RU2656232C1 - Способ гашения колебаний и электростатический демпфер для его осуществления - Google Patents

Способ гашения колебаний и электростатический демпфер для его осуществления Download PDF

Info

Publication number
RU2656232C1
RU2656232C1 RU2017125672A RU2017125672A RU2656232C1 RU 2656232 C1 RU2656232 C1 RU 2656232C1 RU 2017125672 A RU2017125672 A RU 2017125672A RU 2017125672 A RU2017125672 A RU 2017125672A RU 2656232 C1 RU2656232 C1 RU 2656232C1
Authority
RU
Russia
Prior art keywords
liquid medium
electrodes
dielectric
viscosity
damper
Prior art date
Application number
RU2017125672A
Other languages
English (en)
Inventor
Флюр Рашитович Исмагилов
Рустам Фларидович Алетдинов
Татьяна Александровна Волкова
Радик Рифкатович Калимуллин
Айнур Аллурович Маликов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2017125672A priority Critical patent/RU2656232C1/ru
Application granted granted Critical
Publication of RU2656232C1 publication Critical patent/RU2656232C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

Изобретение относится к электромашиностроению, в частности к устройству для торможения и гашения крутильных колебаний. Технический результат: регулирование величины вращающего момента электростатического демпфера. На металлические электроды подают напряжение, создают тормозящее электрическое поле, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость. При низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер, в котором в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к электромашиностроению и предназначено для использования в энергетике, в частности в исследованиях электростатических сил по электростатике, а также как двигатель небольшой мощности и устройство для торможения и гашения крутильных колебаний.
Известен способ демпфирования колебаний подвижной системы и устройство для его осуществления (патент RU №2426922, МПК F16F 9/53, F16F 6/00, F16F 15/03, опубл. 20.08.2011), заключающийся в том, что колебания демпфируют посредством приложения к системе диссипативных сил путем увеличения вязкости магнитной жидкости и путем приложения к системе дополнительной диссипативной силы сопротивления за счет возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости, причем дополнительную диссипативную силу сопротивления создают в области демпфирующей магнитной жидкости, которая пространственно предваряет передний фронт перемещения подвижной части системы, погруженной в магнитную жидкость, в направлении перемещения.
Недостатками аналога являются ограниченные функциональные возможности.
Наиболее близким по технической сущности к заявляемому способу является способ демпфирования колебаний системы (патент RU №2605229, МПК F16F 9/06, F16F 9/53, опубл. 20.12.2016), заключающийся в том, что колебания демпфируют за счет приложения к объекту диссипативных сил сопротивления путем увеличения вязкости магнитной жидкости и путем возбуждения импульсов магнитного поля в демпфирующей магнитной жидкости, создаваемого в области демпфирующей магнитной жидкости, которая пространственно предваряет передний фронт перемещения подвижной части системы, погруженной в магнитную жидкость, в направлении перемещения, при этом производят процесс дополнительного демпфирования колебаний системы в заполненных газом переменном объеме пневматического упругого элемента и постоянном объеме полого плунжера, размещенных между подвижными и малоподвижными частями системы и связанных с системой, путем кратковременного соединения объемов газа и уменьшения при этом разности давлений между объемами газа, периодически создаваемой при перемещении подвижной части системы.
Недостатками ближайшего аналога являются ограниченные функциональные возможности.
Известен магнитоиндукционный демпфер (патент РФ №2343491, МПК Н02К 49/02, опубл. 2008 г.), содержащий, по крайней мере, одну пару магнитных полюсов и электропроводящий элемент, размещенный в их магнитном поле, причем указанные элементы установлены с возможностью их относительного перемещения, причем электропроводящий элемент выполнен, по крайней мере, с одним выступом, выступающим за габариты магнитных полюсов так, что он максимально приближен, по меньшей мере, к одному магнитному полюсу и пронизывается по высоте его краевыми магнитными потоками, при этом площадь выступа в любом сечении, перпендикулярном направлению перемещения, выбрана из условия обеспечения минимально возможного электрического сопротивления для индуцируемых в электропроводящем элементе вихревых токов.
Недостатками аналога являются большие массогабаритные показатели вследствие наличия магнитных полюсов, а также ограниченные функциональные возможности из-за применения только твердого диэлектрического тела вращения в качестве подвижного элемента.
Известен зажимной патрон с электрореологической жидкостью (патент США №3253200 Electro-viscous fluid chuck, 1966 г.), содержащий основание из диэлектрика, промежуточный слой из диэлектрика с высокой диэлектрической проницаемостью (например, титанат бария), электроды, расположенные горизонтально, параллельно основанию, источник высокого напряжения и слой из электрореологической жидкости.
Недостатками аналога являются ограниченные функциональные возможности и невозможность регулирования угла поворота электродов.
Наиболее близкой к предлагаемому изобретению по технической сущности является электрическая машина [патент РФ №2330374, МПК H02N 1/08, опубл. 2006 г.], содержащая диэлектрический корпус, закрепленный в нем с возможностью вращения вал, на котором установлен диэлектрический подвижный элемент, выполненный в виде конуса из фибры, металлические электроды, подключенные к источнику питания и установленные под углом относительно нормали к поверхности подвижного элемента. Электрическая машина (емкостный двигатель) может быть выполнена многофазной и работать от тока любого рода.
Недостатками прототипа являются ограниченные функциональные возможности из-за применения только твердого диэлектрического тела вращения в качестве подвижного элемента и малый момент вращения.
Задача изобретения - расширение функциональных возможностей, увеличение производительности процесса и снижение массогабаритных показателей электростатического демпфера за счет использования подвижного элемента из проводящего материала, а также использования диэлектрической жидкости в качестве демпфирующей среды.
Технический результат - регулирование величины вращающего момента электростатического демпфера и, как следствие, регулирование величины крутильных колебаний.
Указанная задача решается, а технический результат достигается тем, что в способе гашения колебаний, по которому колебания демпфируют за счет увеличения вязкости диэлектрической жидкостной среды, согласно изобретению на металлические электроды подают напряжение, создают тормозящее электрическое поле с определенным значением его напряженности, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость, при этом при низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер.
Указанная задача решается, а технический результат достигается также тем, что в электростатическом демпфере, содержащем диэлектрический герметичный корпус, установленный в нем с возможностью вращения вал, на котором установлен подвижный элемент, металлические электроды, подключенные к источнику высокого напряжения, установленные под углом относительно нормали к поверхности подвижного элемента, согласно изобретению в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента.
Сущность изобретения поясняется чертежами. На фиг. 1 изображен вид сбоку электростатического демпфера, на фиг. 2 - элемент системы для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента, на фиг. 3 - схема примера конкретной реализации способа гашения колебаний.
Электростатический демпфер (фиг. 1) содержит герметичный корпус 1, закрепленный в нем с возможностью вращения вал 2, на котором установлен подвижный элемент 3, металлические электроды 4, подключенные к источнику высокого напряжения постоянного тока (на чертеже не показан), установленные под углом относительно нормали к поверхности подвижного элемента, системы для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента 5, позволяющей поворачивать электроды как в прямой, так и в обратной последовательности, и диэлектрической жидкой средой 6, заполняющей герметичный корпус 1. Для управления величиной зазора применяется система регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента 5, состоящая из двух управляющих винтов 7, один конец которых имеет шестерню 8, а другой - посадочное место под стопорное кольцо (на чертеже не показано). На внешней части управляющие винты 7 соединены через шестерню 8 с внешней шестерней 9 с зубьями с внутренней стороны (фиг. 2). Поворотом внешней шестерни 9 достигается изменение расстояния между подвижным элементом 3 и металлическими электродами 4. На валу 2 установлены передний щит 10, задний щит 11, основание ротора 12. Между задним щитом 11 и основанием ротора 12 помещена пружина 13 для снижения вибрации и предотвращения самораскручивания управляющих винтов 7.
Электростатический демпфер работает следующим образом. На металлические электроды 4 подается напряжение от источника высокого напряжения постоянного тока. В результате в рабочем пространстве электростатического демпфера возникает область переменной емкости, за счет чего возникает вращающееся электрическое поле, под действием которого приводится в движение подвижный элемент 3. В качестве диэлектрической жидкой среды 6 можно использовать электрореологическую суспензию - электрореологическую жидкость, состоящую из диэлектрической среды, например трансформаторного масла, и введенного в нее мелкодисперсного наполнителя. Под действием высокого напряжения электрореологическая суспензия переходит в желеобразное состояние, т.е. ее эффективная вязкость растет до ее насыщения, это связано с электростатическим взаимодействием частиц и динамикой изменения структуры размещения мелкодисперсных частиц. За счет образования тормозящей среды с большой вязкостью подвижный элемент 3 начинает замедляться.
Поворотом внешней шестерни 9 достигается изменение расстояния между подвижным элементом 3 и металлическими электродами 4. Возможность изменения угла наклона относительно нормали к поверхности подвижного элемента и величины воздушного зазора между металлическими электродами 4 и поверхностью подвижного элемента позволяет регулировать величину вращающего момента электростатического демпфера.
Пример конкретной реализации способа
Схема конкретного применения электростатического демпфера поясняется фиг. 3, в которой к электростатическому демпферу 14 подключены источник крутильных колебаний 15, высоковольтный трансформатор 16 и датчик напряженности поля 17, соединенные с исполнительным устройством 18. В ждущем режиме на металлические электроды 4 электростатического демпфера 14 подается высокое напряжение постоянного тока от источника высокого напряжения, например высоковольтного трансформатора 16, только на одну сторону металлических электродов 4, расположенных внутри герметичного корпуса 1. Вторая половина металлических электродов 4 заземлена и подключена к датчику напряженности поля (например, бесконтактный датчик тока Холла) 17, закрепленному на высоковольтных соединительных проводах. При возникновении на валу 2 крутильных колебаний от источника крутильных колебаний 15 равновесное состояние межэлектродного пространства нарушается и изменяется напряженность поля за счет нарушения силовых линий в диэлектрической жидкой среде - электрореологической суспензии 6, заполняющей герметичный корпус 1. В результате на металлических электродах 4 возникают токи несимметрии электрического поля, действующие на подвижный элемент 3, заставляя его вращаться, тем самым увеличивая неоднородность поля. Датчик напряженности поля 17, обнаружив изменение в однородности поля, дает команду на исполнительное устройство 18 для изменения величины напряжения высоковольтного трансформатора 16. С высоковольтного трансформатора 16 на металлические электроды 4 начинает подаваться высокое напряжение необходимой величины для уравновешивания электрического поля между металлическими электродами 4.
Итак, заявляемое изобретение позволяет расширить функциональные возможности и снизить массогабаритные показатели электростатического демпфера за счет использования диэлектрической жидкости в качестве демпфирующей среды и использования подвижного элемента из проводящего материала, а также увеличить производительность процесса, регулировать величину вращающего момента электростатического демпфера и, как следствие, регулировать величину крутильных колебаний.

Claims (2)

1. Способ гашения колебаний, по которому колебания демпфируют за счет увеличения вязкости диэлектрической жидкостной среды, отличающийся тем, что на металлические электроды подают напряжение, создают тормозящее электрическое поле с определенным значением его напряженности, которым связывают вращающийся в диэлектрической жидкостной среде подвижный элемент структурированными в электрическом поле мелкодисперсными частицами диэлектрической жидкостной среды, увеличивая ее вязкость, при этом при низком значении напряженности поля повышают вязкость диэлектрической жидкостной среды подачей высокого напряжения на электроды, тем самым усиливают электрическое поле, воздействующее на диэлектрическую жидкостную среду, изменяют ее вязкость и затормаживают демпфер.
2. Электростатический демпфер, содержащий диэлектрический герметичный корпус, установленный в нем с возможностью вращения вал, на котором установлен подвижный элемент, металлические электроды, подключенные к источнику высокого напряжения, установленные под углом относительно нормали к поверхности подвижного элемента, отличающийся тем, что в качестве подвижного элемента использован конусообразный подвижный элемент из проводящего материала, помещенный в герметичный диэлектрический корпус, заполненный диэлектрической жидкостной средой и оснащенный системой для регулирования угла наклона электродов относительно нормали к поверхности подвижного элемента и величины воздушного зазора между электродами и поверхностью подвижного элемента.
RU2017125672A 2017-07-17 2017-07-17 Способ гашения колебаний и электростатический демпфер для его осуществления RU2656232C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017125672A RU2656232C1 (ru) 2017-07-17 2017-07-17 Способ гашения колебаний и электростатический демпфер для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017125672A RU2656232C1 (ru) 2017-07-17 2017-07-17 Способ гашения колебаний и электростатический демпфер для его осуществления

Publications (1)

Publication Number Publication Date
RU2656232C1 true RU2656232C1 (ru) 2018-06-04

Family

ID=62560166

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017125672A RU2656232C1 (ru) 2017-07-17 2017-07-17 Способ гашения колебаний и электростатический демпфер для его осуществления

Country Status (1)

Country Link
RU (1) RU2656232C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781779C1 (ru) * 2019-11-15 2022-10-18 Бейцзин Инститьют Оф Контрол Инджиниринг Магнитореологический виброизолятор с регулированием посредством ультразвукового двигателя

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134354A1 (de) * 1991-10-17 1993-04-22 Schaeffler Waelzlager Kg Schwingungsdaempfer
RU2330374C2 (ru) * 2006-06-26 2008-07-27 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет Емкостный двигатель
RU2426922C1 (ru) * 2010-01-21 2011-08-20 Негосударственная образовательная автономная некоммерческая организация "Балаковский институт бизнеса и управления" Способ демпфирования колебаний подвижной системы и устройство для его осуществления
RU2605229C2 (ru) * 2015-04-21 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ демпфирования колебаний системы и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134354A1 (de) * 1991-10-17 1993-04-22 Schaeffler Waelzlager Kg Schwingungsdaempfer
RU2330374C2 (ru) * 2006-06-26 2008-07-27 Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет Емкостный двигатель
RU2426922C1 (ru) * 2010-01-21 2011-08-20 Негосударственная образовательная автономная некоммерческая организация "Балаковский институт бизнеса и управления" Способ демпфирования колебаний подвижной системы и устройство для его осуществления
RU2605229C2 (ru) * 2015-04-21 2016-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Способ демпфирования колебаний системы и устройство для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2781779C1 (ru) * 2019-11-15 2022-10-18 Бейцзин Инститьют Оф Контрол Инджиниринг Магнитореологический виброизолятор с регулированием посредством ультразвукового двигателя

Similar Documents

Publication Publication Date Title
Tůma et al. Active vibrations control of journal bearings with the use of piezoactuators
CN104534011B (zh) 一种刚度阻尼可调的永磁式磁流变隔振支座
CN109630596B (zh) 一种旋转式阻尼可调的硅油-磁流变扭振减振器
CN104044426B (zh) 一种刚度可变电磁馈能悬架
US20200062068A1 (en) Magnetic induction actuator suspension system
CN103827540A (zh) 设有率降磁轨通道的基于磁流变流体的支架装置
JP2002524703A (ja) ベルト張力装置のための電子レオロジー液体/磁気レオロジー液体に基づく振動ダンパー
WO2021093221A1 (zh) 一种基于超声波电机调节的磁流变隔振器
CN108019456A (zh) 一种含永磁式流变弹性体的双主簧液压悬置
JP2016098864A (ja) 質量可変型慣性制振装置
Sun et al. Advanced vehicle suspension with variable stiffness and damping MR damper
RU2656232C1 (ru) Способ гашения колебаний и электростатический демпфер для его осуществления
KR102530932B1 (ko) 침전방지장치가 구비된 댐퍼
RU2426922C1 (ru) Способ демпфирования колебаний подвижной системы и устройство для его осуществления
Loveikin et al. The crane’s vibrating systems controlled by mechatronic devices with magnetorheological fluid: the nonlinear mathematical model of behavior and optimization of work regimes
US11585404B1 (en) Vibration damping actuator
JP2677515B2 (ja) 電気粘性流体アクティブダンパを用いた除振装置
JPH102368A (ja) 電気粘性流体利用緩衝器及び減衰力制御方法
CN113074209B (zh) 一种微型磁流变减振装置
Ferdaus et al. Novel design of a self powered and self sensing magneto-rheological damper
KR102532016B1 (ko) 변위 감응형 가변 mr 댐퍼 및 이를 포함하는 에어스프링 장치와 이를 이용한 진동 제어 방법
CN113803399B (zh) 一种高载荷磁流变液-弹三向减振装置
RU150327U1 (ru) Магнитореологический пневматический амортизатор
Wang et al. A ferrofluid-based tuned mass damper with magnetic spring
RU2605229C2 (ru) Способ демпфирования колебаний системы и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190718