RU2657134C2 - Способ изготовления космического аппарата - Google Patents

Способ изготовления космического аппарата Download PDF

Info

Publication number
RU2657134C2
RU2657134C2 RU2016126646A RU2016126646A RU2657134C2 RU 2657134 C2 RU2657134 C2 RU 2657134C2 RU 2016126646 A RU2016126646 A RU 2016126646A RU 2016126646 A RU2016126646 A RU 2016126646A RU 2657134 C2 RU2657134 C2 RU 2657134C2
Authority
RU
Russia
Prior art keywords
spacecraft
manufacturing
power supply
batteries
supply system
Prior art date
Application number
RU2016126646A
Other languages
English (en)
Inventor
Виктор Владимирович Коротких
Александр Петрович Коренко
Андрей Гавриилович Лесковский
Владимир Сергеевич Шанаврин
Галина Васильевна Батышева
Андрей Владимирович Андреев
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority to RU2016126646A priority Critical patent/RU2657134C2/ru
Application granted granted Critical
Publication of RU2657134C2 publication Critical patent/RU2657134C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к космической технике. Способ изготовления космического аппарата (КА) включает проведение сборки КА, содержащего систему электропитания с солнечными батареями, аккумуляторными батареями и стабилизированным преобразователем напряжения с общей шиной, связанной с корпусом КА, проведение испытаний КА. В разрыв цепи связи общей шины системы электропитания с корпусом КА на период изготовления КА устанавливают технологические устройства защиты от протекания повышенного тока, при этом в процессе изготовления КА для различных этапов работ с ним величину повышенного тока для срабатывания устройств защиты устанавливают индивидуально. Защиту от протекания повышенного тока в технологических устройствах защиты обеспечивают параллельным соединением плавких предохранителей до необходимой суммарной величины тока срабатывания. Нарушение электрической цепи предохранителей сопровождают выдачей сигналов. Техническим результатом изобретения является обеспечение безаварийности процесса изготовления космического аппарата. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА).
Известен способ изготовления космического аппарата, патент РФ №2459749: «Способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения для согласования работы солнечной и аккумуляторных батарей, и обеспечения питанием стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, подготовку источников электроэнергии к работе, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, включая контроль стыковки солнечных и аккумуляторных батарей, отличающийся тем, что испытания на воздействие механических нагрузок и контроль стыковки солнечных и аккумуляторных батарей проводят со штатными аккумуляторными и солнечными батареями, причем аккумуляторные батареи перед проведением испытаний на воздействие механических нагрузок заряжают режимом, эквивалентным режиму штатного предстартового заряда, а все остальные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, причем имитаторы солнечных батарей подключают к промышленной сети непосредственно, а имитаторы аккумуляторных батарей - к промышленной сети комбинированно: по зарядному интерфейсу - непосредственно, а по разрядному интерфейсу - через систему гарантированного электроснабжения, при этом штатные аккумуляторные батареи хранят электрически разобщенными со стабилизированным преобразователем напряжения в подзаряженном состоянии».
Недостатком известного способа изготовления космического аппарата является то, что при проведении наземных электрических испытаний, когда космический аппарат «обвязан» наземными цепями (кабелями связи с наземной контрольно-испытательной аппаратурой), велика вероятность возникновения нештатных коротких замыканий наземными цепями бортовых цепей питания космического аппарата. При этом бортовая система электропитания может подвергнуться нештатной перегрузке, способной вывести ее (или часть ее резерва) из строя.
В настоящее время на космических аппаратах нового поколения одна шина питания электрически связана с корпусом. Это дает положительный эффект в защите от электростатических разрядов и снижает уровень помех на бортовых шинах, однако этот факт существенно повышает возможность возникновения короткого замыкания между шинами питания КА, особенно в наземной испытательной схеме.
Анализ источников информации по патентной и научно-технической информации показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является патент РФ №2571480: «Способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения с общей шиной, связанной с корпусом космического аппарата, проведение электрических испытаний, включая сборку схем испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, отличающийся тем, что при проектировании схем испытаний все соединители из числа соединителей в силовых цепях аккумуляторных батарей от шин аккумуляторных батарей противоположной полярности относительно общей шины системы электропитания выбирают с розетками со стороны аккумуляторных батарей, а при сборке схем испытаний эти соединители стыкуют в последнюю очередь. При этом перед стыковкой выбранных соединителей предварительно контролируют со стороны наземной схемы испытаний отсутствие гальванической связи этих цепей с корпусом космического аппарата. Кроме того, контроль отсутствия гальванической связи проводят по величине напряжения между контролируемыми цепями и шинами аккумуляторных батарей противоположной полярности относительно общей шины космического аппарата, а также контроль отсутствия гальванической связи проводят через дополнительно предусмотренные от цепей контролируемых соединителей выводы с токоограничительными резисторами».
Недостатком известного способа изготовления космического аппарата является то, что в процессе изготовления космического аппарата возникают вопросы, требующие дополнительных исследований, при которых проводят частичную разборку штатной схемы с включением в нее дополнительных элементов (разъемных коробок, осциллографов и прочее). Это повышает вероятность возникновения нештатных коротких замыканий, особенно через корпус космического аппарата, электрически связанного с общей шиной системы электропитания.
Задачей предложенного авторами изобретения является повышение безаварийности процесса изготовления космического аппарата.
Поставленная задача решается тем, что при проведении сборки космического аппарата, содержащего систему электропитания с солнечными батареями, аккумуляторными батареями и стабилизированным преобразователем напряжения с общей шиной, связанной с корпусом космического аппарата, проведении электрических испытаний, включая сборку схем испытаний космического аппарата и проверку на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, при этом соединители из числа соединителей в силовых цепях аккумуляторных батарей от шин аккумуляторных батарей противоположной полярности относительно общей шины системы электропитания выбирают с розетками со стороны аккумуляторных батарей, в разрыв цепи связи общей шины системы электропитания с корпусом космического аппарата, на период изготовления космического аппарата устанавливают технологические устройства защиты от протекания повышенного тока, при этом в процессе изготовления космического аппарата для различных этапов работ с ним величину повышенного тока для срабатывания устройств защиты устанавливают индивидуально. Кроме того, защиту от протекания повышенного тока в технологических устройствах защиты обеспечивают параллельным соединением плавких предохранителей до необходимой суммарной величины тока срабатывания, а нарушение электрической цепи предохранителей сопровождают выдачей сигналов.
Действительно, использование на период изготовления космического аппарата технологических устройств защиты от протекания повышенного тока позволит ввести существенный защитный барьер на случай возникновения нештатной аварийной ситуации, связанной с коротким замыканием аккумуляторных батарей, позволяющий избежать отрицательных воздействий на аккумуляторные батареи и линии (в основном, кабели) связи КА и наземной схемы. При этом в процессе изготовления КА для различных этапов работ с ним следует суммарную величину тока срабатывания необходимой защиты устанавливать индивидуально. Так, если связь общей шины с корпусом служит только для защиты от статического электричества (от разрядов с корпуса КА на его электрические схемы), то штатный ток протекания достаточно малый (порядка микроампер). Если же какие-либо приборы КА запитаны по общей шине с корпуса КА, то необходимо учитывать их потребление при выборе величины тока срабатывания защиты, но это только при включенном состоянии КА, преимущественно при проверке его на функционирование. В процессе изготовления космического аппарата для различных этапов работ с ним (за исключением работ связанных с включением КА) величину повышенного тока для срабатывания устройств зашиты устанавливают минимальной. В любом случае величину тока защиты устанавливают из условия обеспечения полной технологической безопасности.
Использование параллельного соединения предохранителей обусловлено тем, что распространенные марки предохранителей общегражданского применения на различные номинальные токи не предназначены для применения в условиях вакуума и вибронагрузок, которым подвергается КА при изготовлении. В то же время существуют предохранители (ограниченного перечня номиналов срабатывания) для использования в составе КА. Кроме того, параллельное соединение предохранителей позволяет создать универсальное устройство защиты от протекания повышенного тока со сменными вставками на любой требующийся уровень тока срабатывания. Следует, однако, иметь в виду, что предохранители имеют существенный разброс внутреннего сопротивления и для их параллельного соединения необходимо предусмотреть либо отбор (по величине сопротивления), либо меры по выравниванию токов (введение дополнительных выравнивающих сопротивлений, например, проводников различной длины).
На фиг. 1 приведена функциональная схема автономной системы электропитания КА (с наземными связями) с одной аккумуляторной батареей, поясняющая работу по предлагаемому способу изготовления космического аппарата.
Автономная система электропитания содержит солнечную батарею 1, подключенную к нагрузке 3 через соединители 1-2, 1-3, стабилизированный преобразователь напряжения 2, аккумуляторную батарею 5, подключенную к стабилизированному преобразователю напряжения 2 и общей шине. Стабилизированный преобразователь напряжения 2 состоит из стабилизатора напряжения 4, зарядного преобразователя 6 и разрядного преобразователя 7. Солнечная батарея 1, содержащая в своем составе блокирующие диоды 1-1, находится в процессе изготовления КА в отстыкованном от него состоянии и вне КА (соединители 1-2 и 1-3 расстыкованы). На КА солнечная батарея 1 устанавливается (и стыкуются) на время проведения испытания КА на воздействие механических нагрузок, а также при подготовке КА к штатной эксплуатации. В отдельных случаях, например при неориентированных солнечных батареях, солнечные батареи находятся постоянно в составе КА и электрически с ним состыкованы, а наземные имитаторы солнечных батарей стыкуют к специально предусмотренным технологическим соединителям (отводам) параллельно солнечным батареям. При этом блокирующие диоды 1-1 защищают солнечные батареи от протекания так называемого «темнового» тока.
В представленном примере солнечные батареи 1 находятся вне КА. Система электропитания выполнена с общей минусовой шиной, связанной с корпусом 8 КА. В разрыв цепи связи общей шины системы электропитания с корпусом КА, на период изготовления КА установлено технологическое устройство защиты от протекания повышенного тока 9. Устройство защиты от протекания повышенного тока 9 содержит блок плавких предохранителей 9-1 и замыкающиеся контакты 9-2 для включения сигнализации (звуковой, световой и прочее).
Вместо солнечных батарей на вход стабилизированного преобразователя напряжения через соединители 1-2 и 1-3 подключен имитатор солнечных батарей 10.
В процессе изготовления КА общая шина всегда связана с корпусом КА для исключения возникновения электростатических разрядов с корпуса КА на его электрические схемы. При этом в разрыв цепи связи общей шины системы электропитания с корпусом космического аппарата на период изготовления космического аппарата необходимо устанавливать технологические устройства защиты от протекания повышенного тока и в процессе изготовления космического аппарата для различных этапов работ с ним величину повышенного тока для срабатывания устройств защиты устанавливать индивидуально. Экспериментально установлено, что срабатывание защиты на основе плавких предохранителей происходит в течение нескольких миллисекунд, в зависимости от величины превышения тока срабатывания защиты, при этом объективное наличие индуктивности в цепи возникшего короткого замыкания ограничивает величину броска тока.
Анализ возможности применения защитных устройств на основе быстродействующих электронных устройств, например порогового устройства с транзистором быстрого отключения (20-50 мкс), показывает, что сложность данного устройства будет на порядки выше, чем устройства на предохранителях. Электронное устройство требует для своей работы наличия питающего напряжения, при снятии которого выполнение защитных функций, скорее всего, будет отсутствовать. С учетом требований надежности, безотказности и 100% готовности в любой момент времени применение защиты на основе плавких вставок выглядит более предпочтительным.
Таким образом, заявляемый способ изготовления космического аппарата позволяет повысить безаварийность процесса изготовления космического аппарата.

Claims (2)

1. Способ изготовления космического аппарата, включающий сборку космического аппарата, содержащего систему электропитания с солнечными батареями, аккумуляторными батареями и стабилизированным преобразователем напряжения с общей шиной, связанной с корпусом космического аппарата, проведение электрических испытаний, включая сборку схем испытаний космического аппарата и проверку на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, при этом соединители из числа соединителей в силовых цепях аккумуляторных батарей от шин аккумуляторных батарей противоположной полярности относительно общей шины системы электропитания выбирают с розетками со стороны аккумуляторных батарей, отличающийся тем, что в разрыв цепи связи общей шины системы электропитания с корпусом космического аппарата на период изготовления космического аппарата устанавливают технологические устройства защиты от протекания повышенного тока, при этом в процессе изготовления космического аппарата для различных этапов работ с ним величину повышенного тока для срабатывания устройств защиты устанавливают индивидуально.
2. Способ по п. 1, отличающийся тем, что защиту от протекания повышенного тока в технологических устройствах защиты обеспечивают параллельным соединением плавких предохранителей до необходимой суммарной величины тока срабатывания, а нарушение электрической цепи предохранителей сопровождают выдачей сигналов.
RU2016126646A 2016-07-01 2016-07-01 Способ изготовления космического аппарата RU2657134C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016126646A RU2657134C2 (ru) 2016-07-01 2016-07-01 Способ изготовления космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016126646A RU2657134C2 (ru) 2016-07-01 2016-07-01 Способ изготовления космического аппарата

Publications (1)

Publication Number Publication Date
RU2657134C2 true RU2657134C2 (ru) 2018-06-08

Family

ID=62560801

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016126646A RU2657134C2 (ru) 2016-07-01 2016-07-01 Способ изготовления космического аппарата

Country Status (1)

Country Link
RU (1) RU2657134C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049190A (en) * 1998-04-13 2000-04-11 Space Systems/Loral, Inc. Spacecraft power system
RU2459749C1 (ru) * 2010-12-15 2012-08-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления космического аппарата
RU2548313C2 (ru) * 2013-08-01 2015-04-20 Открытое акционерное общесто "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ изготовления космического аппарата
RU2571480C1 (ru) * 2014-06-16 2015-12-20 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ изготовления космического аппарата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049190A (en) * 1998-04-13 2000-04-11 Space Systems/Loral, Inc. Spacecraft power system
RU2459749C1 (ru) * 2010-12-15 2012-08-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления космического аппарата
RU2548313C2 (ru) * 2013-08-01 2015-04-20 Открытое акционерное общесто "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ изготовления космического аппарата
RU2571480C1 (ru) * 2014-06-16 2015-12-20 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ изготовления космического аппарата

Similar Documents

Publication Publication Date Title
Weicker A systems approach to lithium-ion battery management
US10326288B2 (en) Method and device for the voltage-controlled self-deactivation of electronic components or battery cells
CN103731121B (zh) 容错的失效保险连接设备
US9917461B2 (en) Battery unit, overcurrent control method, and computer program for the same
US9806545B2 (en) Battery management system, motor vehicle and battery module
US11021065B2 (en) High-voltage battery system having a safety device
US11225168B2 (en) HV energy storage device
CN110892600B (zh) 充电系统
US20140339892A1 (en) Disconnection unit for disconnecting a battery from a power system and a motor vehicle having a lithium-ion battery
AU2018235015B2 (en) System for supplying electrical energy to an on-board network of a submarine
CN110549967A (zh) 机动车车载电器网络、用于运行其的方法和其保险设备
CN104025369A (zh) 蓄电池系统和机动车
RU2657795C2 (ru) Способ изготовления космического аппарата
RU2657134C2 (ru) Способ изготовления космического аппарата
US20220077764A1 (en) Electric energy conversion and control device and energy storage system having the same
RU2571480C1 (ru) Способ изготовления космического аппарата
US9269940B2 (en) System for bypassing and isolating electrical power cells
AU2015273600B2 (en) Underwater vehicle comprising power storage sources made from lithium-ion batteries
CN113022309B (zh) 用于车辆的高压系统、对高压系统进行防护的方法及车辆
Berger et al. Proposal of a time-domain platform for short-circuit protection analysis in rapid transit train DC auxiliary systems
CN219017750U (zh) 高压采样防护装置、动力电池系统及汽车
RU2619151C2 (ru) Способ электрических проверок космического аппарата
CN207753127U (zh) 一种新能源汽车动力电池安全保护系统
RU2536003C2 (ru) Способ изготовления космического аппарата
CN110999017A (zh) 用于飞行器的电能储存系统