RU2657491C2 - Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения - Google Patents

Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения Download PDF

Info

Publication number
RU2657491C2
RU2657491C2 RU2016102078A RU2016102078A RU2657491C2 RU 2657491 C2 RU2657491 C2 RU 2657491C2 RU 2016102078 A RU2016102078 A RU 2016102078A RU 2016102078 A RU2016102078 A RU 2016102078A RU 2657491 C2 RU2657491 C2 RU 2657491C2
Authority
RU
Russia
Prior art keywords
phthalocyanine
near infrared
absorption
green pigment
infrared region
Prior art date
Application number
RU2016102078A
Other languages
English (en)
Other versions
RU2016102078A (ru
Inventor
Геннадий Алексеевич Матюшин
Михаил Исаакович Трибельский
Николай Григорьевич Беляков
Евгений Антонович Лукьянец
Original Assignee
Геннадий Алексеевич Матюшин
Михаил Исаакович Трибельский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Геннадий Алексеевич Матюшин, Михаил Исаакович Трибельский filed Critical Геннадий Алексеевич Матюшин
Priority to RU2016102078A priority Critical patent/RU2657491C2/ru
Priority to EP17741727.6A priority patent/EP3406670A4/en
Priority to PCT/RU2017/000004 priority patent/WO2017126993A1/ru
Publication of RU2016102078A publication Critical patent/RU2016102078A/ru
Application granted granted Critical
Publication of RU2657491C2 publication Critical patent/RU2657491C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/22Obtaining compounds having nitrogen atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0096Purification; Precipitation; Filtration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к производному фталоцианина меди с поглощением в ближней инфракрасной области спектра. Производное фталоцианина меди представляет собой продукт аминирования хлорированного фталоцианина меди - пигмента фталоцианинового зеленого одним из соединений - диэтиламином, дибутиламином, пиперидином, морфолином, пиперазином в массовом соотношении от 5 до 120 частей на одну часть пигмента фталоцианинового зеленого, с максимумом поглощения 760-810 нм и температурой разложения выше 350°С. Предлагается также способ его получения, заключающийся в аминировании пигмента фталоцианинового зеленого по крайней мере одним из указанных выше соединений при температуре от 100 до 300°С и давлении от 5 до 30 атм. Изобретение обеспечивает фталоцианин меди с высоким поглощением в ближней ИК-области спектра, повышенной термостабильностью до 350°С, высокой светостойкостью и растворимостью в полимерной матрице из доступных соединений. 2 н.п. ф-лы, 7 пр.

Description

Изобретение относится к области химии, а именно к получению веществ, красителей и соединений, которые могут быть использованы в качестве вещества, поглощающего электромагнитное излучение в ближней ИК области спектра - в том числе, для последующего изготовления полимерных и жидкостных материалов различного назначения, изменяющих спектральный состав проходящего и отраженного излучения, например, в светофильтрах отрезающего типа.
Известен набор красителей, поглощающих в ближней ИК области группы Lumogen, производимый компанией БАСФ (LanghalsH.Control of the InteractionsinMultichromophores: Novel Concepts. PeryleneBis-imides as Components for Larger Functional Units Helvetica chimicaacta. - 2005. - T. 88. №. 6. - C. 1309-1343). Так, quaterrylenebis(dicarboximide) Lumogen® IR 788 - и quaterrylenebis(dicarboximide) Lumogen® IR 765 являются производным и кватеррилена и поглощают в области 750-800 нм (рис. 1).
Недостатком этих соединений, обычно используемых для лазерной сварки полимеров, является их люминесцентные свойства, что заметно сужает их область применения в качестве добавки для светофильтров отрезающего типа.
Известно большое количество полиметиновых (цианиновых) красителей, спектры поглощения которых, перекрывают значительную часть ближней ИК области, однако, все они недостаточно устойчивы и весьма труднодоступны. (А.А. Ищенко. Строение и спектрально-люминесцентные свойства полиметиновых красителей. Наукова думка, Киев, 1994).
Известны также, производные тетра-1-фенил-2,3-нафталоцианина, поглощающие в области 780-850 нм (Гальперн М.Г., Гончарова Г.И., Ковшев Е.И., Лукьянец Е.А., Селиверстов В.А., Цветков В.А. Металлические комплексы тетра-1-фенил-2,3-нафталоцианина в качестве компонентов ИК фильтров в жидкокристаллических матрицах. Авт. свид. №921239, 1981). Однако, они не обладают хорошей растворимостью в полимерных матрицах и малодоступны.
Более доступны и хорошо вводятся в полимеры производные фталоцианина, например, диалкил амидыфталоцианинтетрасульфокислот, однако полимерные матрицы, изготовленные с их использованием, поглощают лишь в красной области (670-720 нм) (Соловьева Л.И. Михаленко С.А., Черных Е.В., Лукьянец Е.А. ЖОХ, 52, 90, 1982).
Известен патент на изобретение (Федотова А.И., Майзлиш В.Е., Шапошников Г.П. Пат. РФ №2354657, 2009), в котором заявлен замещенный металлофталоцианин-тетра-4-(морфолин-4-ил)-тетра-5-(фенокси)фталоцианин меди, имеющий интенсивные полосы поглощения с максимум при 697 нм в хлороформе и при 637, 688 нм (1:0.71) в ДМФА.
Однако, полученный таким способом комплекс не обладает требуемым поглощением в ближней ИК области.
Желаемым техническим результатом предлагаемого решения является получение нелюминисцирующего вещества, обладающего интенсивной полосой поглощение с максимум в диапазоне 760-810 нм, незначительным поглощением в видимой области спектра, температурой разложения выше 300 градусов Цельсия и которое могло бы вводится в полимеры в большой концентрации - вещества, пригодного для применения при переработки полимерного сырья в изделия методом литья под давлением и экструзии.
При этом было бы желательно, чтобы оно было доступно для производства окрашенной им полимерной продукции в промышленном масштабе.
Оказалось, что этими комплексом свойств обладает полученный нами в результате одностадийной химической реакции аминирования новое вещество, представляющие собой неразделенную смесь, состоящую из производных фталоцианина меди, содержащих в молекуле одновременно третичные аминогруппы и атомы хлора. В качестве исходного сырья использовались выпускаемый в промышленном масштабе Пигмент фталацианин зеленый Creen7 (хлорированный фталоцианин), дибутиламин (ди-н-бутиламин), или пиперидин (пентаметиленамин), или морфолин (тетрагидро-1,4-оксазин, диэтиленимидооксид), или пиперазин (диэтилендиамид) которые в обычных условиях с хлорированными фталацианинами меди не взаимодействуют и замещения хлора на аминогруппу не происходит. Тем не менее, подобрав нужные температуру и давление, провести реакцию аминирования, при которой происходит замещение атомов хлора на соответствующую аминогруппу, нам удалось. Любое из перечисленных сочетаний обеспечивает достижение желаемого технического результата и позволяет получить вещества, состоящие из смеси соединений с разной степени замещения хлора на аминогруппу в хлорированном фталоцианине меди. В основном полученная в результате реакции смесь состоит из окта (от 70 до 96%) и тетра (от 30 до 3%), замещенных хлорированными фталоцианинами меди.
В результате во всех случаях были получены порошкообразные вещества темного цвета, которые имеют температуру разложения выше 350 градусов Цельсия, растворяются в хлороформе, дихлорметане, бензоле, толуоле, кислотах, не растворяются в воде, гексане, спиртах, плохо растворяются в ацетоне. Легко вводятся в поликарбонат и полиметилметакрилат в концентрациях более 2 процентов по массе. Они пригодны для изготовления в промышленных масштабах суперконцентрата на базе поликарбоната и других полимерных материалов. Имеют в бензоле и поликарбонате максимумы поглощения в области 770-800 нм. Обладают высокой светостойкостью. Введенное в поликарбонатную пленку вещество, представляющее собой смесь (полиморфолино-полихлор)замещенных фталоцианинов меди стабильно к солнечному свету в течение, не менее, семи лет.
Типичный спектр поглощения полученного вещества, в поликарбонате приведен на Рис 2.
Основное преимущество этих веществ, по сравнению с известными спектральными аналогами, является их высокая интенсивность поглощения в ближней ИК-области, термостабильность вплоть до температуры 350 градусов Цельсия, высокая светостойкость и растворимость в полимерной матрице, а также в отсутствие люминесценции.
К достоинствам веществ относятся их сравнительно малая цена и доступность, поскольку они получаются аминированием широко известного и выпускаемого в промышленных масштабах красителя Пигмента фталоцианинового зеленого Green7 дэтиламином, дибутиламином, пиперидином, морфолином, или пиперазином, которые тоже освоены химической промышленностью в достаточно больших объемах.
Пример 1 получения вещества
В автоклав через загрузочный штуцер загружали 10 г пигмента зеленого фталоцианинового и 450 г диэтиламина (коэффициент загрузки 0,75), после чего загрузочный штуцер закрывали заглушкой. Продували автоклав азотом и нагревали его содержимое до температуры 250°С. В процессе нагрева давление в автоклаве постепенно увеличивалось и достигало максимума 23 атм при 250°С. Включали привод мешалки и процесс аминирования вели в течение 4 часов. По окончании выдержки приоткрывали запорное устройство на нижнем штуцере и отбирали пробу на спектральный анализ, запорное устройство закрывали.
Убедившись по появлению полосы поглощения в области 760-810 нм, что аминирование успешно прошло, выключали привод мешалки, автоклав охлаждали до комнатной температуры и выгружали из него реакционную массу через нижний штуцер при полностью открытом запорном устройстве. Реакционную массу упаривали на роторном испарителе, подсоединенном к вакуумной сети, с нагреванием на водяной бане. Диэтиламин отгоняли при остаточном давлении 200-250 мм рт.ст. и температуре в водяной бане 90-95°С до полного прекращения погона.
Остаток из выпарной колбы переносили на вакуумный фильтр (фарфоровая воронка Бюхнера с колбой Бунзена), снабженный двухслойной фильтрующей перегородкой в виде фильтровальной бумаги и бязи. Отфильтровывали жидкую фазу в сетевом вакууме (остаточное давление 0,2-0,3 атм), осадок промывали водой до полного отсутствия в промывной воде ионов хлора.
Промытый осадок в стальной эмалированной кювете помещали в сушильный шкаф и сушили при температуре 90°С до постоянного веса.
Выход 21,3%. Длинноволновый максимум поглощения в бензоле 794 нм.
Пример 2 получения вещества
В автоклав через загрузочный штуцер загружали 11,76 г пигмента зеленого фталоцианинового и 500 г дибутиламина (коэффициент загрузки 0,8), после чего загрузочный штуцер закрывали заглушкой. Продували автоклав азотом и нагревали его содержимое до температуры 250°С. В процессе нагрева давление в автоклаве постепенно увеличивалось и достигало максимума 23 атм при 250°С. Включали привод мешалки и процесс аминирования вели в течение 4 часов. По окончании выдержки приоткрывали запорное устройство на нижнем штуцере и отбирали пробу на спектральный анализ, запорное устройство закрывали.
Убедившись по появлению полосы поглощения в области 760-810 нм, что аминирование успешно прошло, выключали привод мешалки, автоклав охлаждали до комнатной температуры и выгружали из него реакционную массу через нижний штуцер при полностью открытом запорном устройстве. Реакционную массу упаривали на роторном испарителе, подсоединенном к вакуумной сети, с нагреванием на водяной бане. Дибутиламин отгоняли при остаточном давлении 200-250 мм рт.ст. и температуре в водяной бане 90-95°С до полного прекращения погона.
Остаток из выпарной колбы переносили на вакуумный фильтр (фарфоровая воронка Бюхнера с колбой Бунзена), снабженный двухслойной фильтрующей перегородкой в виде фильтровальной бумаги и бязи. Отфильтровывали жидкую фазу в сетевом вакууме (остаточное давление 0,2-0,3 атм), осадок промывали водой до полного отсутствия в промывной воде ионов хлора.
Промытый осадок в стальной эмалированной кювете помещали в сушильный шкаф и сушили при температуре 90°С до постоянного веса.
Выход 43,7%. Длинноволновый максимум поглощения в бензоле 794 нм.
Пример 3 получения вещества
В автоклав через загрузочный штуцер загружали 9,41 г пигмента зеленого фталоцианинового и 400 г пиперидина (коэффициент загрузки 0,7), после чего загрузочный штуцер закрывали заглушкой. Продували автоклав азотом и нагревали его содержимое до температуры 200°С. В процессе нагрева давление в автоклаве постепенно увеличивалось и достигало максимума 25 атм при 200°С. Включали привод мешалки и процесс аминирования вели в течение 6 часов. По окончании выдержки приоткрывали запорное устройство на нижнем штуцере и отбирали пробу на спектральный анализ, запорное устройство закрывали.
Убедившись по появлению полосы поглощения в области 760-810 нм, что аминирование успешно прошло, выключали привод мешалки, автоклав охлаждали до комнатной температуры и выгружали из него реакционную массу через нижний штуцер при полностью открытом запорном устройстве. Реакционную массу упаривали на роторном испарителе, подсоединенном к вакуумной сети, с нагреванием на водяной бане. Отгоняли пиперидин при остаточном давлении 200-250 мм рт.ст. и температуре в водяной бане 80-85°С до полного прекращения погона.
Сиропообразный остаток из выпарной колбы переносили на вакуумный фильтр (фарфоровая воронка Бюхнера с колбой Бунзена), снабженный двухслойной фильтрующей перегородкой в виде фильтровальной бумаги и бязи. Отфильтровывали жидкую фазу в сетевом вакууме (остаточное давление 0,2-0,3 атм), осадок промывали водой до полного отсутствия в промывной воде ионов хлора.
Промытый осадок в стальной эмалированной кювете помещали в сушильный шкаф и сушили при температуре 90°С до постоянного веса.
Выход 47,3%. Длинноволновый максимум поглощения в бензоле 801 нм.
Пример 4 получения вещества
В автоклав через загрузочный штуцер загружали 11,76 г пигмента зеленого фталоцианинового и 500 г морфалина (коэффициент загрузки 0,8), после чего загрузочный штуцер закрывали заглушкой. Продували автоклав азотом и нагревали его содержимое до температуры 250°С. В процессе нагрева давление в автоклаве постепенно увеличивалось и достигало максимума 27 атм при 250°С. Включали привод мешалки и процесс аминирования вели в течение 5 часов. По окончании выдержки приоткрывали запорное устройство на нижнем штуцере и отбирали пробу на спектральный анализ, запорное устройство закрывали.
Убедившись по появлению полосы поглощения в области 760-810 нм, что аминирование успешно прошло, выключали привод мешалки, автоклав охлаждали до комнатной температуры и выгружали из него реакционную массу через нижний штуцер при полностью открытом запорном устройстве. Реакционную массу упаривали на роторном испарителе, подсоединенном к вакуумной сети, с нагреванием на водяной бане. Отгоняли морфолин при остаточном давлении 200-250 мм рт.ст. и температуре в водяной бане 90-95°С до полного прекращения погона.
Сиропообразный остаток из выпарной колбы переносили на вакуумный фильтр (фарфоровая воронка Бюхнера с колбой Бунзена), снабженный двухслойной фильтрующей перегородкой в виде фильтровальной бумаги и бязи. Отфильтровывали жидкую фазу в сетевом вакууме (остаточное давление 0,2-0,3 атм), осадок промывали водой до полного отсутствия в промывной воде ионов хлора.
Промытый осадок в стальной эмалированной кювете помещали в сушильный шкаф и сушили при температуре 90°С до постоянного веса.
Выход 65,3%. Длинноволновый максимум поглощения в бензоле 797 нм.
Пример 5 получения вещества
В автоклав через загрузочный штуцер загружали 12 г пигмента зеленого фталоцианинового и 500 г пиперазина (коэффициент загрузки 0,8), после чего загрузочный штуцер закрывали заглушкой. Продували автоклав азотом и нагревали его содержимое до температуры 250°С. В процессе нагрева давление в автоклаве постепенно увеличивалось и достигало максимума 25 атм при 250°С. Включали привод мешалки и процесс аминирования вели в течение 6 часов. По окончании выдержки приоткрывали запорное устройство на нижнем штуцере и отбирали пробу на спектральный анализ, запорное устройство закрывали.
Убедившись по появлению полосы поглощения в области 760-810 нм, что аминирование успешно прошло, выключали привод мешалки, автоклав охлаждали до комнатной температуры и выгружали из него реакционную массу через нижний штуцер при полностью открытом запорном устройстве. Реакционную массу помещали в стеклянную плоскодонную коническую двухлитровую широкогорлую колбу и наливали туда воду. После тщательного перемешивания воду вместе с нерастворившимся веществом выливали на два слоя фильтровальной бумаги, покрывающих плоское дно воронки Бюхнера. Затем оставшуюся на бумаге массу переносили на вакуумный фильтр (фарфоровая воронка Бюхнера с колбой Бунзена, подсоединенной к техническому вакууму с давлением 0,2-0,3 атм), снабженный двухслойной фильтрующей перегородкой в виде фильтровальной бумаги и бязи. Осадок промывали водой до полного отсутствия в промывной воде ионов хлора.
Промытый осадок в стальной эмалированной кювете помещали в сушильный шкаф и сушили при температуре 90°С до постоянного веса.
Выход 31,1%. Длинноволновый максимум поглощения 802 нм.
Пример применения вещества при литье поликарбоната
Суперконцентрат в виде гранул поликарбоната, с введенным в него веществом с концентрацией 2 процента по массе, добавлялся в бункер литьевой машины с поликарбонатом марки Макралон для получения полимерных пластин размером 100×100 мм и толщиной 2 мм. Температура цилиндра 290-300°С, температура формы 95°С, скорость впрыска 40 см в секунду, давление формования 900 бар, время формования 14 секунд. Получили равномерно окрашенные пластинки оптического качества.
Пример применения вещества при получении полимерной пленки.
В бункер двухшнекового экструдера с однонаправленным вращением шнеков подавалась смесь из чистого поликарбоната и суперконцентрата со скоростью 10 кг в час, скорость вращения шнеков 200 оборотов в минуту, температура цилиндра экструдера 300°С.
Получили равномерно окрашенный рукав с толщиной пленки 100 мкм, пригодный для использования.

Claims (2)

1. Производное фталоцианина меди с поглощением в ближней инфракрасной области спектра, представляющее собой продукт аминирования хлорированного фталоцианина меди - пигмента фталоцианинового зеленого по крайней мере одним из соединений - диэтиламином, дибутиламином, пиперидином, морфолином, пиперазином в массовом соотношении от 5 до 120 частей на одну часть пигмента фталоцианинового зеленого, обладающее максимумом поглощения в диапазоне 760-810 нм и температурой разложения выше 350°С.
2. Способ получения производного фталоцианина меди по п. 1, заключающийся в аминировании пигмента фталоцианинового зеленого по крайней мере одним из соединений - диэтиламином, дибутиламином, пиперидином, морфолином, пиперазином в массовом соотношении от 5 до 120 частей на одну часть пигмента фталоцианинового зеленого при температуре от 100 до 300°С и давлении от 5 до 30 атм, проводимом до получения вещества с максимумом поглощения в диапазоне 760-810 нм.
RU2016102078A 2016-01-22 2016-01-22 Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения RU2657491C2 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016102078A RU2657491C2 (ru) 2016-01-22 2016-01-22 Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения
EP17741727.6A EP3406670A4 (en) 2016-01-22 2017-01-09 SUBSTANCE, THE ABSORBENT ELECTROMAGNETIC RADIATION IN THE NEAR INFRARED RANGE OF SPECTRUM, AND METHOD FOR THE PRODUCTION THEREOF
PCT/RU2017/000004 WO2017126993A1 (ru) 2016-01-22 2017-01-09 Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016102078A RU2657491C2 (ru) 2016-01-22 2016-01-22 Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения

Publications (2)

Publication Number Publication Date
RU2016102078A RU2016102078A (ru) 2017-07-27
RU2657491C2 true RU2657491C2 (ru) 2018-06-14

Family

ID=59361955

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016102078A RU2657491C2 (ru) 2016-01-22 2016-01-22 Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения

Country Status (3)

Country Link
EP (1) EP3406670A4 (ru)
RU (1) RU2657491C2 (ru)
WO (1) WO2017126993A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547972A (en) * 1950-01-10 1951-04-10 Gen Aniline & Film Corp Hydrocarbon-soluble phthalocyanines
US20030234995A1 (en) * 2002-06-12 2003-12-25 Kiyoshi Masuda Phthalocyanine compound, method for production thereof, and near infrared absorbing dye and near infrared absorbing filter using same
US20050203293A1 (en) * 2004-03-15 2005-09-15 Kouichi Hirota Method for production of halogen-containing phthalocyanine compound
RU2301810C2 (ru) * 2001-04-17 2007-06-27 Циба Спешиалти Кемикэлз Холдинг Инк. Смесь металлоценилфталоцианинов, металлоценилфталоцианины, способ их получения, оптический носитель информации
US20110269952A1 (en) * 2008-12-31 2011-11-03 Ju-Sik Kang Copper phthalocyanine compounds and near-infrared absorption filter using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0742255B1 (en) * 1995-05-12 2004-04-14 Ciba SC Holding AG Colouration of high molecular weight organic materials in the mass with soluble phthalocyanine precursors
KR101420927B1 (ko) * 2011-10-26 2014-07-17 야마다 가가쿠 고교 가부시키가이샤 프탈로시아닌 화합물, 근적외선 흡수 색소 및 근적외선 흡수재
WO2017102583A1 (en) * 2015-12-15 2017-06-22 Polychem Intercorp Ag Copper phthalocyanine amine derivatives, nir absorption polycarbonate filter and method for the chemical synthesis and use of such derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547972A (en) * 1950-01-10 1951-04-10 Gen Aniline & Film Corp Hydrocarbon-soluble phthalocyanines
RU2301810C2 (ru) * 2001-04-17 2007-06-27 Циба Спешиалти Кемикэлз Холдинг Инк. Смесь металлоценилфталоцианинов, металлоценилфталоцианины, способ их получения, оптический носитель информации
US20030234995A1 (en) * 2002-06-12 2003-12-25 Kiyoshi Masuda Phthalocyanine compound, method for production thereof, and near infrared absorbing dye and near infrared absorbing filter using same
US20050203293A1 (en) * 2004-03-15 2005-09-15 Kouichi Hirota Method for production of halogen-containing phthalocyanine compound
US20110269952A1 (en) * 2008-12-31 2011-11-03 Ju-Sik Kang Copper phthalocyanine compounds and near-infrared absorption filter using the same

Also Published As

Publication number Publication date
WO2017126993A1 (ru) 2017-07-27
RU2016102078A (ru) 2017-07-27
EP3406670A1 (en) 2018-11-28
EP3406670A4 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
TWI386462B (zh) 黑色苝顏料
JP3362865B2 (ja) ペリレン化合物の分子内塩、その製造方法およびその用途
Shindy et al. Novel carbocyanine and bis carbocyanine dyes: synthesis, visible spectra studies, solvatochromism and halochromism
RU2657491C2 (ru) Вещество, поглощающее электромагнитное излучение в ближней инфракрасной области спектра, и способ его получения
Carlini et al. New daylight fluorescent pigments
EP3470467B1 (de) Methinfarbstoffe zum färben von kunststoffen
SU651708A3 (ru) Способ крашени в массе высокомолекул рного органического материала
EP3508536B1 (de) Methinfarbstoffe zum massefärben von synthetischen polyamiden
Zhang et al. Effect of configurational isomerism and polymorphism on chalcone fluorescent properties
EP3470472B1 (de) Neue methinfarbstoffe
USRE27117E (en) Metal free tothalocyanine in the new x-porm
DE2230601C3 (de) Chinophthalonpigmente und deren Herstellung
US3357983A (en) Perylene pigments
CN110997822B (zh) 含有呫吨系染料的着色组合物、滤色器用着色剂和滤色器
CN107250285B (zh) 树脂着色用喹吖啶酮颜料组合物
US4093584A (en) Process for the mass coloration or whitening of linear polyesters
JP4300144B2 (ja) 有機結晶の溶解方法
Shamekhi et al. Crystal phase study of pigment red 254 in the presence of ionic liquids
CN108192616A (zh) 一种LaF3:Ce3+,Tb3+纳米颗粒荧光体及其制备方法
WO2024110325A1 (de) Gelbe methinfarbstoffe und deren verwendung zum färben von kunststoffen
Li et al. Synthesis and photochromism of novel spiro (indoline-2, 3′-naphtho [2, 1-b][1, 4] oxazine)
RU2812635C1 (ru) Способ получения красного олигомерного красителя на основе 1-аминоантрахинона для окрашивания термопластов
US4240793A (en) Preparation of a high-hiding and deeply colored pigmentary form of perylene-3,4,9,10-tetracarboxylic acid bis-(4'-ethoxyphenyl)-imide
Kharlanov et al. The peculiarities of the spectral luminescence properties of N-anthryl-substituted pyridinium cations
WO2024110327A2 (de) Thermostabile methinfarbstoffe

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200123