RU2656869C1 - Сверхвысокооборотный микрогенератор - Google Patents

Сверхвысокооборотный микрогенератор Download PDF

Info

Publication number
RU2656869C1
RU2656869C1 RU2017114843A RU2017114843A RU2656869C1 RU 2656869 C1 RU2656869 C1 RU 2656869C1 RU 2017114843 A RU2017114843 A RU 2017114843A RU 2017114843 A RU2017114843 A RU 2017114843A RU 2656869 C1 RU2656869 C1 RU 2656869C1
Authority
RU
Russia
Prior art keywords
stator
rotor
hollow
permanent magnet
hollow rotor
Prior art date
Application number
RU2017114843A
Other languages
English (en)
Inventor
Флюр Рашитович Исмагилов
Ирек Ханифович Хайруллин
Вячеслав Евгеньевич Вавилов
Руслан Динарович Каримов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2017114843A priority Critical patent/RU2656869C1/ru
Application granted granted Critical
Publication of RU2656869C1 publication Critical patent/RU2656869C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение относится к электротехнике и может быть использовано для обеспечения электроэнергией автономных объектов. Технический результат состоит в снижении физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума, повышению магнитной индукции в их воздушном зазоре и минимизации их тепловыделений. Ротор выполнен полым. Статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором. На внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения. Полый ротор имеет механический контакт со статором, образуя в воздушном зазоре малошумный подшипник скольжения. В зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором. 2 ил.

Description

Изобретение относится к области электромашиностроения и может быть использовано для обеспечения электроэнергией автономных объектов.
Известен сверхвысокооборотный микрогенератор [J. Guidez, Y. Ribaud, О. dessornes, Т. Courvoisier, С. Dumand, Т. Onishi, S. Burguburu, Micro gas turbine research at Onera // International Symposium on Measurement and Control in robotics, 2005, Brussels, Belgium], состоящий из беспазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, на котором установлены шариковые подшипниковые опоры, при этом вал сочленен с компрессором и турбиной.
Недостатками данного аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами и невысокая жесткость ротора.
Известна микротурбинная система с сверхвысоокоборотным микрогенератором [K. Isomura, М. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo, S. Tanaka, Experimental Verification of the Feasibility of a 100W Class Micro-scale Gas Turbine at an Impeller Diameter of 10 mm, J. Micromech. Microeng, 2006, 16, pp. 254-261], состоящим из беспазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, при этом вал вращается в газовых подшипниковых опорах.
Недостатками данного аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, и невысокая жесткость ротора.
Известен сверхвысокооборотный микрогенератор [Park С.Н., Choi S. K., Ham S. Y. Design and experiment of 400,000 rpm high speed rotor and bearings for 500W class micro gas turbine generator // International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). - 2011], состоящий из пазового статора, выполненного из аморфного железа, в котором концентрично расточке статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально, и вала, при этом вал вращается в газовых подшипниковых опорах.
Недостатками данного аналога являются техническая сложность его реализации, обусловленная применением пазового статора, а также ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.
Известен сверхвысокооборотный аксиальный микрогенератор [патент US 4996457, кл. H02K 21/24, 1990 г.], содержащий вал, в котором располагается ось, осевой ротор и множество статоров, расположенных параллельно осевому ротору.
Недостатками данного аналога являются техническая сложность его реализации, обусловленная осевым расположением ротора, а также ограниченные функциональные возможности из-за значительных тепловыделений, обусловленных потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, невысокая жесткость ротора и его значительный момент инерции.
Наиболее близким к предлагаемому устройству является сверхвысокооборотный стартер-генератор для микротурбинной установки [С. Zwyssig, J.W. Kolar, S.D. Round Mega-Speed Drive Systems: Pushing Beyond 1 Million RPM // Mechatronics, IEEE/ASME Transactions on, 2009, Vol. 14, No. 5, pp. 564-574], состоящий из беспазового статора, выполненного из аморфного железа, в котором расположена обмотка из высокочастотного литцендрата, концентрично расточке статора расположен ротор, состоящий из кольцевого постоянного магнита, намагниченного радиально, и вала, на котором установлены шариковые подшипниковые опоры, при этом вал сочленен с турбиной и компрессором.
Недостатками ближайшего аналога являются ограниченные функциональные возможности из-за значительных тепловыделений, обусловленные потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.
Задача изобретения - расширение функциональных возможностей сверхвысокооборотного микрогенератора благодаря повышению жесткости ротора, а также увеличение его коэффициента полезного действия и энергетических характеристик.
Технический результат - снижение физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума сверхвысокооборотных микрогенераторов, повышение магнитной индукции в их воздушном зазоре и минимизация их тепловыделений.
Поставленная задача решается, а технический результат достигается тем, что в сверхвысокооборотном микрогенераторе, содержащем статор с обмоткой, выполненной из высокочастотного литцендрата, ротор, кольцевой постоянный магнит, вал, сочлененный с турбиной и компрессором, согласно изобретению ротор выполнен полым, а статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором, причем на внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения, причем полый ротор имеет механический контакт со статором, образуя при этом в воздушном зазоре сверхвысокооборотного микрогенератора малошумный подшипник скольжения, кроме того, в зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором.
Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез сверхвысокооборотного микрогенератора. На фиг. 2 изображен продольный разрез сверхвысокооборотного микрогенератора.
Устройство содержит полый вал 1, соединенный с турбиной 2 и компрессором 3. В полом валу 1 установлен с натягом кольцевой постоянный магнит 4, выполненный в виде n-полюсной монолитной сборки Хальбаха, на внутренней поверхности кольцевого постоянного магнита 4 нанесено покрытие 5 из твердого материала с минимальным коэффициентом трения. Статор 6 выполнен из немагнитного неэлектропроводящего материала в виде кольца с закрытыми пазами, на внешней поверхности которого нанесено покрытие 7 из твердого материала с минимальным коэффициентом трения, при этом покрытие 5 полого ротора и покрытие 7 статора находятся в механическом контакте относительно друг друга. В пазах статора 6 расположена зубцовая обмотка 8, выполненная из высокочастотного литцендрата, в зубцах статора 6 выполнены радиальные каналы 9 с возможностью подачи смазки в пространство между статором 6 и кольцевым постоянным магнитом 4.
Предложенный сверхвысокооборотный микрогенератор работает следующим образом: турбина 2 с компрессором 3 вращает полый вал 1 с определенной частотой. При этом жесткость полого вала 1 сверхвысокооборотного микрогенератора обеспечивается малошумным подшипником скольжения, который образуется внутренней поверхностью кольцевого постоянного магнита 4 с нанесенным покрытием 5 из твердого материала с минимальным коэффициентом трения и внешней поверхностью статора 6, выполненного из немагнитного неэлектропроводящего материала в виде кольца с закрытыми пазами, на внешней поверхности которого нанесено покрытие 7 из твердого материала с минимальным коэффициентом трения, то есть подшипник скольжения интегрирован в активную часть сверхвысокооборотного микрогенератора. Ввиду того что статор выполнен из неэлектропроводящего немагнитного материала, в нем не индуцируются вихревые токи, что позволяет минимизировать тепловыделения сверхвысокооборотного микрогенератора. При этом для снижения коэффициента трения в данном подшипнике скольжения в зубцах статора 6 выполнены радиальные каналы 9, через которые поступает смазка. При этом смазка одновременно выполняет две функции: как смазочный материал подшипника скольжения и как хладагент для охлаждения генератора. Так как постоянный магнит 4, выполненный в виде n-полюсной монолитной сборки Хальбаха, установлен внутри полого вала, то центробежные силы, стремящиеся его разрушить, направлены на внешнюю поверхность полого вала, а это позволяет минимизировать воздушный зазор и повысить тем самым энергетические характеристики сверхвысокооборотного микрогенератора и индукцию в его воздушном зазоре. То есть совокупность существенных признаков заявляемого изобретения позволяет повысить энергетические характеристики сверхвысокооборотных микрогенератров, минимизировав их тепловыделения и шум, что приводит к снижению физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами.
Итак, заявляемая конструкция позволяет расширить функциональные возможности сверхвысокооборотных микрогенератров благодаря повышению жесткости их ротора, а также увеличить их коэффициент полезного действия и энергетические характеристики.
Таким образом, достигается снижение физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума сверхвысокооборотных микрогенераторов, повышение магнитной индукции в их воздушном зазоре и минимизация их тепловыделений.

Claims (1)

  1. Сверхвысокооборотный микрогенератор, содержащий статор с обмоткой, выполненной из высокочастотного литцендрата, ротор, кольцевой постоянный магнит, вал, сочлененный с турбиной и компрессором, отличающийся тем, что ротор выполнен полым, а статор выполнен из немагнитного, неэлектропроводящего материала в виде кольца с закрытыми пазами и расположен внутри кольцевого постоянного магнита полого ротора, выполненного в виде n-полюсной монолитной сборки Хальбаха и установленного с натягом внутри полого ротора, который сочленен с турбиной и компрессором, причем на внутренней поверхности кольцевого постоянного магнита и на внешней поверхности статора нанесено покрытие из твердого материала с минимальным коэффициентом трения, а полый ротор имеет механический контакт со статором, образуя при этом в воздушном зазоре сверхвысокооборотного микрогенератора малошумный подшипник скольжения, кроме того, в зубцах статора выполнены радиальные каналы с возможностью подачи смазки в пространство между статором и полым ротором.
RU2017114843A 2017-04-26 2017-04-26 Сверхвысокооборотный микрогенератор RU2656869C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017114843A RU2656869C1 (ru) 2017-04-26 2017-04-26 Сверхвысокооборотный микрогенератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017114843A RU2656869C1 (ru) 2017-04-26 2017-04-26 Сверхвысокооборотный микрогенератор

Publications (1)

Publication Number Publication Date
RU2656869C1 true RU2656869C1 (ru) 2018-06-07

Family

ID=62560070

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017114843A RU2656869C1 (ru) 2017-04-26 2017-04-26 Сверхвысокооборотный микрогенератор

Country Status (1)

Country Link
RU (1) RU2656869C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493860A1 (ru) * 1972-10-03 1975-11-28 Предприятие П/Я А-7676 Подшипник скольжени высокоскоростной горизонтальной электрической машины с жидкостной смазкой
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
RU2501147C1 (ru) * 2012-04-16 2013-12-10 Общество с ограниченной ответственностью "НИЭЛЬ" Высокоскоростной генератор на базе двухполюсной машины двойного питания с промежуточным ротором и конденсаторным самовозбуждением
RU2540696C1 (ru) * 2013-12-25 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Высокоскоростная электрическая машина с вертикальным валом
RU2599056C1 (ru) * 2015-07-27 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Высокоскоростной многофазный синхронный генератор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493860A1 (ru) * 1972-10-03 1975-11-28 Предприятие П/Я А-7676 Подшипник скольжени высокоскоростной горизонтальной электрической машины с жидкостной смазкой
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
RU2501147C1 (ru) * 2012-04-16 2013-12-10 Общество с ограниченной ответственностью "НИЭЛЬ" Высокоскоростной генератор на базе двухполюсной машины двойного питания с промежуточным ротором и конденсаторным самовозбуждением
RU2540696C1 (ru) * 2013-12-25 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Высокоскоростная электрическая машина с вертикальным валом
RU2599056C1 (ru) * 2015-07-27 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Высокоскоростной многофазный синхронный генератор

Similar Documents

Publication Publication Date Title
EP2961042B1 (en) Permanent magnet machine
US7902706B2 (en) Rotational apparatus including a passive magnetic bearing
RU2668505C2 (ru) МАГНИТНЫЙ ПОДШИПНИКОВЫЙ УЗЕЛ ДЛЯ РОТАЦИОННОЙ МАШИНЫ и ТУРБОМАШИНА, СОДЕРЖАЩАЯ ТАКОЙ УЗЕЛ
US11081919B2 (en) Electric machine with metallic shield rotor
JP4566583B2 (ja) 発電機一体形水車
EP2894767B1 (en) Improved electric machine couplable to a fluid-dynamic machine, and corresponding fluid-dynamic machine
US20110049902A1 (en) Air cooled brushless wind alternator
CN102820728A (zh) 用于风力涡轮机的发电机
RU2633356C1 (ru) Вентильный ветрогенератор постоянного тока
RU2552846C1 (ru) Ротор высокоскоростного генератора
EP2808571B1 (en) Electro-magnetic bearing assembly with inner ventilation to cool the bearing
RU2656869C1 (ru) Сверхвысокооборотный микрогенератор
US9425660B2 (en) Orbital motor and generator
CN107093938B (zh) 磁悬浮电机及家用空调
CA2917625C (en) An electric motor rotor optimized for great powers
JP6173064B2 (ja) 永久磁石付き電気機械を内蔵するターボチャージャ
JP2020501490A (ja) 回転発電機の改良
CN109681525B (zh) 磁悬浮轴承及电机
Neustroev et al. Passive Magnet Bearing Development for Axial Flux Permanent Magnet Generator with Diamagnetic Armature
CN107093939B (zh) 一种磁悬浮电机及吸尘器
CN211474265U (zh) 一种转子系统及微型燃气轮机发电机组
JP2014173432A (ja) 真空ポンプ
JP2022538108A (ja) 転がり軸受の予圧部材を有する回転電気機械
JP2017139896A (ja) 渦電流式発熱装置
CN110224520A (zh) 一种具有定子绕组层间水道冷却系统的高速永磁同步电机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190427