкой теплотворной способностью. Обычно их сжигают в псевдоожиженном слое на инертном материале, в частности на катализаторе.
Известен способ розжига и стабилизации горения низкосортных углей (патент РФ №98122200, 1998 г., Н05Н 1/00), в котором в качестве плазмообразующего газа используют дымовые газы, а для создания окислительной среды применяют смесь воздуха с водяным паром. Горючими газами служит смесь оксида углерода и водорода, которые подаются для дожигания в котельный агрегат.
Недостатки данного способа:
- сложная реализация управления водяным паром, при использовании дымовых газов, как плазмообразующего агента;
- способ малоэнергоэффективен в силу сопутствующих восстановительных эндотермических реакций;
- использование плазматрона в пылеугольной горелке требует значительных энергозатрат.
Наиболее близким по технической сущности к заявляемому способу является способ плазменно-угольной растопки пылеугольного котла и стабилизации горения факела в нем (патент US 5156100 А, F23C 1/04, F23D 1/00, F23Q 13/00, F23N 1/02, 1992 г.), включающий подачу в первую ступень камеры термохимической подготовка (ТХП) части потока, поступающего в данную горелку, пылеугольной аэросмеси, генерирование низкотемпературной плазмы в плазматроне, подачу струи плазмы на вход в первую ступень камеры ТХП и воспламенение аэросмеси плазмой, получение топливной смеси в первой ступени камеры ТХП в результате горения части угля и нагрева аэросмеси до выхода из угля летучих компонентов и частичной газификации коксового остатка, подачу полученной топливной смеси во вторую ступень камеры ТХП, подачу во вторую ступень камеры ТХП второй части аэросмеси и ее воспламенение этой топливной смесью, нагрев этой второй аэросмеси до выхода летучих компонентов и частичной газификации коксового остатка вследствие частичного горения угля, получение в результате этого топливной смеси из всей подаваемой в данную горелку аэросмеси, подачу полученной топливной смеси из плазменно-угольной горелки в топку котла, подачу вторичного воздуха из этой горелки в топку с образованием горячего факела, при этом во вторую ступень камеры ТХП подают аэросмесь с содержанием кислорода таким, чтобы в смеси с газами из первой ступени камеры ТХП его концентрация была в пределах 8-10%, что (по мнению автора) устраняет шлакование второй ступени камеры ТХП и обеспечивает надежную и безостановочную растопку котла и подсветку факела без использования второго сопутствующего вида топлива.
Недостатками данного способа являются:
- поддерживать требующую концентрацию кислорода в аэросмеси (8-10%) с газами, уходящими из второй ступени камеры ТХП, практически реализовать невозможно, ввиду многочисленных факторов, влияющих на данный процесс (например, из-за непредсказуемости содержания влаги и самого кислорода в воздушном потоке, как и непостоянство этих составляющих в самом топливе);
- использование плазматрона в пылеугольной горелки требует значительных энергозатрат.
Задачей настоящего изобретения является создание нового более эффективного и надежного способа с улучшенными технико-экономическими и эксплуатационными показателями.
Поставленная задача решается тем, что в способе факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, согласно изобретению, низкосортный уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации в мельнице-активаторе дезинтеграторного типа с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом, вводя через электрохимический генератор (ЭХГ), в первую ступень подачи и сжигания механо- и электроактивированного угля микропомола горелочного устройства улиточного типа с полным выгоранием угля микропомола в окислительной среде, затем продукты сгорания угля микропомола из первой ступени и основную фракцию низкосортного угля вводят во вторую ступень подачи и сжигания основной фракции низкосортного угля, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола в первой ступени, используя его теплоту сгорания.
При использовании сильно забалластированных низкосортных углей, в первую ступень подачи и сжигания механо- и электроактивированного угля микропомола горелочного устройства улиточного типа подают механоактивированный высокореакционных уголь, проходящий через ЭХГ.
Для повышения производительности горелочного устройства, продукты сгорания пылеугольного топлива из первой ступени в противотоке подаются на вторую ступень, интенсивно смешиваются (встречные потоки в первой и второй ступени формируются геометрией улиточной формы).
Для повышения устойчивости горения и производительности горелки, работающей на сильно забалластированных углях, в первую ступень горелки целесообразно подавать механоактивированный высокореакционный уголь микропомола, с прохождением его через устройство электрохимической активации.
Сущность изобретения поясняется рисунками (фиг. 1 и 2), где:
1 - раздаточный бункер;
2 - мельница-активатор дезинтеграторного типа;
3 - инжектор;
4 - электрохимический генератор (ЭХГ);
5 - первая ступень подачи и сжигания механо- и электроактивированного угля микропомола;
6 - вторая ступень подачи и сжигания основной фракции низкосортного угля;
7 - предтопок;
8 - топка котла.
Сведения, подтверждающие возможность существование заявленного изобретения с помощью указанного технического результата, состоят в следующем.
Уголь, предназначенный для сжигания, подготавливают до определенного размера известным, например, ШБМ (шаровая барабанная мельница) способом. После сепарации крупную фракцию домалывают возвратом на ШБМ (на рисунке система условно не показана). Подготовленный таким образом уголь из раздаточного бункера 1 направляют в мельницу-активатор дезинтеграторного типа 2, которую устанавливают вблизи первой ступени 5. В дезинтеграторе уголь механоактивируют, доводя одновременно его тонину до размера частиц не более 40 мкм, а затем инжектируют 3 первичным воздухом (избыток воздуха α≤1) в первую ступень 5 по касательной (улиточно) к ее продольной оси, т.е. тангенциально. Ввод пылевоздушной механоактивированной пылеугольной смеси в первую ступень осуществляют прямоточно через высоковольтный высокочастотный электрохимический генератор (ЭХГ) 4. Электрохимический генератор 4 создает высокоокисляющую озонную среду с температурой выше температуры воспламенения частиц угля. При этом ЭХГ позволяет активировать пылеугольную смесь со стороны окислителя. Одновременное повышение механохимической активности угольного вещества и окислителя позволяет осуществлять воспламенение и устойчивое горение пылеугольного факела.
Ввод угля микропомола с тангенциальным впрыском струи, выходящей из ЭХГ 4, дает возможность оценить и обеспечить необходимое время пребывания для воспламенения частиц, гарантирует эффективность, надежность воспламенения и сжигания угля микропомола внутри первой ступени 5.
Основной же поток низкореакционного угля из раздаточный бункера 1 вводят совместно с воздушным потоком тангенциально во вторую ступень 6, точнее в ее вихревой смеситель, куда одновременно тангенциально в противотоке вводятся продукты сгорания угля микропомола из первой ступени 5. Это обстоятельство способствует их интенсивному перемешиванию, образованию устойчивого вихря внутри смесителя второй ступени. Продукты сгорания угля микропомола и основная фракция низкореакционного угля с воздухом (пылеугольная смесь) далее движутся поступательно и вращательно вдоль продольной оси предтопка 7, вплоть до камеры котла 8.
Следует отметить, что уголь микропомола сгорает в первой ступени при максимальной для данной марки угля температуре и с полной отдачей теплотворной способности. Под воздействием высокой температуры и при интенсивном перемешивании пылеугльная смесь во второй ступени быстро прогревается и воспламеняется, поглощая полностью все теплоту сгорания угля микропомола. При сжигании очень низкореакционного основного топлива, вводимого во вторую ступень, представляется возможным подавать в первую ступень механоактивированный высокореакционный уголь микропомола с использованием электрохимического генератора для его химической активации и поджига.
Технический эффект от использования предложенного изобретения состоит в следующем. Предложенный способ был апробирован на стенде тепловой мощностью 5 МВт (в ИТФ СО РАН, г. Новосибирск) при сжигании высокореакционного (Кузнецкого, марки Д) и низкореакционного спекающего угля марки СС. Опыты проведены с расходом воздуха в диапазоне 207-373 м3/ч, расходом топлива 50-220 кг/ч, коэффициент избытка воздуха а варьировался от 0.18 до 0.81. Исследован температурный режим и проведен газовый анализ продуктов горения в камерах первой и второй ступени, предтопка, камеры дожигания (котла) при сжигании углей с использованием механохимической и электрохимической активации. После камеры дожигания производился отбор летучей золы - уносов по изокинетическому методу отбора, а также анализ состава дымовых газов с помощью газоанализатора TESTO-340. Значительное внимание в опытах было уделено изменению геометрической компоновки электродов ЭХГ, для создания устойчивой дуги при исследуемых скоростях (до 20 м/с) пылеугольной смеси угля микропомола. Потребляемая мощность ЭХГ при этом не превышала 3,5 кВт, что существенно ниже потребляемой мощности макетного плазматрона. Сравнительное энергопотребление плазматрона - 15-25 кВт.
Результаты исследований позволили выявить приемлемые технико-экологические показатели: через 100 секунд реализовался автотермический режим горения при температуре в диапазоне 1200-1400°С. Анализ газа показал, что в конце камеры реагирования (предтопка) происходит практически полное выгорание кислорода. Анализ опытных данных показал, что при использовании двухступенчатой схемы сжигания механо-электроактивированных углей микропомола можно снизить выброс токсичных газов типа NOx на 30% и уменьшить механический недожог на 35% по сравнению с существующими предельно допустимыми нормами.

Claims (4)

1. Способ факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, отличающийся тем, что уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, затем продукты сгорания угля микропомола и основную фракцию низкосортного угля вводят во вторую ступень, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя его теплоту сгорания.
2. Способ по п. 1, отличающийся тем, что низкосортный уголь подвергают механической активации в мельнице-активаторе дезинтеграторного типа.
3. Способ по п. 1, отличающийся тем, что механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, предварительно пропуская через электрохимический генератор (ЭХГ).
4. Способ по п. 1, отличающийся тем, что в первую ступень горелочного устройства улиточного типа подают механоактивированный высокореакционный уголь.
RU2017124067A 2017-07-06 2017-07-06 Способ факельного сжигания низкосортных углей в котельных установках RU2658450C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017124067A RU2658450C1 (ru) 2017-07-06 2017-07-06 Способ факельного сжигания низкосортных углей в котельных установках

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017124067A RU2658450C1 (ru) 2017-07-06 2017-07-06 Способ факельного сжигания низкосортных углей в котельных установках

Publications (1)

Publication Number Publication Date
RU2658450C1 true RU2658450C1 (ru) 2018-06-21

Family

ID=62713385

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017124067A RU2658450C1 (ru) 2017-07-06 2017-07-06 Способ факельного сжигания низкосортных углей в котельных установках

Country Status (1)

Country Link
RU (1) RU2658450C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766193C1 (ru) * 2020-10-26 2022-02-09 Сергей Николаевич Кучанов Способ ступенчатого сжигания пылеугольного топлива и устройство для реализации способа
RU2778593C1 (ru) * 2021-08-31 2022-08-22 Денис Сергеевич Синельников Способ воспламенения и факельного сжигания топливовоздушной смеси и устройство для реализации способа

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210032C2 (ru) * 2000-12-28 2003-08-10 Карпенко Евгений Иванович Способ плазменного воспламенения пылеугольного топлива (варианты) и плазменная пылеугольная горелка (варианты)
RU2336465C2 (ru) * 2006-10-04 2008-10-20 Валентин Сергеевич Перегудов Способ плазменно-угольной растопки котла
WO2012088110A1 (en) * 2010-12-23 2012-06-28 Alstom Technology Ltd System and method for reducing emissions from a boiler
RU2460941C1 (ru) * 2011-02-11 2012-09-10 Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) Способ сжигания угля микропомола и угля обычного помола в пылеугольной горелке и устройство для его реализации
RU2543648C1 (ru) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Плазменная пылеугольная горелка
RU2595304C1 (ru) * 2015-04-20 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210032C2 (ru) * 2000-12-28 2003-08-10 Карпенко Евгений Иванович Способ плазменного воспламенения пылеугольного топлива (варианты) и плазменная пылеугольная горелка (варианты)
RU2336465C2 (ru) * 2006-10-04 2008-10-20 Валентин Сергеевич Перегудов Способ плазменно-угольной растопки котла
WO2012088110A1 (en) * 2010-12-23 2012-06-28 Alstom Technology Ltd System and method for reducing emissions from a boiler
RU2460941C1 (ru) * 2011-02-11 2012-09-10 Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) Способ сжигания угля микропомола и угля обычного помола в пылеугольной горелке и устройство для его реализации
RU2543648C1 (ru) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Плазменная пылеугольная горелка
RU2595304C1 (ru) * 2015-04-20 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Способ оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2766193C1 (ru) * 2020-10-26 2022-02-09 Сергей Николаевич Кучанов Способ ступенчатого сжигания пылеугольного топлива и устройство для реализации способа
RU2778593C1 (ru) * 2021-08-31 2022-08-22 Денис Сергеевич Синельников Способ воспламенения и факельного сжигания топливовоздушной смеси и устройство для реализации способа

Similar Documents

Publication Publication Date Title
EP1588097B8 (en) Burner system and method for mixing a plurality of solid fuels
US10309644B2 (en) Method for the ignition of a power plant burner, and coal dust burner suitable for the method
Luo et al. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace
JPH04502806A (ja) 固体燃料燃焼パワープラントのボイラーを始動し、且つ燃料の燃焼工程を保証する方法及び装置
US4986199A (en) Method for recovering waste gases from coal partial combustor
RU2336465C2 (ru) Способ плазменно-угольной растопки котла
RU2658450C1 (ru) Способ факельного сжигания низкосортных углей в котельных установках
Hu et al. A pilot-scale experimental study on MILD combustion of sawdust and residual char solid waste blend using low-temperature preheating air
Zhu et al. Preheating combustion characteristics of ultra-low volatile carbon-based fuel
RU2631959C1 (ru) Способ сжигания угля, подвергнутого механической и плазменной обработке
WO2006003454A1 (en) Process for treating a carbonaceous material
RU2201554C1 (ru) Способ плазменного розжига пылеугольного топлива
EP3074696B1 (en) Apparatus for firing and combustion of syngas
Messerle et al. Plasma Technology for Enhancement of Pulverized Coal Ignition and Combustion
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
JP4393977B2 (ja) 難燃性炭素粉を燃焼するバーナ構造とそのバーナによる燃焼方法
Burdukov et al. Experimental studies of ignition of a 5 MW semi-industrial installation in Ekibastuz coal using electrochemical activation technology
CN214307097U (zh) 一种基于水蒸气热等离子体的煤粉燃烧装置
RU2399842C1 (ru) Способ плазменно-угольной растопки пылеугольного котла
RU2027951C1 (ru) Способ сжигания низкосортных углей
JP2001065804A (ja) ボイラのリパワリング装置とリパワリング方法
RU2425284C1 (ru) Плазменно-циклонные камеры (варианты)
RU1815505C (ru) Способ подготовки к сжиганию твердого топлива
Youssefi Plasma-assisted ignition and combustion in pulverised fuel burners
Karpenko et al. Plasma application for coal combustion activation

Legal Events

Date Code Title Description
QA4A Patent open for licensing

Effective date: 20210722