RU2657668C2 - Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением - Google Patents
Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением Download PDFInfo
- Publication number
- RU2657668C2 RU2657668C2 RU2016119724A RU2016119724A RU2657668C2 RU 2657668 C2 RU2657668 C2 RU 2657668C2 RU 2016119724 A RU2016119724 A RU 2016119724A RU 2016119724 A RU2016119724 A RU 2016119724A RU 2657668 C2 RU2657668 C2 RU 2657668C2
- Authority
- RU
- Russia
- Prior art keywords
- metal
- pressure
- mpa
- mold cavity
- during injection
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims description 19
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 11
- 238000001746 injection moulding Methods 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000003825 pressing Methods 0.000 claims abstract description 22
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 15
- 239000000956 alloy Substances 0.000 claims abstract description 15
- 238000005266 casting Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 238000002425 crystallisation Methods 0.000 claims description 18
- 230000008025 crystallization Effects 0.000 claims description 18
- 238000007789 sealing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010304 firing Methods 0.000 abstract 1
- 238000005272 metallurgy Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000012071 phase Substances 0.000 description 10
- 239000000155 melt Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000002788 crimping Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Изобретение относится к литейному производству и может быть использовано при получении отливок из алюминиевых сплавов литьем под давлением. Способ включает нагрев металла до температуры выше ликвидуса, заливку жидкого металла в вакуумируемую полость формы из заливочной чаши после подрыва стопора, наложение давления на жидкий кристаллизующийся металл, уплотнение металла и выдержку под давлением. Давление накладывают с повышением его до 500 МПа со скоростью 120-125 МПа/с и интервалами 0,5-0,1 с, а выдержку металла под давлением осуществляют до момента охлаждения сплава до 100-150°С. Благодаря формированию неравновесной структуры сплава обеспечивается повышение механических свойства отливок. 4 ил.
Description
Изобретение относится к литейному производству и может быть использовано для управления структуры алюминиевых сплавов с целью повышения механических свойств изделий.
Известен способ литья под давлением, который заключается в заливке дозированного объема расплавленного металла в цилиндр прессования, заполнение полости формы расплавом, последующее наложение давления на него и выдержку. Расплав перед заливкой перегревают на 40-70К выше его температуры ликвидуса. При этом расплав заливают в промежуточную емкость, а в это время производят вакуумирование полости формы, после чего полость формы и связанные с ней камеры прессования заполняют расплавом из промежуточной емкости. Одновременно с заполнением камер прессования, сообщающихся с полостью формы, продолжается вакуумирование полости формы. Скорость заполнения регулируют изменением скорости откачки воздуха и газов из полости формы и камер прессования до окончания их заполнения. При этом регулирование скорости откачки воздуха и газов осуществляют изменением площади отверстия, связывающего полость формы через контркамеру прессования с системой вакуумирования, за счет перемещения контрплунжера. Затем осуществляется двухстороннее наложение давления на расплав по оси заготовки, при этом величина давления составляет 200-500 МПа. Выдержку металла под давлением производят до момента окончания кристаллизации. Для реализации этого способа используется машина для литья под давлением, которая оснащена гидравлической системой и блоком управления, содержит механизм прессования с плунжером и камерой, размещенными в корпусе, и связанную с ними разъемную пресс-форму с литейной полостью, сообщающейся с отверстиями для заливки расплава и удаления воздуха и газов. При этом механизм прессования оснащен дополнительной камерой прессования и контрплунжером, размещенными в неподвижной части корпуса соосно пресс-форме ответно камере и плунжеру, выполненными в подвижной части корпуса. Отверстие для заливки расплава выполнено с возможностью его перекрытия плунжером и сообщено с промежуточной емкостью, жестко закрепленной на подвижной части корпуса, а отверстие для удаления воздуха (газов) выполнено с возможностью его перекрытия контрплунжером и сообщено с системой вакуумирования (Патент RU №2193945, С2, МПК B22D 18/02, заявлено 30.05.2000. Опубликовано 10.12.2002 г.).
Недостатком вышеуказанного способа является то, что он не обеспечивает повышения механических свойств отливок путем формирования фрагментов наноструктур из отдельных атомов и их ассоциаций, так как температура перегрева жидкого металла на 40-70К недостаточна, чтобы обеспечить степень переохлаждения, которая определяется разностью равновесной температуры кристаллизации и фактической температуры образования твердой фазы. Снижение степени переохлаждения связано еще и с тем, что заливка металла производится из невакуумированной промежуточной емкости, что требует дегазации жидкого металла. На первом этапе наложения давления на металл, который свободной заливкой заполняет полость формы, увеличивается скорость удаления газов и сжатия межплоскостных поверхностей с образованием пустот. Температура расплава при этом понижается до температуры образования твердых кристаллических фаз. В этот момент наступает второй этап наложения давления, заключающийся в наложении давления изнутри из-под корки закристаллизовавшегося металла. При этом структура формируется в результате запрессовывания дополнительных объемов металла на компенсацию усадки, а также на пластическую опрессовку литых кристаллов, сформировавшихся до наложения давления. Такой способ не обеспечивает формирование в металле фрагментов наноструктуры из отдельных атомов и их ассоциаций, так как уже образовались твердые фазы кристаллов, для получения в которых наноструктур необходима их пластическая деформация твердого металла за счет приложения более высокого давления. Полученная по этому способу структура не имеет усадочных дефектов, характеризуется высокой герметичностью, но она состоит из отдельных зон-фрагментов, отличающихся по виду и характеру строения. Таким образом, способ решает проблему уплотнения кристаллизующегося металла за счет наложения давления, т.е. влияние давления на качество и свойства отливок проявляется лишь в устранении обычных дефектов усадочного происхождения.
Наиболее близким к заявляемому является способ управления процессом кристаллизации и устройство для его осуществления (патент №RU 2516210), при котором жидкий металл, находящийся при температуре выше ликвидуса на 150-200 К, заливают в контейнер - кристаллизатор из вакуумной камеры. Величина вакуума в контейнере-кристаллизаторе составляет 0,2-0,3⋅10-5 мм рт.ст. На кристаллизующийся металл накладывают давление пресс-плунжерами и повышают его со скоростью более чем 40 МПа/с до величины 300-400 МПа. После сжатия металла на 10% повышают давление с той же скоростью до 500 МПа и дополнительно уплотняют металл на 2,4-2,8%. Изостатическое сжатие металла осуществляют до тех пор, пока металл не охладится до 100-150°С.
Недостатком вышеуказанного способа является то, что наложение давления осуществляется в 2 этапа, процесс опрессовки металла растягивается на значительный период времени: 1 фаза - 5 с, 2 фаза - 60 с и более. За указанные отрезки времени диффузионные процессы приводят к тому, что достигаемое за счет наложения давления неравновесное состояние сплава стремится к равновесному. Из фиг. 1 видно, что структура, сформированная при наложении давления в два этапа, не существенно отличается от равновесной структуры; процесс опрессовки осуществляется без использования частотно-импульсной модуляции, что не обеспечивает влияния давления на формирование фрагментов наноструктуры и требуемого повышения механических свойств.
Таким образом, экспериментально было установлено, что способ наложения давления, для получения требований заданного результата необходимо осуществлять опрессовку за один этап и с использованием частотно-импульсной модуляции. График изменения коэффициента сжимаемости жидкого (до т.R) металла от времени приведен на фиг. 2, который подтверждает, что процесс осуществляется в один этап.
Задачей заявленного изобретения является получение более высокого уровня механических свойств изделий путем формирования неравновесной структуры сплава. При этом управление формированием структуры алюминиевых сплавов нацелено на то, чтобы всестороннее давление, накладываемое на жидкий металл, было направлено на формирование заданной неравновесной структуры, определяющей свойства, не уступающие или превосходящие свойства проката, кованных и штампованных заготовок.
Поставленная задача решается за счет того, что способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением включает (см. фиг. 3) заливку жидкого металла 5, находящегося при температуре выше ликвидуса на 150-200 К, в вакуумируемую полость формы 3 через заливочную чашу 7, путем подрыва стопора 6. Величина вакуума составляет 0,2-0,3⋅10-2 мм рт.ст. Полость формы связана с вакуумным насосом с помощью штуцера 2. На кристаллизующийся металл накладывают давление левым пресс-плунжером 1 и правым пресс-плунжером 4, которые движутся навстречу, в однофазном режиме и повышают его со скоростью 120-125 МПа/с, с интервалами 0,5-0,1 с, в течение 4 с до величины 500 МПа, тем самым уплотняя металл на 12,8% (см. фиг. 2). Подпрессовка металла осуществляется под давлением p=3σт(t), где σт(t) - предел текучести опрессовываемого сплава с учетом температуры, до тех пор, пока металл не охладится до 100-150°С.
Предлагаемый способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением основан на установленной авторами закономерности влияния скорости, интервалов и величины накладываемого давления на жидкий металл, которые приводят к увеличению коэффициента сжимаемости и, как следствие, повышению качества получаемых отливок. Наложение давления в однофазном режиме с использованием частотно-импульсной модуляции и уменьшение объема металла связано с улучшением процесса кристаллизации тем, что сохраняющиеся в жидкой фазе кластеры к моменту начала кристаллизации и в процессе кристаллизации занимают в пространстве положение и ориентацию, способствующие процессу кристаллизации. При этом сопровождаемое выделением скрытой теплоты кристаллизации сближение атомов направлено на формирование дополнительных межатомных связей, приводящих к образованию сильно неравновесной структуры.
Величина накладываемого давления 500 МПа течение 4 с, по 120-125 МПа/с, с интервалами 0,5-0,1 с, экспериментально определена для сплавов различного состава.
Таким образом, экспериментально было установлено, что способ наложения давления, для получения требований заданного результата необходимо осуществлять за 1 этап, а именно сжатие жидкого металла на 12,8% давлением 500 МПа в течение 4 с, по 120-125 МПа/с, с интервалами 0,5-0,1 с, который определяет сближение атомов и получение неравновесного состояния жидкого металла.
Предлагаемый способ дает возможность накладывать давление с фиксированной скоростью до уровня 500 МПа в однофазном режиме, исключающем развитие диффузионных процессов. С этой целью в системе управления устанавливается пропорциональный регулятор, параметры настройки которого выбираются из условия, что скорость наложения давления превышает требуемую по технологии скорость на 20-25%. При включении гидросистема поднимает давление, которое начинает превышать требуемую скорость, это фиксируется датчиком давления. По программе, когда давление достигает 100-125 МПа, подается команда на отключение гидропривода, давление в системе начинает падать, при этом осуществляется сравнение фактического давления с давлением, которое должно быть в данной момент времени по программе. В момент, когда значения выравниваются, происходит включение гидропривода, и так через каждые 120-125 МПа, пока давление не достигнет 500 МПа.
Установленное на 20-25% увеличение скорости наложения давления выбрано с учетом чувствительности датчика и времени срабатывания клапана, которое составляет 0,5-0,1 с.
В предлагаемом способе давление используется как термодинамический фактор, который, как и температура, определяет состав фаз в неравновесных условиях и влияет на фазовые превращения и структуру в твердом состоянии при изменении скорости наложения давления. То есть наложение изостатического давления является фактором воздействия, определяющего множество вариантов технологических параметров, приводящих к формированию неравновесной структуры сплавов.
Формирование фрагментов неравновесного состояния может быть достигнуто, в соответствии с данной заявкой, в условиях сверхбыстрого сжатия при температуре выше температуры начала кристаллизации, когда атомы утрачивают характерную для них диффузионную подвижность и способность формировать равновесные фазы, отличающиеся по составу и строению кристаллической решетки. Такое состояние может быть достигнуто, если такие параметры процесса, как перегрев жидкого металла над температурой ликвидуса, скорость нарастания давления, временные интервалы между импульсами, величина давления, накладываемого на жидкий металл, степень изостатического сжатия жидкого металла до начала кристаллизации, подобраны предварительно опытным путем и обеспечивают необходимое сближение атомов до начала кристаллизации; при этом необходимо не снимать усилие с прессующих плунжеров, пока температура отливки не понизится до 100-150°С. Фрагмент микроструктуры, полученный с помощью заявляемой технологи, представлен на фиг. 4.
Для обеспечения вакуума в полости формы 0,2-0,3⋅10-2 мм рт.ст. в процессе заливки жидкого металла в комплексе предусмотрена автономная вакуумная система, представляющая собой вакуумный насос, вакуумный ресивер, штуцер и пр., обеспечивающая заданное значение разрежения в течение времени всего технологического процесса. Разница разрежения в полости формы, равное 0,2-0,3⋅10-2 мм рт.ст. против 1⋅10-1 мм рт.ст. в корпусе вакуумного насоса, позволяет не только увеличить скорость заполнения полости формы жидким металлом, но и создает условия, при которых полости формы заполняются жидким металлом с заданной скоростью плавно, сплошным фронтом, без разбрызгивания. Применение такого способа заливки жидкого металла в полость формы позволяет получать необходимые заданные свойства не только в слитках, но и в изделиях сложной формы, в том числе и пустотелых заготовок типа втулок, колец и т.п., без использования стержней, установка которых требует дополнительной оснастки. Заливка жидкого металла в полость формы сплошным фронтом обеспечивает поверхность слитков/изделий, на которой не наблюдалась волнистость, заусенцы и другие дефекты поверхности.
В этих условиях, когда полость формы заполняется жидким металлом, то (при такой схеме и параметрах процесса) распределение температуры по всему объему изделия происходит равномерно. Таким образом, создаются благоприятные условия для наложения давления на жидкий, а не на кристаллизующийся, и тем более, не на уже закристаллизовавшийся (твердый) металл. Закристаллизовавшийся металл оказывает на порядок более высокое сопротивление деформации и исключает распространение давления на еще не имеющийся в полости формы жидкий металл.
Управление работой гидросистемы осуществляется системой управления в автоматическом режиме. С помощью прикладной программы фиксируется режим управления формированием однородной квазикристаллической структуры, а значения и изменения параметров от времени процесса отражаются на осциллограмме. Для наложения на расплавленный металл давления по некоторому закону в управляющей программе предусмотрена возможность управления параметрами широкоимпульсной модуляцией электрического сигнала на дискретный электромагнитный клапан пресса. Данный принцип управления обеспечивает широкие пределы регулирования, как по давлению, так и по времени его поддержания, позволяет эффективно использовать возможности программирования без включения в гидросистему обычно применяемых дополнительных элементов: объемных или дискретных регуляторов.
Автоматическое управление величиной накладываемого давления и соответственно перемещением исполнительного органа гидропривода - плунжера, происходит таким образом, чтобы его ход отвечал задачам, которые решает процесс, обеспечивающий получение более высокого уровня механических свойств изделий, путем формирования неравновесной структуры металла.
В результате использована структура управления, принадлежащая к классу самонастраивающихся систем с математической моделью, имеющей обратную связь: основанную на внутренней корректирующей связи по положению. С помощью функции управления определяется требуемое управляющее воздействие усилия гидропривода, которое преобразуется в необходимую величину перемещения плунжеров. В связи с этим гидропривод, используемый для наложения давления на жидкий металл, помимо статических (развиваемое усилие, жесткость) и динамических (устойчивость, точность, качество переходного процесса) характеристик должен отвечать требованиям управления законом развиваемого усилия и скорости перемещения. К числу параметров, определяющих усилие и скорость перемещения плунжеров, относится давление в рабочей полости цилиндров и полости слива, масса движущихся частей, силы трения, площади поршня в напорной и сливной плоскостях.
Изобретение иллюстрируется фиг. 3. Для управления процессом кристаллизации алюминиевых сплавов при литье под давлением слитки (размером ∅80×70 мм) из алюминиевого сплава марки В95 (система Al-Zn-Mg-Cu) изготавливали в полости формы с применением предлагаемого способа по схеме, приведенной на фиг. 3. Выплавку сплава осуществляли в тигле, в индукционной печи мощностью 30 кВт. Так как принципиальное значение имеет температура заливаемого металла и температуры формы перед заливкой, то их измерение имело значение. По ходу плавки температуру металла и температуру формы контролировали тепловизором ThermaCAM Е25 с точностью ±5К. Сплав перегревали до 850°С, проводили термовременную обработку расплава в течение 15 мин, после чего металл заливали в полость формы, подрывая стопор заливочной чаши, полость формы вакуумировали до разрежения 0,2 0,3⋅10-5 мм рт.ст., предварительно нагретую до 300°С. Указанной величины перегрев необходим для того, чтобы расплавленный металл перед наложением давления представлял собой однофазную систему - раствор гомогенной концентрации с явно выраженными свойствами жидкости, которая, как известно, передает давление равномерно во всех направлениях.
Скорость наложения давления, интервалы наложения давления и максимальную величину давления выбирали по результатам предварительных исследований исходя из зависимости коэффициента давления от времени.
Для ряда алюминиевых сплавов необходимо наложить давление р = 500 МПа, при котором относительное уменьшение объема жидкого металла составляет 12,8%. В т.R фиксируется качественно новое состояние металла, когда, с одной стороны, перегрев над линией ликвидуса составляет ~200 К, а, с другой стороны, межатомные расстояния в твердом состоянии атомы теряют подвижность, по мере приближения к т. R происходит резкое повышение вязкости расплава.
Это состояние можно назвать квазитвердым состоянием. В квазитвердом состоянии атомы зафиксированы в тех положениях, в которых они находились до наложения давления, их диффузия затруднена, так как междоузлия, вакансии, дислокации и др. дефекты упаковки атомов при достигнутой степени сжимаемости не обладают требуемой пропускной способностью.
Для того чтобы квазитвердое состояние создать гарантировано, давление р = 500 МПа накладывали в течение 4 с, т.е. со скоростью v = 120-125 МПа/с, с интервалами 0,5-0,1 с.
Когда температура в тепловом центре слитка достигла значения ниже температуры 150-200°С, давление сняли, плунжеры отвели в исходное положение. Форму раскрыли, слиток извлекли из формы и охладили до цеховой температуры.
По результатам анализа структуры слитка (В95), выполненного с помощью растровой электронной микроскопии, установлено, что структура сплава, полученного по предлагаемому способу (фиг. 4), представляет собой твердый раствор с неравновесной структурой (A16Mn, A181Mn19) с размером зерен менее 50 нм. При этом сплав имеет более высокую плотность и более высокий уровень механических свойств, чем у проката, полученного по промышленной технологии.
Как видно из приведенных примеров и подтверждено результатами производственных испытаний, предлагаемый способ по сравнению с известными, включая прототип, позволяет управлять процессом кристаллизации алюминиевых сплавов при литье под давлением с целью получения более высокого уровня механических свойств слитков / изделий путем формирования неравновесной структуры сплава. Для его осуществления используется наложение изостатического давления 500 МПа с применением частотно-импульсной модуляции на весь объем кристаллизующегося металла вплоть до температуры 150-200°С.
Новый способ является универсальным, так как пригоден для управления процессом кристаллизации алюминиевых сплавов при литье под давлением. Видами положительного эффекта, производными от достигнутого технического решения, являются:
- улучшение качества целевого продукта в отношении однородности структуры сплавов, повышение уровня механических свойств сплавов;
- формирование неравновесной структуры сплавов;
- технологический процесс, в котором давление эффективно используется для управления формированием однородной квазикристалической структуры металла в процессе кристаллизации под давлением.
Claims (1)
- Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением, включающий нагрев металла до температуры выше ликвидуса, заливку жидкого металла в вакуумируемую полость формы из заливочной чаши после подрыва стопора, наложение давления на жидкий кристаллизующийся металл, уплотнение металла и выдержку под давлением, отличающийся тем, что давление накладывают с повышением его до 500 МПа со скоростью 120-125 МПа/с и интервалами 0,5-0,1 с, а выдержку металла под давлением осуществляют до момента охлаждения сплава до 100-150°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016119724A RU2657668C2 (ru) | 2016-05-20 | 2016-05-20 | Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016119724A RU2657668C2 (ru) | 2016-05-20 | 2016-05-20 | Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016119724A RU2016119724A (ru) | 2017-11-23 |
RU2657668C2 true RU2657668C2 (ru) | 2018-06-14 |
Family
ID=62620369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016119724A RU2657668C2 (ru) | 2016-05-20 | 2016-05-20 | Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2657668C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2771078C1 (ru) * | 2021-03-23 | 2022-04-26 | Георгий Александрович Котов | Способ управления процессом производства заготовок поршней ДВС из заэвтектических алюминиевых сплавов |
RU2780671C1 (ru) * | 2021-10-26 | 2022-09-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Способ управления формированием физико-механических свойств алюминиевых сплавов в условиях наложения давления до начала кристаллизации |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2193945C2 (ru) * | 2000-05-30 | 2002-12-10 | Коростелев Владимир Федорович | Способ изготовления металлических заготовок литьем под давлением и устройство для его осуществления |
RU2516210C2 (ru) * | 2011-12-14 | 2014-05-20 | Закрытое акционерное общество Научно производственный центр "Инноваций наукоемких опытных разработок" (ЗАО НПЦ "ИНОР") | Способ управления процессом кристаллизации и устройство для его осуществления |
RU2563398C2 (ru) * | 2013-11-12 | 2015-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Устройство для изготовления поршней двигателя внутреннего сгорания. |
-
2016
- 2016-05-20 RU RU2016119724A patent/RU2657668C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2193945C2 (ru) * | 2000-05-30 | 2002-12-10 | Коростелев Владимир Федорович | Способ изготовления металлических заготовок литьем под давлением и устройство для его осуществления |
RU2516210C2 (ru) * | 2011-12-14 | 2014-05-20 | Закрытое акционерное общество Научно производственный центр "Инноваций наукоемких опытных разработок" (ЗАО НПЦ "ИНОР") | Способ управления процессом кристаллизации и устройство для его осуществления |
RU2563398C2 (ru) * | 2013-11-12 | 2015-09-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Устройство для изготовления поршней двигателя внутреннего сгорания. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2771078C1 (ru) * | 2021-03-23 | 2022-04-26 | Георгий Александрович Котов | Способ управления процессом производства заготовок поршней ДВС из заэвтектических алюминиевых сплавов |
RU2780671C1 (ru) * | 2021-10-26 | 2022-09-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Способ управления формированием физико-механических свойств алюминиевых сплавов в условиях наложения давления до начала кристаллизации |
RU2782190C1 (ru) * | 2022-05-18 | 2022-10-24 | Общество с ограниченной ответственностью "НПП "СофтАвтоматик" | Способ управления процессом литья алюминиевых сплавов с кристаллизацией под давлением |
RU2823407C1 (ru) * | 2024-03-14 | 2024-07-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Способ управления процессом кристаллизации в условиях двухстороннего сжатия |
Also Published As
Publication number | Publication date |
---|---|
RU2016119724A (ru) | 2017-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102232632B1 (ko) | 주조 및 성형 공구를 사용하여 금속 구성요소를 제조하는 방법 및 장치 | |
JP6284048B2 (ja) | 半凝固溶湯鋳鍛造法 | |
CN110983262B (zh) | 一种铝钪合金靶材的制备方法 | |
US5279349A (en) | Process for casting amorphous alloy member | |
JPH08507968A (ja) | 金属材料を半固体状態で成形する方法 | |
KR20040089135A (ko) | 반고체 몰딩 방법 | |
EP0867246B1 (en) | Method and apparatus for injection molding of semi-molten metals | |
US6955532B2 (en) | Method and apparatus for the manufacture of high temperature materials by combustion synthesis and semi-solid forming | |
RU2657668C2 (ru) | Способ управления процессом кристаллизации алюминиевых сплавов при литье под давлением | |
WO2005089273A2 (en) | Squeeze and semi-solid metal (ssm) casting of aluminum-copper (206) alloy | |
RU2516210C2 (ru) | Способ управления процессом кристаллизации и устройство для его осуществления | |
Zyska et al. | Optimization of squeeze parameters and modification of AlSi7Mg alloy | |
Korostelev et al. | Analysis of dependence of the properties of alloy V95 on the pressure applied to crystallizing metal | |
WO2006091619A2 (en) | Casting process | |
RU2780671C1 (ru) | Способ управления формированием физико-механических свойств алюминиевых сплавов в условиях наложения давления до начала кристаллизации | |
US20050126737A1 (en) | Process for casting a semi-solid metal alloy | |
HU209641B (en) | Precision pressure casting method of loosing pattern | |
EP1810765B1 (en) | Method for pulsed pressure molding | |
RU2233728C1 (ru) | Способ изготовления изделий с использованием жидкой штамповки и горячей деформации | |
US6557617B1 (en) | Method for process monitoring during die casting or thixoforming of metals | |
RU2771078C1 (ru) | Способ управления процессом производства заготовок поршней ДВС из заэвтектических алюминиевых сплавов | |
RU2782190C1 (ru) | Способ управления процессом литья алюминиевых сплавов с кристаллизацией под давлением | |
RU2779724C1 (ru) | Способ производства заготовок поршней ДВС из высокопрочных алюминиевых сплавов с нирезистовой вставкой для последующей изотермической штамповки | |
RU2674543C1 (ru) | Способ производства поршней двигателей внутреннего сгорания из алюминиевых сплавов | |
RU2823407C1 (ru) | Способ управления процессом кристаллизации в условиях двухстороннего сжатия |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180521 |