RU2655024C2 - Способ и устройство измерения угла наклона - Google Patents

Способ и устройство измерения угла наклона Download PDF

Info

Publication number
RU2655024C2
RU2655024C2 RU2016130449A RU2016130449A RU2655024C2 RU 2655024 C2 RU2655024 C2 RU 2655024C2 RU 2016130449 A RU2016130449 A RU 2016130449A RU 2016130449 A RU2016130449 A RU 2016130449A RU 2655024 C2 RU2655024 C2 RU 2655024C2
Authority
RU
Russia
Prior art keywords
film
measuring
meniscus
bubble
photoresistors
Prior art date
Application number
RU2016130449A
Other languages
English (en)
Other versions
RU2016130449A (ru
RU2016130449A3 (ru
Inventor
Евгений Анатольевич Спирин
Андрей Евгеньевич Спирин
Анатолий Иванович Крылов
Валерий Александрович Сиволап
Александр Фёдорович Панкратов
Original Assignee
Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина" filed Critical Федеральное государственное бюджетное учреждение "Научно-исследовательский испытательный центр подготовки космонавтов имени Ю.А. Гагарина"
Priority to RU2016130449A priority Critical patent/RU2655024C2/ru
Publication of RU2016130449A publication Critical patent/RU2016130449A/ru
Publication of RU2016130449A3 publication Critical patent/RU2016130449A3/ru
Application granted granted Critical
Publication of RU2655024C2 publication Critical patent/RU2655024C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • G01C9/24Measuring inclination, e.g. by clinometers, by levels by using liquids in closed containers partially filled with liquid so as to leave a gas bubble

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение может быть использовано в системах визуального и электронного дистанционного определения пространственного положения объектов относительно горизонта уровнями пузырькового типа. Сущность способа состоит в том, что одновременно с визуальным измерением смещения свободно плавающего по вогнутой поверхности мениска газового пузырька в жидкости измеряются фототоки от светового пятна пузырька и поляризационные токи от его пространственного положения в полости, а затем сравниваются между собой. Для этого в устройство введены пленочные фоторезисторы, выполненные в виде четырех конгруэнтных круговых квадрантов, и оптически прозрачные пленочные электроды, выполненные в виде четырех конгруэнтных сферических треугольников так, что их проекции на основание совпадают с круговыми квадрантами пленочных фоторезисторов и образуют обкладки четырех конденсаторов. При этом два противолежащих пленочных электрода и два противолежащих пленочных фоторезистора, биссектрисы центральных углов которых коллинеарны одной из ортогональных осей координат, электрически связаны между собой и источником питания в измерительный мост, измерительная диагональ которого электрически связана с соответствующим каналом индикатора. Технический результат заключается в создании малогабаритного датчика малых углов наклона с визуальным измерением и одновременным преобразованием в электрический сигнал направления и величины наклона; а также в повышении точности измерения и расширении динамического диапазона измеряемых величин. 2 н. и 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к контрольно-измерительной технике и может быть использовано в системах визуального и электронного дистанционного определения пространственного положения объектов относительно горизонта.
Известны ряд способов и устройств для измерения угла наклона: от простейших уровней - ватерпасов [Доступ: https://ru.wikipedia.org/wiki/ Уровень (инструмент)], уклономеров, инклинометров, нивелиров, гироинклинометров и т.п. до гибридных микроэлектромеханических гироскопов и акселерометров [Гибридные микроэлектромеханические гироскопы и акселерометры / С.Ф. Коновалов и др. // Наука и образование: Электронное научно-техническое издание МГТУ им. Н.Э. Баумана. - 2011. - Октябрь. - Эл № ФС 77 - 30569/219257. - Доступ: http://technomag.edu.ru/doc/219257.html].
Датчики (акселерометры или G-сенсоры, гироскопы, магнитометры и др.), построенные по МЭМС-технологиям (МЭМС микроэлектромеханические системы), популярны в смартфонах, девайсах и прочих гаджетах. В них в качестве чувствительного компонента используется инерционное микроразмерное тело, электрически и механически связанное с подложкой, полученные путем микроэлектронных технологий. Такие датчики конструктивно и технологически сложны и имеют высокую стоимость. Являясь неотъемлемой частью микросхемы, они могут использоваться только в составе микропроцессорных и программно-аппаратных средств. Их главным недостатком является отсутствие прямого визуального измерения угла наклона, а многофакторная зависимость параметров не позволяет использовать их в качестве образцовых средств измерений.
Известен способ измерения угла наклона с преобразованием направления и величины наклона по видеорегистрации жидкостной ячейки, реализованный в видеонаклономере [RU 2258906, 27.10.2003], содержащем сосуд с жидкостью, над которой установлены оптически связанные друг с другом источник света, объектив, позиционно-чувствительный фотоприемник и светоделительный элемент, делящий оптическую ось на две оси, на одной из которых в фокальной плоскости объектива установлен источник света, а на другой - позиционно-чувствительный фотоприемник, формирующий видеокадр с видеоизображением источника света.
Известен способ и устройство измерения угла наклона относительно горизонта [SU 1420370, 22.12.1986], заключающийся в том, что устанавливают на объекте пузырьковую ампулу, помещают ее в электрическое поле и по изменению параметра этого поля определяют угол наклона, при этом в ампуле возбуждают импульсное электромагнитное поле бегущей волны, измеряют отраженный сигнал, а определение угла наклона осуществляют по величине или времени прихода отраженного сигнала.
Известны другие жидкостные датчики угла наклона с преобразованием направления и величины наклона в электрический сигнал, основанные: на поглощении оптического излучения жидкостью [SU 1139966, 30.05.1983; SU 1000754, 29.01.1981]; использующие электрические [RU 2178547, 21.12.1999; RU 2441200, 17.03.2014 и RU 2475703, 01.12.2011], магнитные [RU 2440556, 11.10.2010; RU 130389, 10.01.2012] или гидростатические [RU 2506540, 18.07.2012] свойства жидкости.
Указанные жидкостные уровни конструктивно и технологически сложны, многие из них предназначены для измерения отклонений по одной из осей. Для измерения по трем осям координат необходимо расположение датчиков в каждой плоскости, соответствующей оси, что существенно усложняет устройство и схему преобразования сигналов. Главным их недостатком является отсутствие прямого визуального измерения отклонения с одновременным прямым преобразованием направления и величины наклона в электрический сигнал.
Наиболее близким по технической сущности и достигаемому результату является способ визуального измерения угла наклона, реализованный в обычном ватерпасе - уклономере - жидкостном уровне пузырькового типа, представляющем собой замкнутую капсулу из оптически прозрачного материала в форме вытянутого цилиндра или круглого диска. заполненную жидкостью с пузырьком газа [Ковалев Л.Д. Специальные приборы для измерения линейных и угловых величин: Учеб. Пособие/Л.Д. Ковалев, С.Н. Суровой. Мн.: БИТУ, 2003 г. С. 131, прототип]. Способ состоит в визуальном измерении смещения относительно центра круговой шкалы с радиально-концентрическими (рисками) линиями свободно плавающего по вогнутой поверхности мениска газового пузырька в жидкости, замкнутых в полости осесимметричной дискообразной капсулы при отклонении ее оси симметрии относительно отвесной линии, при этом центр круговой шкалы находится на оси симметрии дискообразной капсулы.
Такими уровнями пузырькового типа, с прямым визуальным измерением, дающим наглядность в определении направления и величины наклона, оснащены измерительные геодезические приборы: от простейшего строительного уровня [Доступ: https://ru.wikipedia.org/wiki/ Уровень (инструмент)] до прецизионных оптических, например «Квадрант» [Квадрант оптический КО-10. Паспорт АЛ 2.787.046 ПС - 2007, ОАО «Новосибирский приборостроительный завод»]; высокотехнологичных тахеометров, 3-D сканеров и других приборов.
Уровни пузырькового типа имеют высокую чувствительность и совместно со штативами служат основой для установления истинной горизонтали или вертикали для оптико-электронных измерительных приборов, кинофотооборудования и т.п. Кроме того, они используются в транспортных средствах и подъемных механизмах, позволяющих визуально мгновенно оценивать информацию о направлении и углах наклона [Креномер пузырьковый КП-1.3. Приборы безопасности грузоподъемных кранов и машин. - Доступ: http://orik1860.narod.m/kren.htm].
Их недостатком является невозможность преобразования направления и величины наклона в электрический сигнал и, как следствие, невозможность использования их в средствах автоматизации измерительного процесса. При этом они имеют ограниченный диапазон измерения угла наклона, а субъективные зрительное восприятие и ракурс увеличивают погрешность измерения.
Заявленное изобретение предназначено для расширения функциональных возможностей уровней пузырькового типа и при его осуществлении могут быть получены следующие технические результаты: создание простых, надежных, стабильных в работе, малогабаритных датчиков малых углов наклона с визуальным измерением и одновременным преобразованием в электрический сигнал направления и величины наклона; а также повышение точности измерения и расширение динамического диапазона измеряемых величин.
Технический результат достигается тем, что в известном способе [Ковалев Л.Д. Специальные приборы для измерения линейных и угловых величин: Учеб. Пособие/Л.Д. Ковалев, С.Н. Суровой. Мн.: БНТУ, 2003 г. С. 131, прототип], визуальное измерение смещения относительно центра круговой шкалы с радиально-концентрическими линиями осуществляется свободно плавающим по вогнутой поверхности оптически прозрачного мениска газовым пузырьком в жидкости, замкнутым в полости осесимметричной дискообразной капсулы при отклонении ее оси симметрии относительно отвесной линии, при этом центр круговой шкалы находится на оси симметрии дискообразной капсулы.
Известные устройства, реализующие данный способ, содержат: газовый пузырек с жидкостью, замкнутый в полости оптически-прозрачной цилиндрической или осесимметричной дискообразной капсулы [Доступ: http://ru.aliexpress.com/popular/bubble-level-accuracy.html]. Последняя состоит из основания и мениска, герметично связанных по периметру между собой. Внешняя сторона мениска выполнена в виде плоской либо выпуклой сферической поверхности, содержащей круговую шкалу, выполненную в виде азимутальной проекции нормальной координатной сетки с концентрическими или радиально-концентрическими линиями. Внутренняя сторона мениска выполнена в виде вогнутой сферической поверхности. Центр круговой шкалы и центры кривизны внешней выпуклой и внутренней вогнутой сферических поверхностей образуют ось симметрии.
Существенные признаки по способу, отличающее изобретение от прототипа, следующие. Одновременно с визуальным измерением смещения свободно плавающего по вогнутой поверхности мениска газового пузырька в жидкости измеряются фототоки от светового пятна пузырька и поляризационные токи от его пространственного положения в полости. Фототоки и поляризационные токи сравниваются между собой, преобразуются в аналоговой или цифровой форме и индицируются в виде направления и величины наклона. При этом сравнение поляризационных и фототоков осуществляется посредствам измерительного четырехплечего одинарного моста, смежные плечи сравнения которого образуют противолежащие по одной из ортогональных осей координат конденсаторы, регистрирующие разбаланс моста по поляризационным токам, а смежные плечи отношения образуют противолежащие по одной из ортогональных осей пленочные фоторезисторы, регистрирующие разбаланс моста по фототокам.
Существенные признаки по устройству, отличающее изобретение от прототипа и аналогов, заключаются в том, что введены: четыре пленочных фоторезистора и четыре оптически прозрачных пленочных электрода, а также источник излучения, выполненный в виде кольца, источник питания и двухканальный индикатор, при этом:
1. Пленочные фоторезисторы выполнены на внутренней поверхности основания в виде четырех конгруэнтных круговых квадрантов. Изменяют свою фотопроводимость в зависимости от положения светового пятна газового пузырька по круговым квадрантам основания.
2. Пленочные электроды выполнены оптически прозрачными на внутренней вогнутой поверхности мениска в виде четырех конгруэнтных сферических треугольников так, что их проекции на основание совпадают с круговыми квадрантами пленочных фоторезисторов.
3. Пленочные фоторезисторы с одной стороны полости и пленочные оптически прозрачные электроды с другой стороны полости образуют обкладки четырех конденсаторов переменной емкости, заполненных жидкостью в сочетании с пространственным положением свободно плавающего газового пузырька.
4. Два противолежащих конденсатора - два противолежащих пленочных электрода и два противолежащих пленочных фоторезистора, биссектрисы центральных углов которых коллинеарны одной из ортогональных осей координат, электрически связаны между собой и источником питания в измерительный мост, смежные плечи сравнения которого образуют противолежащие конденсаторы, регистрирующие разбаланс моста по поляризационным токам, а смежные плечи отношения образуют противолежащие пленочные фоторезисторы, регистрирующие разбаланс моста по фототокам.
5. Дополнительно введенный источник излучения, выполненный в виде кольца, оптически связан с круговой шкалой, выполненной в виде радиально-концентрических светорассеивающих бороздок.
Известны технические результаты в датчиках углов наклона, регистрирующих положение пузырька газа в жидкости фотоэлектрическим [SU 1139966, 30.05.1983; SU 1000754, 29.01.1981] либо емкостным, электролитическим [RU 2178547, 21.12.1999; RU 2441200, 17.03.2014; RU 2475703, 01.12.2011] способами, с преобразованием сигналов мостовыми измерительными схемами [RU 2330241, 01.02.2007; ГОСТ Р 8 686 - 2009 «Мосты переменного тока уравновешенные»].
Основными их недостатками является отсутствие возможности прямого визуального измерения отклонения газового пузырька и сложность конструкций. Более того, с целью повышения точности измерения углов наклона путем увеличения количества электродов [RU 2475703, 01.12.2011] существенно усложняются электрические схемы преобразования и обработки сигналов.
На фиг. 1 изображено устройство в сечении, поясняющее способ и принцип действия. На фиг. 2 дополнительно показано устройство в изометрии с условно-разделенными в пространстве основанием и мениском, поясняющее конфигурацию и ориентацию пленочных фоторезисторов и оптически прозрачных пленочных электродов. На фиг. 3 дополнительно показана структурно-функциональная блок-схема с электрическими связями пленочных фоторезисторов и электродов в два идентичных измерительных моста, измерительные диагонали которых образуют два ОХ и OY измерительных канала. Пленочные фоторезисторы и образуемые с ними и оптически прозрачными пленочными электродами конденсаторы показаны на фиг. 1 и 2 штриховыми линиям как дискретные электрорадиоэлементы эквивалентной схемы электрической принципиальной (фиг. 3).
Устройство содержит: 1 - газовый пузырек с жидкостью 2, замкнутый в полости осесимметричной дискообразной капсулы; 3 - оптически-прозрачный мениск с внешней 4 и внутренней 5 сторонами, выполненными в виде выпуклых сферических поверхностей с радиусами r1 и r2 и центрами О1 и O2 кривизны соответственно; 6 - основание, герметично связанное по периметру с мениском 3; 7 - пленочные RX1, RХ2, RY1 и RY2 фоторезисторы, выполненные на внутренней поверхности основания 6 в виде четырех конгруэнтных круговых квадрантов, биссектрисы центральных углов которых коллинеарны одной из ортогональных ОХ или OY осей координат, одновременно служат обкладками с одной стороны четырех CX1, СX2, CY1 и СY2 конденсаторов; 8 - оптически прозрачные пленочные электроды, выполненные (например, из окиси индия - In2O3) на внутренней вогнутой 5 поверхности мениска 3 в виде четырех конгруэнтных сферических треугольников так, что их проекции на основание 6 совпадают с круговыми квадрантами 7 пленочных фоторезисторов, совместно с которыми они образуют обкладки - систему из четырех CX1, СX2, CY1 и CY2 конденсаторов соответственно; 9 - измерительные электроды измерительных диагоналей мостов с выводами ICX, IRX, ICY и IRY по соответствующим ОХ и OY осям (контактные участки электрических выводов с пленочными электродами и фоторезисторами показаны жирными точками, условно); 10 - потенциальные электроды (диагонали питания измерительных мостов) с выводами ~U, выполненными в виде дуг по внешним сторонам квадрантов пленочных фоторезисторов RX1, RX2, RY1 и RY2 (дуги показаны жирными линиями, условно); 11 - источник излучения, выполненный в виде кольца по периметру мениска; 12 - круговую шкалу с радиально-концентрическими линиями, выполненную в виде нормальной координатной сетки с азимутальной проекцией и с центром, лежащим на оси O2O*, при этом ее радиально-концентрические линии выполнены в виде светорассеивающих бороздок снаружи на внешней выпуклой 4 поверхности мениска, в объеме, или на внутренней вогнутой 5 поверхности мениска и оптически связаны по периметру мениска с источником 11 излучения.
Центр О* круговой шкалы и центры О1 и O2 кривизны внешней выпуклой 4 и внутренней вогнутой 5 сферических поверхностей образуют ось O2O* симметрии, ортогональную осям ОХ или OY.
На фиг. 3 дополнительно показана структурно-функциональная блок-схема устройства, содержащая: схему 13 электрическую принципиальную с двумя идентичными по осям ОХ и OY измерительными четырехплечими одинарными мостами; преобразователь 14 с двумя (по осям ОХ и OY) равнозначными измерительными каналами; и источник питания 15, выход ~U которого соединен с потенциальными электродами 9 диагоналей питания измерительных мостов.
Схема 13 электрическая принципиальная с двумя идентичными по осям ОХ и OY измерительными четырехплечими одинарными мостами образована его пленочными компонентами: противолежащими конденсаторами CX1 и СX2 по оси ОХ и CY1 и CY2 по оси OY, регистрирующими разбаланс моста по поляризационным токам, и противолежащими пленочными фоторезисторами, соответственно, RX1 и RX2 по оси ОХ и RY1 и RY2 по оси OY, регистрирующими разбаланс моста по фототокам. При этом элементы RX1, RX2 и RY1, RY2 образуют плечи отношения, a CX1 и СХ2 и CY1, СY2 - плечи сравнения, соответствующие осям ОХ и OY измерительных мостов.
Преобразователь 14 с двумя равнозначными измерительными каналами, соответственно по оси ОХ и/или OY, преобразует электрические сигналы (разбаланс мостов в зависимости от направления и величины наклона) с измерительных электродов 9 (измерительных диагоналей мостов) в аналоговую или цифровую форму и индицирует их в виде изображения симулированных пузырьковых уровней, например. как показано на вставке фиг. 3, или в любом другом виде.
Способ и устройство работают следующим образом.
Поток оптического излучения от естественного рассеянного дневного света или источника 11 излучения, диффузно-рассеиваемый радиально-концентрическими линиями круговой шкалы 12, выполненной в виде светорассеивающих бороздок [например, RU 2377516, 08.08.2008 г.], пройдя сквозь мениск 3 и оптически прозрачные пленочные электроды 8, рассеивается на внутреннюю поверхность основания 6, на котором выполнены пленочные 7 фоторезисторы RX1, RX2, RY1 и RY2 в виде четырех конгруэнтных круговых квадрантов. Поскольку электрофизические свойства (показатель преломления, поглощения, диэлектрическая проницаемость, электропроводность) газа и жидкости различны, то при прохождении оптического потока через жидкость 2 с пузырьком газа 1 на круговых квадрантах пленочных 7 фоторезисторах формируется зона света и тени - изображение газового пузырька, его световое пятно. При этом газовый пузырек выполняет функцию линзы, а дополнительное излучение от источника 11, диффузно-рассеиваемое светорассеивающими бороздками, выполненными в виде радиально-концентрических линий круговой шкалы 12, усиливает преломление и отражение излучения на границе раздела: газовый пузырек - жидкость.
При изменении углового положения устройства - при отклонении оси О2О* относительно отвесной линии, газовый пузырек под действием гравитационных сил остается в равновесном положении относительно отвесной линии, но смещается относительно центра О* круговой шкалы 12.
Величины фототоков IRX и/или IRY преобразуемых каждым фоторезистором RX1, RX2 и/или RY1 и RY2 зависят от соотношения величин зоны тени и зоны засветки фоточувствительной поверхности фоторезисторов. Поскольку размер изображения светового пятна пропорционален размеру газового пузырька, то наибольшая эффективность по фототоку (IR≈max) будет достигаться при размере изображения пузырька, равном диаметру круга, вписанного в круговой квадрант. То есть электрическая проводимость σ=1/R такого квадранта будет максимальна: σ≈q(nF+n), где q - величина заряда, nF и n - концентрации фотогенерируемых и равновесных зарядов соответственно. При изменении угла наклона фототок, формируемый каждым фоторезистором в пределах чувствительной поверхности при относительном изменении величины зоны света и тени, изменяется как непрерывная аналоговая величина. Информация о модуле величины угла наклона и направлении наклона получается в результате сравнительной комплексной оценки величин фототоков при одновременном измерении их на выходах каждого фоторезистора, зависящих от распределения зоны света и тени на светочувствительных поверхностях фоторезисторов.
Поляризационные токи ICX и/или ICY зависят от соотношения величин объема, занимаемого газовым пузырьком и/или жидкостью в межэлектродном пространстве системы из четырех конденсаторов CX1, СX2, CY1 и СY2, образованных, с одной стороны, оптически прозрачными пленочными электродами 8, а с другой стороны - пленочными RX1, RX2, RY1 и RY2 фоторезисторами 7. Чем больше жидкости между обкладками, тем больше емкость (C=ε0εS/d) соответствующего конденсатора, поскольку диэлектрическая проницаемость жидкости равна εж~40-140, а диэлектрическая проницаемость газа (воздуха) εг=1. То есть, чем больше объем, занимаемый газовым пузырьком, между обкладками соответствующего конденсатора CX1, СХ2, CY1 или СY2, тем больше его реактивное сопротивление XC=1/jωC=d/jωε0ε*S, где d - расстояние между обкладками, S - площадь обкладок, ε* - эффективная диэлектрическая проницаемость, обусловленная соотношением объемов жидкости и газового пузырька между соответствующими обкладками. При изменении угла наклона поляризационный ток, формируемый в каждом конденсаторе в пределах площади электродов при относительном изменении соотношения объемов жидкости и газового пузырька между соответствующими обкладками, изменяется как непрерывная аналоговая величина. Информация о модуле величины угла наклона и направлении наклона также получается в результате сравнительной комплексной оценки величин токов поляризации.
Поскольку в мостах переменного тока сопротивление плеч Zi в общем случае представляют собой комплексные сопротивления вида Zi=Ri+jXi, то условием равновесия моста по оси ОХ будет выражение (в показательной форме): Z1exp(jϕ1)⋅Z4exp(jϕ4)=Z2exp(jϕ2)⋅Z3exp(jϕ3),
где Z1exp(jϕ1)~XCX1, реактивное сопротивление конденсатора СX1;
Z4exp(jϕ4)~RX2, активное сопротивление фоторезистора RX2;
Z2exp(jϕ2)⋅~ХСХ2, реактивное сопротивление конденсатора CX2;
Z3exp(jϕ3)~RX1, активное сопротивление фоторезистора RX1.
Аналогично для измерительного моста по оси OY. Из этого следует, что равновесие наступает при равенстве произведений модулей комплексных сопротивлений противолежащих плеч и равенстве сумм их фазовых сдвигов, то есть: Z1⋅Z4=Z2⋅Z3; и ϕ1423 [Измерения в электронике. Справочник/ В.А. Кузнецов, В.А. Долгов, В.М. Коневских и др. Под ред. В.А. Кузнецова. - М.: Энергоатомиздат, 1987. С. 197-200].
При смещении плавающего газового пузырька 1 в жидкости 2 (при соответствующем наклоне устройства) одновременно уменьшается сопротивление соответствующего фоторезистора RX1 или RX2 по оси ОХ и/или RY1 или RY2 по оси OY в плече отношения, и, увеличивается реактивное сопротивление соответствующего конденсатора CX1 или CX2 по оси ОХ и/или CY1 или СY2 по оси OY в плече сравнения, соответствующего измерительного моста ОХ и/или OY. То есть, одновременно, в плече отношения увеличивается фототок IRX и/или IRY, а в плече сравнения уменьшается поляризационный ток IСX и/или ICY. Поэтому сигнал (разбаланс) в измерительной диагонали моста возрастает кратно, соответственно возрастает точность измерения и динамический диапазон измеряемых величин - направления и угла наклона.
Предлагаемый способ и устройство измерения угла наклона расширяет функциональные возможности уровней пузырькового типа, обеспечивая одновременное визуальное измерение и преобразование в электрический сигнал направления и величины наклона с повышением точности измерения. При этом точность измерения повышается за счет одновременно измеряемых фототоков от светового пятна пузырька и поляризационных токов от его пространственного положения.

Claims (3)

1. Способ измерения угла наклона объекта, состоящий в визуальном измерении смещения относительно центра круговой шкалы с радиально концентрическими линиями свободно плавающего по вогнутой поверхности мениска газового пузырька в жидкости, замкнутых в полости осесимметричной дискообразной капсулы при отклонении ее оси симметрии относительно отвесной линии, при этом центр круговой шкалы находится на оси симметрии дискообразной капсулы, отличающийся тем, что одновременно измеряются фототоки от светового пятна пузырька и поляризационные токи от его пространственного положения в полости, фототоки и поляризационные токи сравниваются между собой и индицируются в виде направления и величины наклона.
2. Устройство измерения угла наклона объекта, реализующее способ по п. 1, содержащее газовый пузырек с жидкостью, замкнутые в полости осесимметричной дискообразной капсулы, состоящей из основания и оптически прозрачного мениска, герметично связанных по периметру между собой, при этом внешняя сторона мениска выполнена в виде выпуклой сферической поверхности, содержащей круговую шкалу с радиально-концентрическими линиями, а внутренняя сторона выполнена в виде вогнутой сферической поверхности, центр круговой шкалы и центры кривизны внешней выпуклой и внутренней вогнутой сферических поверхностей образуют ось симметрии, отличающееся тем, что введены: четыре пленочных фоторезистора, четыре оптически прозрачных пленочных электрода, источник питания и двухканальный индикатор, при этом: пленочные фоторезисторы выполнены на внутренней поверхности основания в виде четырех конгруэнтных круговых квадрантов; оптически прозрачные пленочные электроды выполнены на внутренней вогнутой поверхности мениска в виде четырех конгруэнтных сферических треугольников так, что их проекции на основание совпадают с круговыми квадрантами пленочных фоторезисторов, совместно с которыми они образуют обкладки четырех конденсаторов; два противолежащих пленочных электрода и два противолежащих пленочных фоторезистора, биссектрисы центральных углов которых коллинеарны одной из ортогональных осей координат, электрически связаны между собой и источником питания в измерительный мост, измерительная диагональ которого электрически связана с соответствующим каналом индикатора.
3. Устройство по п. 2, отличающееся тем, что введен источник излучения, выполненный в виде кольца и оптически связанный по периметру мениска с круговой шкалой, радиально-концентрические линии которой выполнены в виде светорассеивающих бороздок.
RU2016130449A 2016-07-26 2016-07-26 Способ и устройство измерения угла наклона RU2655024C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016130449A RU2655024C2 (ru) 2016-07-26 2016-07-26 Способ и устройство измерения угла наклона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016130449A RU2655024C2 (ru) 2016-07-26 2016-07-26 Способ и устройство измерения угла наклона

Publications (3)

Publication Number Publication Date
RU2016130449A RU2016130449A (ru) 2018-01-31
RU2016130449A3 RU2016130449A3 (ru) 2018-03-29
RU2655024C2 true RU2655024C2 (ru) 2018-05-23

Family

ID=61173979

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016130449A RU2655024C2 (ru) 2016-07-26 2016-07-26 Способ и устройство измерения угла наклона

Country Status (1)

Country Link
RU (1) RU2655024C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774041C1 (ru) * 2021-06-09 2022-06-14 Александр Алексеевич Семенов Датчик угла наклона

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124604B (zh) * 2023-01-19 2024-04-30 上海理工大学 材料高温力学性能测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU194335A1 (ru) * Б. А. Уточкин Институт физики высоких энергий Электронный уровень
JPS60123719A (ja) * 1983-12-08 1985-07-02 Hisao Kato 傾斜角検出装置
SU1328671A1 (ru) * 1985-10-29 1987-08-07 Алма-Атинский Энергетический Институт Устройство дл измерени угла наклона
JPH0183106U (ru) * 1987-11-24 1989-06-02
DE3938848A1 (de) * 1989-11-23 1991-05-29 Mitec Mikroelektronik Mikrotec Neigungssensor
JP2001183134A (ja) * 1999-12-22 2001-07-06 Topcon Corp 傾斜制御装置と、傾斜制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU194335A1 (ru) * Б. А. Уточкин Институт физики высоких энергий Электронный уровень
JPS60123719A (ja) * 1983-12-08 1985-07-02 Hisao Kato 傾斜角検出装置
SU1328671A1 (ru) * 1985-10-29 1987-08-07 Алма-Атинский Энергетический Институт Устройство дл измерени угла наклона
JPH0183106U (ru) * 1987-11-24 1989-06-02
DE3938848A1 (de) * 1989-11-23 1991-05-29 Mitec Mikroelektronik Mikrotec Neigungssensor
JP2001183134A (ja) * 1999-12-22 2001-07-06 Topcon Corp 傾斜制御装置と、傾斜制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774041C1 (ru) * 2021-06-09 2022-06-14 Александр Алексеевич Семенов Датчик угла наклона
RU2782155C1 (ru) * 2022-01-30 2022-10-21 Владимир Васильевич Галайко Способ изготовления ампульного ватерпаса одновременного измерения в двух плоскостях
RU2800188C1 (ru) * 2022-12-08 2023-07-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" Способ высокоточного определения углов наклона контролируемого объекта, инженерного или природного, при геодезическом мониторинге посредством технологии компьютерного зрения в режиме реального времени в условиях экстремально низких температур окружающей среды и устройство для его осуществления

Also Published As

Publication number Publication date
RU2016130449A (ru) 2018-01-31
RU2016130449A3 (ru) 2018-03-29

Similar Documents

Publication Publication Date Title
CA2531266C (en) Optical inclination sensor
US6647634B2 (en) Reliably sensing bubble leveling means
US4422243A (en) Dual axis capacitive inclination sensor
US3487303A (en) Device for sensing deviation from the vertical position
JPH04350513A (ja) レーザー光線水準計測器
RU2655024C2 (ru) Способ и устройство измерения угла наклона
CN113175913A (zh) 一种基于激光测距的物体倾斜动态检测装置及检测方法
US7595479B2 (en) Tilt detector and tilt detecting method for the same
JPH09280859A (ja) 傾斜センサ及びこれを使用した測量機
Welch et al. Fully differential current-mode MEMS dual-axis optical inclination sensor
KR20160144047A (ko) 구 내부에서 자유 진동하며 지구 중심을 향하는 볼의 위치를 이미지센서 혹은 포토디텍터로 측정하여 경사도를 측정하는 디지털 절대 경사도 측정 방법 및 센서
CN103323622B (zh) 一种静电支撑式光学检测法测量三维加速度的方法
KR20160047687A (ko) 진자에 설치된 지구 중심을 향하는 빛 혹은 특정 패턴의 위치를 이미지센서 혹은 포토디텍터로 측정하여 경사도를 측정하는 디지털 절대 경사도 측정 방법 및 센서
JP2008129006A (ja) 電子式傾斜センサー及びその電子式水平感知方法
ES2538402T3 (es) Dispositivo electromecánico para medir la inclinación de un plano de apoyo con elevada resolución, elevada exactitud y baja sensibilidad a perturbaciones externas
JP2008020214A (ja) 水準器
CN220568062U (zh) 水准泡气泡位置的检测设备
JPS60123719A (ja) 傾斜角検出装置
KR20140108848A (ko) 유동하여 수평면을 유지하는 전도성 액체를 통하여 전류가 흐르는 센싱 입력단자를 검출하여 경사도를 측정하는 디지털 경사도 측정 방법 및 센서
JP2018116064A (ja) センサ
CN202928567U (zh) 基于ccd的倾角测量装置
JPH0242311A (ja) 傾斜角検出器
RU2689282C1 (ru) Видеодатчик гидростатического нивелира
CN207881656U (zh) 角度测量标定装置
JPS63101711A (ja) 姿勢センサ