RU2536003C2 - Способ изготовления космического аппарата - Google Patents

Способ изготовления космического аппарата Download PDF

Info

Publication number
RU2536003C2
RU2536003C2 RU2012152134/11A RU2012152134A RU2536003C2 RU 2536003 C2 RU2536003 C2 RU 2536003C2 RU 2012152134/11 A RU2012152134/11 A RU 2012152134/11A RU 2012152134 A RU2012152134 A RU 2012152134A RU 2536003 C2 RU2536003 C2 RU 2536003C2
Authority
RU
Russia
Prior art keywords
voltage
spacecraft
supply system
power supply
tests
Prior art date
Application number
RU2012152134/11A
Other languages
English (en)
Other versions
RU2012152134A (ru
Inventor
Виктор Владимирович Коротких
Андрей Гавриилович Лесковский
Михаил Владленович Нестеришин
Сергей Иванович Опенько
Владимир Сергеевич Шанаврин
Original Assignee
Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" filed Critical Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"
Priority to RU2012152134/11A priority Critical patent/RU2536003C2/ru
Publication of RU2012152134A publication Critical patent/RU2012152134A/ru
Application granted granted Critical
Publication of RU2536003C2 publication Critical patent/RU2536003C2/ru

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к космической технике. Способ изготовления космического аппарата, содержащего систему электропитания в составе солнечных батарей, аккумуляторных батарей и стабилизированного преобразователя напряжения, включающий сборку космического аппарата, проведение электрических испытаний на функционирование, испытаний на воздействие механических нагрузок и термовакуумных испытаний. Испытания на функционирование и термовакуумные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей. Дополнительно к выходу системы электропитания подключают наземный стабилизатор напряжения с выходным напряжением в пределах стабилизируемого уровня напряжения системы электропитания. В исходном состоянии на выходе наземного стабилизатора напряжения устанавливают напряжение, соответствующее нижнему стабилизируемому уровню напряжения системы электропитания. При возникновении аварийной ситуации - верхнему стабилизируемому уровню напряжения системы электропитания. Переключение наземного стабилизатора напряжения с нижнего на верхний уровень стабилизации напряжения проводят по появлении на выходе тока. Изобретение направлено на повышение функциональной надежности при проведении наземных электрических испытаний. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов.
Известен способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, проведение электрических испытаний на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний на функционирование космического аппарата (патент №2305058 RU).
Недостатком известного способа является то, что он не регламентирует вопросы, относящиеся к особенностям конфигурации системы электропитания в процессе изготовления космического аппарата, что снижает надежность проводимых работ.
Анализ источников информации по патентной и научно-технической информации показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является патент Российской Федерации №2459749: Способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения для согласования работы солнечной и аккумуляторных батарей и обеспечения питанием стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, подготовку источников электроэнергии к работе, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, включая контроль стыковки солнечных и аккумуляторных батарей, отличающийся тем, что испытания на воздействие механических нагрузок и контроль стыковки солнечных и аккумуляторных батарей проводят со штатными аккумуляторными и солнечными батареями, причем аккумуляторные батареи перед проведением испытаний на воздействие механических нагрузок заряжают режимом, эквивалентным режиму штатного предстартового заряда, а все остальные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, причем имитаторы солнечных батарей подключают к промышленной сети непосредственно, а имитаторы аккумуляторных батарей к промышленной сети комбинировано: по зарядному интерфейсу - непосредственно, а по разрядному интерфейсу - через систему гарантированного электроснабжения, при этом штатные аккумуляторные батареи хранят электрически разобщенными со стабилизированным преобразователем напряжения, в подзаряженном состоянии.
Недостатком известного способа изготовления космического аппарата является низкая функциональная надежность при проведении наземных электрических испытаний космического аппарата. Это обусловлено тем, что при проведении наземных электрических испытаний, когда космический аппарат «обвязан» наземными цепями (кабелями связи с наземной контрольно-испытательной аппаратурой), велика вероятность возникновения не штатных коротких замыканий наземными цепями бортовых цепей питания космического аппарата. При этом бортовая система электропитания может подвергнуться не штатной перегрузке, способной вывести ее (или часть ее резерва) из строя.
В настоящее время на космических аппаратах нового поколения одна шина питания электрически связана с корпусом. Это дает положительный эффект в защите от электростатических разрядов и снижает уровень помех на бортовых шинах, однако, этот факт существенно повышает возможность возникновения короткого замыкания между шинами питания КА, особенно в наземной испытательной схеме.
Задачей предложенного авторами технического решения является повышение функциональной надежности способа изготовления космического аппарата при проведении его наземных электрических испытаний.
Поставленная задача решается тем, что, при изготовлении космического аппарата содержащего систему электропитания в составе солнечных батарей, аккумуляторных батарей и стабилизированного преобразователя напряжения для согласования работы солнечных и аккумуляторных батарей и обеспечения питанием стабильным напряжением бортовой нагрузки, включающий сборку космического аппарата, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, причем испытания на воздействие механических нагрузок проводят со штатными аккумуляторными и солнечными батареями, а испытания космического аппарата на функционирование и термовакуумные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, дополнительно к выходу системы электропитания подключают наземный стабилизатор напряжения с выходным напряжением в пределах стабилизируемого уровня напряжения системы электропитания, при этом, в исходном состоянии на выходе наземного стабилизатора напряжения устанавливают напряжение, соответствующее нижнему стабилизируемому уровню напряжения системы электропитания, а при возникновении аварийной ситуации - верхнему стабилизируемому уровню напряжения системы электропитания, при этом, переключение наземного стабилизатора напряжения с нижнего на верхний уровень стабилизации напряжения проводят при появлении у него на выходе тока.
В результате анализа известной патентной и научно-технической литературы предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не выявлено.
На фиг.1 приведена функциональная схема автономной системы электропитания КА (с силовыми наземными связями), поясняющая работу по предлагаемому способу изготовления космического аппарата.
Солнечная батарея 1, содержащая в своем составе блокирующие диоды 1-1, как правило, находится в процессе изготовления КА в отстыкованном состоянии и вне КА (соединители 2 и 2-1, 3 и 3-1 расстыкованы. На КА солнечные батареи 1 устанавливаются (и стыкуются) на время проведения испытания КА на воздействие механических нагрузок, а также для контроля стыковки солнечных батарей с КА. В отдельных случаях, например, при неориентированных солнечных батареях, солнечные батареи находятся постоянно в составе КА и электрически с ним состыкованы, а наземные имитаторы солнечных батарей стыкуют к специально предусмотренным технологическим соединителям (отводам) параллельно солнечным батареям. При этом блокирующие диоды 1-1 защищают солнечные батареи от протекания так называемого «темнового» тока при прохождении КА неосвещенного участка орбиты (тени от Земли или Луны).
В представленном примере солнечные батареи 1 находятся вне КА. Система электропитания выполнена с общей минусовой шиной. Стабилизированный преобразователь напряжения для согласования работы солнечных 1 и аккумуляторных 6 батарей и обеспечения стабильным напряжением нагрузки 5 состоит из зарядного преобразователя 7, разрядного преобразователя 8 и стабилизатора выходного напряжения 4 (входные и выходные фильтры на чертеже не показаны). Стабилизатор выходного напряжения 4 выполнен короткозамкнутого типа с регулирующим транзистором 4-2 и развязывающим диодом 4-1. Аккумуляторная батарея (в рассматриваемом примере используется одна аккумуляторная батарея) 6 минусом связана с общей минусовой шиной, а плюсом через соединители 6-2 и 6-1 (на чертеже указанные соединители расстыкованы) с зарядным и разрядным преобразователями (информационные связи аккумуляторной батареи 6 не показаны). Вместо солнечных батарей на вход стабилизированного преобразователя напряжения 4 через соединители 2-1 и 3-1 подключен имитатор солнечных батарей (ИБС) 9, а вместо аккумуляторной батареи 6 к зарядному 7 и разрядному 8 преобразователям подключен имитатор аккумуляторной батареи (ИАБ) 10 (информационные связи имитатора аккумуляторной батареи 10 не показаны).
К выходу системы электропитания (параллельно нагрузке 5) подключен наземный стабилизатор напряжения (НСН) 11.
Испытания КА на воздействие механических нагрузок и контроль стыковки солнечных 1 и аккумуляторных 6 батарей проводят со штатными солнечными 1 и аккумуляторными 6 батареями. Все остальные испытания КА проводят с применением технологических функциональных имитаторов солнечных (ИБС) 9 и аккумуляторных (ИАБ) 10 батарей. Это позволяет оперативно провести отработку КА в любых режимах, связанных с состоянием солнечных 1 и аккумуляторных 6 батарей, по отношению к интерфейсу со стабилизированным преобразователем напряжения 4, зарядным 7 и разрядным 8 преобразователями, что практически не всегда возможно реализовать при отработке КА в штатной конфигурации.
Наземный стабилизатор напряжения 11 в исходном состоянии работает на холостом ходу, так как его выходное напряжение устанавливают ниже напряжения на выходе системы электропитания (напряжение соответствующее нижнему стабилизируемому уровню напряжения системы электропитания). В случае превышения потребления по шинам нагрузки расчетного уровня, выходное напряжение системы электропитания снизится до нижнего уровня стабилизации и недостающая энергия будет поступать от наземного стабилизатора напряжения 11. Более того, при возникновении аварийной ситуации выходное напряжение наземного стабилизатора 11 переключают на уровень, соответствующий верхнему стабилизируемому уровню напряжения системы электропитания, например, при появлении у него на выходе тока. В этом случае потребление по шинам нагрузки от бортовых источников (солнечной и аккумуляторной батарей или их имитаторов) будет заблокировано, что исключает работу бортовой системы электропитания в режиме перегрузки. Это позволит защитить бортовую систему электропитания и при этом выявить причину превышения потребления по шинам питания без ущерба для бортовой аппаратуры космического аппарата.
Таким образом, заявляемый способ изготовления космического аппарата повышает функциональную надежность изготовления космического аппарата при проведении его наземных электрических испытаний.

Claims (2)

1. Способ изготовления космического аппарата, содержащего систему электропитания в составе солнечных батарей, аккумуляторных батарей и стабилизированного преобразователя напряжения для согласования работы солнечных и аккумуляторных батарей и обеспечения питанием стабильным напряжением бортовой нагрузки, включающий сборку космического аппарата, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, причем испытания на воздействие механических нагрузок проводят со штатными аккумуляторными и солнечными батареями, а испытания космического аппарата на функционирование и термовакуумные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, отличающийся тем, что дополнительно к выходу системы электропитания подключают наземный стабилизатор напряжения с выходным напряжением в пределах стабилизируемого уровня напряжения системы электропитания.
2. Способ изготовления космического аппарата по п.1, отличающийся тем, что в исходном состоянии на выходе наземного стабилизатора напряжения устанавливают напряжение, соответствующее нижнему стабилизируемому уровню напряжения системы электропитания, а при возникновении аварийной ситуации - верхнему стабилизируемому уровню напряжения системы электропитания, при этом переключение наземного стабилизатора напряжения с нижнего на верхний уровень стабилизации напряжения проводят при появлении у него на выходе тока.
RU2012152134/11A 2012-12-04 2012-12-04 Способ изготовления космического аппарата RU2536003C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012152134/11A RU2536003C2 (ru) 2012-12-04 2012-12-04 Способ изготовления космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012152134/11A RU2536003C2 (ru) 2012-12-04 2012-12-04 Способ изготовления космического аппарата

Publications (2)

Publication Number Publication Date
RU2012152134A RU2012152134A (ru) 2014-06-10
RU2536003C2 true RU2536003C2 (ru) 2014-12-20

Family

ID=51214163

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012152134/11A RU2536003C2 (ru) 2012-12-04 2012-12-04 Способ изготовления космического аппарата

Country Status (1)

Country Link
RU (1) RU2536003C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU495789A1 (ru) * 1972-04-13 1975-12-15 Предприятие П/Я А-1736 Устройство электропитани дл атс
RU2156211C1 (ru) * 1999-06-15 2000-09-20 Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" Космический аппарат
RU2459749C1 (ru) * 2010-12-15 2012-08-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления космического аппарата

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU495789A1 (ru) * 1972-04-13 1975-12-15 Предприятие П/Я А-1736 Устройство электропитани дл атс
RU2156211C1 (ru) * 1999-06-15 2000-09-20 Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" Космический аппарат
RU2459749C1 (ru) * 2010-12-15 2012-08-27 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" Способ изготовления космического аппарата

Also Published As

Publication number Publication date
RU2012152134A (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
RU2459749C1 (ru) Способ изготовления космического аппарата
EP2608347A2 (en) Electric energy storage system and method of maintaining the same
US10447045B2 (en) Power control device, power control method, and power control system
EP2538522A1 (en) Power supply system and electric vehicle
RU2337452C1 (ru) Способ питания нагрузки постоянным током в составе автономной системы электропитания искусственного спутника земли и автономная система электропитания для его реализации
KR20200051756A (ko) 모듈형 전력 공급 시스템
Kompella et al. Parallel operation of battery chargers in small satellite electrical power systems
CN109256839A (zh) 一种非姿态稳定型航天器系统能源获取方法
RU2535301C2 (ru) Способ управления автономной системой электроснабжения космического аппарата
KR102251204B1 (ko) 전기자동차 충전 장치의 충전 모듈
RU2496690C1 (ru) Способ изготовления космического аппарата
RU2559661C2 (ru) Способ электрических проверок космического аппарата
RU2571480C1 (ru) Способ изготовления космического аппарата
RU2536003C2 (ru) Способ изготовления космического аппарата
RU2657795C2 (ru) Способ изготовления космического аппарата
RU2478537C2 (ru) Способ изготовления космического аппарата
Abaker et al. Analysis of cube-sat electrical power system architecture
Padma et al. MPPT and SEPIC based controller development for energy utilisation in cubesats
RU2541599C2 (ru) Способ изготовления космического аппарата
RU2716471C1 (ru) Способ изготовления космического аппарата
RU2535824C2 (ru) Способ изготовления космического аппарата
RU2778262C1 (ru) Система электроснабжения космического аппарата
RU211054U1 (ru) Система электропитания космического аппарата
RU2565629C2 (ru) Способ изготовления космического аппарата
RU2550079C2 (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191205