RU2399842C1 - Способ плазменно-угольной растопки пылеугольного котла - Google Patents

Способ плазменно-угольной растопки пылеугольного котла Download PDF

Info

Publication number
RU2399842C1
RU2399842C1 RU2009129275/06A RU2009129275A RU2399842C1 RU 2399842 C1 RU2399842 C1 RU 2399842C1 RU 2009129275/06 A RU2009129275/06 A RU 2009129275/06A RU 2009129275 A RU2009129275 A RU 2009129275A RU 2399842 C1 RU2399842 C1 RU 2399842C1
Authority
RU
Russia
Prior art keywords
coal
plasma
air
dust
furnace
Prior art date
Application number
RU2009129275/06A
Other languages
English (en)
Inventor
Валентин Сергеевич Перегудов (RU)
Валентин Сергеевич Перегудов
Original Assignee
Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) filed Critical Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН)
Priority to RU2009129275/06A priority Critical patent/RU2399842C1/ru
Application granted granted Critical
Publication of RU2399842C1 publication Critical patent/RU2399842C1/ru

Links

Images

Abstract

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов, а также в других процессах, связанных с воспламенением твердого мелкодисперсного топлива. Технический результат: надежная плазменно-угольная растопка пылеугольного котла при снижении электрической мощности, подводимой к плазмотрону. Указанный технический результат достигается в способе плазменно-угольной растопки пылеугольного котла, включающем подачу в пылепровод транспортирующего воздуха, подачу угольной пыли из промежуточного бункера пыли через пылепитатель в пылепровод, задание расхода угольной пыли посредством этого пылепитателя, подачу полученной угольной аэросмеси в камеру термохимической подготовки топлива плазменно-угольной горелки, генерирование низкотемпературной плазмы в плазмотроне, подачу струи плазмы на входе в камеру термохимической подготовки топлива, подачу полученной в камере термохимической подготовки топлива топливной смеси из горелки в топку котлоагрегата, подачу в топку вторичного воздуха и смешивание его с топливной смесью в топке с образованием горящего факела, концентрацию угля в аэросмеси µ задают в пределах 0,4<µ<1 кг угля на кг воздуха, причем при растопке низкореакционным углем используется область низких концентраций диапазона, а при растопке высокореакционным углем используется область высоких концентраций указанного диапазона. 2 ил.

Description

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов, а также в других процессах, связанных с воспламенением твердого мелкодисперсного топлива.
Известен способ плазменно-угольной растопки пылеугольного котла без использования второго вида топлива - мазута или газа [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., с.89]. Способ заключается в создании горящего пылеугольного потока, вытекающего из горелки в топку котла. Для создания горящего пылеугольного потока пылеугольную аэросмесь подают непосредственно из мельницы по пылепроводу в камеру термохимической подготовки (ТХП) топлива плазменно-угольной горелки, генерируют низкотемпературную плазму в плазмотроне, подают струю плазмы на входе в камеру ТХП и воспламеняют аэросмесь, получают в камере ТХП топливную смесь в результате горения части угля и нагрева остальной аэросмеси до выхода летучих компонентов и частичной газификации коксового остатка, затем подают эту топливную смесь из горелки в топку, в топку подают вторичный воздух, где его смешивают с топливной смесью и получают горящий факел. (Под плазменно-угольной горелкой понимается камера ТХП с пылепроводом для ввода в нее угольной аэросмеси, расположенный на камере ТХП плазмотрон и канал подачи вторичного воздуха в топку котла у устья данной горелки.)
В известном способе плазменного воспламенения пылеугольного топлива в камеру ТХП в зону взаимодействия с плазменной струей вводят по пылепроводу поток аэросмеси непосредственно из мельницы, так как котел имеет систему пылеприготовления с прямым вдуванием пыли.
Недостатком этого способа является отсутствие возможности регулирования концентрации угля в аэросмеси и, как следствие, затрат электроэнергии на плазменное воспламенение; способ применим лишь на котлах с пылесистемой с прямым вдуванием пыли в топку.
В качестве прототипа выбран способ плазменно-угольной растопки пылеугольного котла, имеющего систему пылеприготовления с промежуточным бункером пыли, описанный в книге [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., стр.86]. Способ включает подачу угольной пыли из промежуточного бункера пыли через пылепитатель в пылепровод, причем расход угольной пыли регулируется посредством пылепитателя. В пылепровод предварительно подают транспортирующий (первичный) воздух, и полученную угольную аэросмесь подают в камеру термохимической подготовки топлива плазменно-угольной горелки, генерируют низкотемпературную плазму в плазмотроне, подают струю плазмы на входе в камеру ТХП и воспламеняют аэросмесь. В камере ТХП получают топливную смесь в результате горения части угля и нагрева остальной аэросмеси до выхода летучих компонентов из угля и частичной газификации коксового остатка, затем подают эту топливную смесь из камеры ТХП в топку, в топку подают вторичный воздух, где его смешивают с топливной смесью и получают горящий факел.
Недостаток этого способа заключается в том, что он не всегда дает положительный результат. Так, например, при плазменно-угольной растопке пылеугольного котла посредством низкореакционного угля с выходом летучих компонентов на горючую массу Vг=7,8% [Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с., стр.353] оказалось невозможным завершить растопку в безмазутном варианте из-за отсутствия в известном способе указаний режима выполнения процесса воспламенения угля.
Задачей заявляемого изобретения является создание способа плазменно-угольной растопки пылеугольного котла, обеспечивающего реализацию процесса до технологически определенного завершения без использования второго вида топлива (мазута или природного газа) и, при этом, при минимальной мощности, подводимой к плазмотрону, за счет получения в камере ТХП горючих газов с максимальной теплотой их сгорания в топке и, при этом, при минимальных затратах энергии на плазменное воспламенение угля - путем задания в камере ТХП концентрации µ, угля в аэросмеси в диапазоне 0,4<µ<1 кг угля на кг воздуха (кг/кг), соответствующей теплотехническим характеристикам используемого для растопки котла угля: при растопке низкореакционным углем (Vг≤17%) используется область низких концентраций 0,4<µ<0,5 кг/кг, при растопке высокореакционным углем (Vг≥37%) используется область высоких концентраций указанного диапазона 0,8<µ<1 кг/кг, и для остальных углей используется концентрация 0,5≤µ≤0,8 кг/кг.
Применительно к котлу, имеющему систему пылеприготовления с прямым вдуванием пыли в топку, задание концентрации угля в аэросмеси может осуществляться посредством пылеконцентратора (аналогично [Патент РФ №2336465 от 29.09.2006, МПК F23Q 5/00, F23D 1/00]).
Технический результат: надежная плазменно-угольная растопка пылеугольного котла при снижении электрической мощности, подводимой к плазмотрону.
Одним из основных параметров процесса плазменной ТХП является электрическая мощность, подводимая к плазмотрону и, соответственно, мощность плазменного оборудования, от которых зависит, с одной стороны, надежность безмазутной растопки пылеугольного котла, с другой - стоимость поставки оборудования и его эксплуатации: с увеличением энергозатрат на плазменное воспламенение растет не только расход электроэнергии, но и капитальные затраты.
Существенное влияние на надежность безмазутной растопки пылеугольного котла и величину мощности плазмотрона, требуемой для воспламенения угля, оказывает концентрация угля в аэросмеси µ. В процессе растопки котлоагрегата, имеющего систему пылеприготовления с промбункером, она может быть задана в широких пределах - от µ=0,2 до µ=2 и более кг угля на кг воздуха, а для систем пыли высокой концентрации существует принципиальная возможность задать µ до 35-50 кг/кг. Определяющими параметрами потока топливной смеси на выходе из плазменно-угольной горелки в топку является температура газа Tg и твердых частиц Ts в потоке и теплотворная способность Q горючих газов продуктов ТХП. Для более полного последующего сгорания угля также важна величина степени конверсии углерода D в частице угля. С понижением этих показателей - снижением качества ТХП - полнота сгорания углерода коксового остатка в холодной топке снижается, в результате растет мехнедожог угля, снижается количество выделившегося в топке тепла, что может служить причиной неудачи в растопке котла [Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с., стр.353].
Проведенные расчеты, результаты которых показаны на фиг.1 (расход угля - 1 т/ч), свидетельствуют, что с уменьшением концентрации угля в аэросмеси до значения µ=0,4 кг/кг теплотворная способность горючих газов Q на выходе из камеры ТХП растет и далее рост прекращается. (О методике расчета и других его результатах см., например, [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с.]). Объясняется это тем, что при µ≥0,4 кг/кг кислород расходуется, в основном, на образование горючих газов (СО, CH4 и др.). При уменьшении концентрации угля от этого значения дополнительный кислород (как результат относительного увеличения расхода воздуха) начинает вступать в реакции с этими горючими газами. Например, при µ=0,25 кг/кг на такие реакции будет использоваться оставшийся в газовой фазе топливной смеси кислород, масса которого составляет 30% от исходной ее величины в начале процесса ТХП. В результате этого теплота сгорания горючих газов на выходе из камеры ТХП Q снижается. В то же время, с уменьшением µ от 0,4 до 0,25 кг/кг удельные энергозатраты на плазменное воспламенение возрастают на 37% (фиг.2). Также при этом растет температура и возникает опасность шлакования камеры ТХП. Отсюда следует, что наиболее эффективная термохимическая подготовка будет при µ>0,4 кг/кг.
Из фиг.1 следует, что с повышением концентрации угля в аэросмеси от µ=0,4 кг/кг из-за возрастающего дефицита окислителя качество ТХП снижается: так, при µ=1 кг/кг теплота Q снизилась на ~ 35%, температура газа (средняя по сечению камеры ТХП) низкая, Tg около 1000 К, в связи с чем снижается надежность ее воспламенения в топке, а содержание углерода в коксовом остатке возросло и составляет 50% от исходного (против 20% при µ=0,4 кг/кг). Расчеты показали, что массовая доля СО в горючих газах равна 65%. (Напомним, что температура воспламенения СО равна 880 К). С другой стороны, с увеличением а динамика уменьшения удельных энергозатрат Qуд снижается - фиг.2. На фиг.2 приведены зависимости энергозатрат на плазменное воспламенение угля Qуд от концентрации угля в аэросмеси µ: кривая 1 - расчетная, 2 - экспериментальная. Так, при изменении µ от 0,4 до 1 кг/кг энергозатраты на воспламенение Qуд снижаются в 2 раза. При такой же величине диапазона по µ, но при увеличении µ от 1 до 1,6 кг/кг Qуд снижается лишь на 28%. Таким образом, с дальнейшим увеличением µ от µ=1 кг/кг воспламенение топливной смеси в топке и полномасштабная безмазутная растопка котла становятся все менее надежными, а эффект снижения энергозатрат на воспламенение все более слабым. Следовательно, наиболее эффективным с позиций надежной плазменно-угольной безмазутной растопки пылеугольного котла и минимальных энергозатрат на воспламенение является диапазон изменения концентрации угля в аэросмеси 0,4<µ<1 кг/кг.
При плазменно-угольной растопке котла посредством низкореакционных углей (антрацитов, тощих углей) из-за более низкого выхода горючих компонентов большая часть потенциального тепла угля остается в коксовом остатке. Так как горючих газов при ТХП этих углей, полученных в результате выхода летучих, образуется меньше, то количество тепла от их сгорания в топке и температура оказываются недостаточными для полного сгорания возросшего (в сравнении с высокореакционными углями) углерода коксового остатка. К тому же, с увеличением µ (с уменьшением количества кислорода) снижается степень газификации коксового остатка. В результате неполного горения угля в топке (и выделения тепла) прекращается рост тепловых параметров котла при растопке, и завершение безмазутной его растопки становится невозможным [Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с., стр.353]. Для успешной плазменно-угольной растопки котла посредством низкореакционных углей требуется более высокая степень конверсии углерода коксового остатка, более высокая температура топливной смеси на выходе из плазменно-угольной горелки в топку, и поэтому следует задавать концентрацию µ в области нижнего ее предела (например, 0,4<µ<0,5 кг/кг).
В случае растопки посредством высокореакционных углей (с Vг>37%) эффективнее область верхнего предела по концентрации угля в аэросмеси µ указанного выше диапазона (например, 0,8<µ<1 кг/кг). Однако дальнейшее увеличение концентрации µ (µ>1 кг/кг) ведет к снижению качества ТХП (снижению Т, Q, D - фиг.1) и незавершенности растопки котла. (При определенных условиях концентрация µ>1 кг/кг применима в режиме стабилизации горения факела в топке.)
С учетом этих пояснений для решения поставленной в основу изобретения задачи в способе плазменно-угольной растопки пылеугольного котла, включающем подачу в пылепровод транспортирующего (первичнного) воздуха, подачу угольной пыли из промежуточного бункера пыли через пылепитатель в пылепровод, задание расхода угольной пыли посредством этого пылепитателя, подачу полученной угольной аэросмеси в камеру термохимической подготовки топлива плазменно-угольной горелки, генерирование низкотемпературной плазмы в плазмотроне, подачу струи плазмы на входе в камеру термохимической подготовки топлива, подачу полученной в камере термохимической подготовки топлива топливной смеси из плазменно-угольной горелки в топку котлоагрегата, подачу в топку вторичного воздуха и смешивание его с топливной смесью в топке с образованием горящего факела, согласно изобретению концентрацию угля в аэросмеси µ задают в пределах 0,4<µ<1 кг угля на кг воздуха, причем при растопке низкореакционным углем используется область низких концентраций диапазона, а при растопке высокореакционным углем используется область высоких концентраций указанного диапазона.
Способ осуществляется следующим образом.
После подготовки котла к растопке в соответствии с Инструкцией по его эксплуатации подают первичный воздух в камеры ТХП и включают в работу плазмотроны, размещенные у входа в камеры. Включают в работу пылепитатели, подающие угольную пыль в камеры ТХП из промежуточного бункера пыли (пыль в бункере сохранилась от предыдущей рабочей стадии, или подана в этот бункер от соседнего работающего котла). Задают расход пыли в камеру ТХП таким, который был определен в соответствии с известными методиками, например, [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с.] и уточнен в предварительных наладочных испытаниях. Задают расход первичного воздуха - соответствующий теплотехническим характеристикам угля: например для угля с Vг>37% расход воздуха должен обеспечить концентрацию угля в аэросмеси 0,8<µ<1 кг/кг, которая также конкретизируется по результатам предварительных наладочных испытаний. Подают вторичный воздух в плазменно-угольные горелки в соответствии с известными методиками [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с.] и на их выходе получают горящие факелы. Дальнейшая растопка котла осуществляется в соответствии с известными методиками [Жуков М.Ф., Карпенко Е.И., Перегудов B.C. и др. Плазменная безмазутная растопка котлов и стабилизация горения пылеугольного факела. - Новосибирск: Наука. - 1995. - 304 с., Г.Ю.Даутов, А.Н.Тимошевский, B.C.Перегудов и др. Генерация низкотемпературной плазмы и плазменные технологии: Проблемы и перспективы (Низкотемпературная плазма. Т.20) - Новосибирск: Наука, 2004. - 464 с.].
Пример 1. Испытания проводились на пылеугольном котле с двумя плазменно-угольными горелками. Основным топливом для него является антрацит с выходом летучих на горючую массу Vг=8,3%, который использовался и при испытаниях. Расход угля в каждую плазменно-угольную горелку был задан Gуг=6,2 т/ч, расход транспортирующего воздуха - 8,9 т/ч (концентрация угля в аэросмеси µ=0,7 кг/кг). Максимальная температура потока на расстоянии 0,2-0,4 м от выхода из камер ТХП в топку составляла 1120-1170 К. (Она несколько выше расчетной на фиг.1, т.к. в расчете - средняя температура по сечению камеры.) При достижении давления в барабане котла 1,1 МПа и температуры пара 450 К прекратился рост тепловых параметров котла. При таком режиме в камерах ТХП его растопка не была завершена.
Пример 2. Условия испытаний аналогичны примеру 1, но расход угля был задан Gуг=4 т/ч. Расход первичного воздуха остался неизменным - 8,9 т/ч; концентрация угля в аэросмеси составила µ=0,45 кг/кг. Температура в ядре потока на выходе из камер ТХП достигала 1380-1450 К. Была успешно завершена плазменно-угольная растопка котла без применения мазута.
Пример 3. Котел работает на угле с Vг=38% и оснащен двумя плазменно-угольными горелками. При испытаниях расход воздуха в камеру ТХП был задан 4,4 т/ч, расход угля - 5,3 т/ч (µ=1,2 кг/кг). Максимальная температура потока на срезе камер ТХП была в пределах 1030-1120 К (воспламенение неустойчивое, наблюдались струи невоспламененной пыли). Темп роста тепловых параметров был ниже определяемых Инструкцией по эксплуатации котла. Когда длительность растопки превысила регламентную в 1,7 раза, рост тепловых параметров прекратился, завершение растопки стало невозможным.
Пример 4. Условия испытаний аналогичны примеру 3. При этом расход угля был задан Gуг=3,7 т/ч. Расход первичного воздуха в камеру ТХП остался неизменным - 4,4 т/ч (µ=0,84 кг/кг). Максимальная температура факелов на срезе камер ТХП достигала 1310-1340 К. При таком режиме в камерах ТХП плазменно-угольная растопка была успешно завершена.
Использование заявляемого изобретения позволяет осуществить надежную плазменно-угольную растопку посредством углей с разными теплотехническими характеристиками.

Claims (1)

  1. Способ плазменно-угольной растопки пылеугольного котла, включающий подачу в пылепровод транспортирующего воздуха, подачу угольной пыли из промежуточного бункера пыли через пылепитатель в пылепровод, задание расхода угольной пыли посредством этого пылепитателя, подачу полученной угольной аэросмеси в камеру термохимической подготовки топлива плазменно-угольной горелки, генерирование низкотемпературной плазмы в плазмотроне, подачу струи плазмы на входе в камеру термохимической подготовки топлива, подачу полученной в камере термохимической подготовки топлива топливной смеси из горелки в топку котлоагрегата, подачу в топку вторичного воздуха и смешивание его с топливной смесью в топке с образованием горящего факела, отличающийся тем, что концентрацию угля в аэросмеси µ задают в пределах 0,4<µ<1 кг угля на кг воздуха (кг/кг), причем при растопке низкореакционным углем используется область концентраций 0,4<µ<0,5 кг/кг, а при растопке высокореакционным углем используется область концентраций 0,8<µ<1 кг/кг угля в аэросмеси.
RU2009129275/06A 2009-07-29 2009-07-29 Способ плазменно-угольной растопки пылеугольного котла RU2399842C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009129275/06A RU2399842C1 (ru) 2009-07-29 2009-07-29 Способ плазменно-угольной растопки пылеугольного котла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009129275/06A RU2399842C1 (ru) 2009-07-29 2009-07-29 Способ плазменно-угольной растопки пылеугольного котла

Publications (1)

Publication Number Publication Date
RU2399842C1 true RU2399842C1 (ru) 2010-09-20

Family

ID=42939258

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009129275/06A RU2399842C1 (ru) 2009-07-29 2009-07-29 Способ плазменно-угольной растопки пылеугольного котла

Country Status (1)

Country Link
RU (1) RU2399842C1 (ru)

Similar Documents

Publication Publication Date Title
US8882493B2 (en) Control of syngas temperature using a booster burner
MX2007010342A (es) Sistema y metodo de combustion.
RU2336465C2 (ru) Способ плазменно-угольной растопки котла
CN103897740B (zh) 煤炭共气化方法
RU2466331C1 (ru) Растопочная угольная горелка
RU2437028C1 (ru) Способ интенсификации процесса сжигания твердого низкореакционного топлива тэс
RU114513U1 (ru) Горелка для сжигания водоугольного топлива
RU2399842C1 (ru) Способ плазменно-угольной растопки пылеугольного котла
CN214307097U (zh) 一种基于水蒸气热等离子体的煤粉燃烧装置
RU2174649C2 (ru) Растопочная пылеугольная горелка и способ ее работы
CN108870381A (zh) 一种基于燃煤锅炉高温烟气的生物质利用装置及方法
RU2201554C1 (ru) Способ плазменного розжига пылеугольного топлива
CN108534175B (zh) 一种燃煤锅炉等离子气化点火稳燃装置及方法
RU2267055C1 (ru) Способ совместного сжигания природного газа и пыли углесодержащего материала в вертикальной призматической четырехгранной топке котла
RU2658450C1 (ru) Способ факельного сжигания низкосортных углей в котельных установках
RU2230991C2 (ru) Способ розжига и/или стабилизации горения пылеугольного факела в котлоагрегатах
RU2339878C2 (ru) Способ плазменно-угольной безмазутной растопки котла и устройство для его реализации
RU2631959C1 (ru) Способ сжигания угля, подвергнутого механической и плазменной обработке
KR20090037864A (ko) 석탄회 내의 미연 탄소의 산소 부화 연소
RU2565651C2 (ru) Способ получения и сжигания композиционного кавитационного топлива из нефтяного кокса
RU111258U1 (ru) Горелка для сжигания пылевидного топлива
RU2407948C1 (ru) Способ трехступенчатого сжигания угля с применением плазменной термохимической подготовки
NL2034422B1 (en) Iron fuel combustion arrangement comprising an ignition device
Messerle et al. Plasma Technology for Enhancement of Pulverized Coal Ignition and Combustion
RU2425284C1 (ru) Плазменно-циклонные камеры (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140730