RU2654606C2 - Управление давлением в факоэмульсификационной системе - Google Patents

Управление давлением в факоэмульсификационной системе Download PDF

Info

Publication number
RU2654606C2
RU2654606C2 RU2015119265A RU2015119265A RU2654606C2 RU 2654606 C2 RU2654606 C2 RU 2654606C2 RU 2015119265 A RU2015119265 A RU 2015119265A RU 2015119265 A RU2015119265 A RU 2015119265A RU 2654606 C2 RU2654606 C2 RU 2654606C2
Authority
RU
Russia
Prior art keywords
fluid
irrigation
controller
pressure
source
Prior art date
Application number
RU2015119265A
Other languages
English (en)
Other versions
RU2015119265A (ru
Inventor
Рафаэль ГОРДОН
Original Assignee
Алькон Рисерч, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алькон Рисерч, Лтд. filed Critical Алькон Рисерч, Лтд.
Publication of RU2015119265A publication Critical patent/RU2015119265A/ru
Application granted granted Critical
Publication of RU2654606C2 publication Critical patent/RU2654606C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/73Suction drainage systems comprising sensors or indicators for physical values
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0612Eyes

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Eye Examination Apparatus (AREA)
  • Surgical Instruments (AREA)

Abstract

Группа изобретений относится к медицине. Хирургическая система, содержащая: источник находящейся под давлением ирригационной жидкости; ирригационную магистраль, выполненную с возможностью жидкостного соединения с источником находящейся под давлением ирригационной жидкости; рукоятку, выполненную с возможностью жидкостного соединения с ирригационной магистралью, причем рукоятка имеет ирригационный патрубок; датчик ирригационного давления, расположенный внутри или вдоль источника находящейся под давлением ирригационной жидкости либо внутри или вдоль ирригационной магистрали; и контроллер для управления источником находящейся под давлением ирригационной жидкости. При этом контроллер выполнен с возможностью управления источником находящейся под давлением ирригационной жидкости на основании показаний датчика ирригационного давления и расчетной величины количества протекающей жидкости с корректировкой за счет поправочного коэффициента. Причем поправочный коэффициент основан на степени сжатия ирригационного патрубка, ограничивающего количество протекающей ирригационной жидкости. Другой вариант хирургической системы содержит: источник находящейся под давлением ирригационной жидкости, при этом источник находящейся под давлением ирригационной жидкости содержит эластичный пакет, расположенный между двумя противостоящими пластинами, причем эластичный пакет содержит жидкость; датчик положения, расположенный в или на одной из двух противостоящих пластин, при этом датчик положения предназначен для определения расстояния между двумя противостоящими пластинами; привод для перемещения по меньшей мере одной из двух противостоящих пластин с возможностью сдавливания эластичного пакета; и контроллер для управления относительным перемещением противостоящих пластин. При этом контроллер принимает показания датчика положения, определяет расстояние между пластинами и обеспечивает оценку количества жидкости в эластичном пакете. Применение данной группы изобретений позволит поддержать стабильное внутриглазное давление при различных параметрах потока жидкости. 2 н. и 23 з.п. ф-лы, 5 ил.

Description

УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится к факоэмульсификации и хирургии, в частности, к управлению потоком текучей среды во время операции.
Человеческий глаз функционирует для того, чтобы обеспечить зрение посредством пропускания света сквозь прозрачную наружную часть, называемую роговицей, и фокусировки изображения на сетчатке посредством хрусталика. Качество сфокусированного изображения зависит от многих факторов, включающих размер и форму глаза, а также прозрачность роговицы и хрусталика. В тех случаях, когда возраст или заболевание являются причиной того, что хрусталик становится менее прозрачным, зрение ухудшается из-за уменьшения количества света, которое может быть пропущено к сетчатке. Эта патология в хрусталике глаза является известной в медицине как катаракта. Общепринятым лечением этого состояния является хирургическое удаление хрусталика и замена функции хрусталика с помощью искусственной интраокулярной линзы (ИОЛ).
В Соединенных Штатах большинство катарактных хрусталиков удаляют при помощи хирургического метода, который называется факоэмульсификацией. Типичный хирургический инструмент, который является подходящим для операций факоэмульсификации катарактных хрусталиков, состоит из рукоятки с ультразвуковым приводом, прикрепленной пустотелой режущей иглы, окруженной ирригационным патрубком, и электронного пульта управления. Рукоятка соединена с пультом управления электрическим кабелем и гибким трубопроводом. Через электрический кабель пульт управления изменяет уровень мощности, которая передается с помощью рукоятки прикрепленной режущей игле. С помощью гибкого трубопровода осуществляется подача ирригационной жидкости в глаз и отсасывание аспирационной жидкости из глаза через рукоятку.
Во время операции факоэмульсификации тонкий конец режущей иглы и конец ирригационного патрубка вводят в передний сегмент глазного яблока через небольшой разрез в наружных тканях глазного яблока. Хирург осуществляет взаимодействие тонким концом режущей иглы с хрусталиком глаза таким образом, что вибрирующий тонкий конец измельчает хрусталик на фрагменты. Полученные в результате фрагменты аспирируются из глазного яблока через внутренний канал режущей иглы вместе с ирригационной жидкостью, которая поступает в глазное яблоко во время операции, а далее в емкость для отходов.
В течение всего времени операции ирригационная жидкость вливается в глазное яблоко, проходит между ирригационным патрубком и режущей иглой и выходит внутри глазного яблока из наконечника ирригационного патрубка и/или из одного или более портов или отверстий, выполненных в ирригационном патрубке вблизи его конца. Эта ирригационная жидкость имеет особо важное значение в связи с тем, что она предотвращает коллапс глазного яблока во время удаления эмульгированного хрусталика. Ирригационная жидкость также защищает ткани глазного яблока от тепла, которое выделяется при вибрировании ультразвуковой режущей иглы. Более того, ирригационная жидкость удерживает во взвешенном состоянии фрагменты эмульгированного хрусталика для аспирации из глазного яблока.
Повсеместно применяемые системы применяют в качестве источника ирригационной жидкости заполненные жидкостью бутылки или подвешенные на штативе для внутривенных вливаний (IV) пакеты. Скорости подачи ирригационной жидкости к глазу и соответствующее давление жидкости регулируются путем регулирования высоты штатива для внутривенных вливаний (IV) над операционным полем. К примеру, поднятие штатива для внутривенных вливаний (IV) приводит к соответствующему увеличению давления напора и увеличению давления жидкости в глазном яблоке, в результате чего соответствующим образом увеличивается скорость подачи ирригационной жидкости. Таким же образом, опускание штатива для внутривенных вливаний (IV) приводит к соответствующему уменьшению давления в глазном яблоке и соответствующей скорости подачи ирригационной жидкости в глазное яблоко.
Скорости потока аспирации жидкости из глаза, как правило, регулируются при помощи аспирационного насоса. Действие насоса вызывает аспирацию протекающей жидкости через внутренний канал режущей иглы. Аспирация протекающей жидкости приводит к образованию вакуума в аспирационной магистрали. Аспирация протекающей жидкости и/или вакуум направлены на достижение желаемого достаточного результата при удалении хрусталика. Высота штатива для внутривенных вливаний (IV) и ирригационный насос регулируются для достижения надлежащего баланса во внутриглазной камере при попытке сохранить относительно постоянное давление жидкости в операционном поле внутри глазного яблока.
В то время как во время операции факоэмульсификации является желательным стабильное давление жидкости в глазном яблоке, обычным явлением в ходе операции факоэмульсификации является появление различных скоростей потока жидкости, которые возникают в течение всего времени хирургической операции. Различные скорости потока жидкости приводят к различным потерям давления при прохождении ирригационной жидкости от источника подачи ирригационной жидкости к глазному яблоку, тем самым вызывая изменения давления в передней камере (также называется внутриглазным давлением или ВГД). Более высокие скорости потока жидкости приводят к большим потерям давления и снижению ВГД. В связи со снижением ВГД происходит уменьшение свободного пространства внутри глазного яблока.
Еще одно частое затруднение в ходе операции факоэмульсификации возникает из-за закупорки или окклюзии аспирационной иглы. В связи с тем, что ирригационная жидкость и эмульгированная ткань аспирируются из внутренней части глазного яблока через пустотелую режущую иглу, кусочки ткани, которые являются большими, чем диаметр отверстия иглы, могут закупорить тонкий конец иглы. В то время как наконечник является закупоренным, внутри тонкого конца создается давление вакуума. Полученное в результате падение давления в передней камере глазного яблока при удалении закупорки является известным как постокклюзионная волна. Эта постокклюзионная волна, в некоторых случаях, может привести к слишком быстрой аспирации относительно большого количества жидкости и ткани за пределы глазного яблока, что потенциально может стать причиной коллапса глазного яблока и/или причиной разрыва капсулы хрусталика.
Для того чтобы уменьшить эту волну, были испробованы различные технологии, такие как, к примеру, продувка аспирационной магистрали или ограничение иным способом повышения отрицательного давления в аспирационной системе. Тем не менее, сохраняется потребность в улучшенных факоэмульсификационных устройствах, в том числе в ирригационных системах, которые снижают постокклюзионную волну, а также поддерживают стабильное ВГД при всех различных параметрах потока жидкости.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном варианте реализации изобретения в соответствии с принципами настоящего изобретения настоящее изобретение представляет хирургическую систему, содержащую источник ирригационной жидкости, находящейся под давлением; ирригационную магистраль, выполненную с возможностью жидкостного соединения с источником ирригационной жидкости, находящейся под давлением; рукоятку, выполненную с возможностью жидкостного соединения с ирригационной магистралью; датчик ирригационного давления, расположенный внутри или вдоль источника ирригационной жидкости, находящейся под давлением или ирригационной магистрали; и контроллер для управления источником ирригационной жидкости, находящейся под давлением. Контроллер управляет источником ирригационной жидкости, находящейся под давлением на основе показаний датчика ирригационного давления и расчетной величины количества протекающей жидкости с корректировкой за счет поправочного коэффициента.
Хирургическая система также содержит дисплей и устройство ввода контроллера. Устройство ввода контроллера принимает желаемое значение внутриглазного давления, а контроллер управляет источником ирригационной жидкости, находящейся под давлением таким образом, чтобы поддерживать желаемое значение внутриглазного давления. Устройство ввода контроллера получает желаемый диапазон значений внутриглазного давления и контроллер управляет источником ирригационной жидкости, находящейся под давлением таким образом, чтобы поддерживать желаемый диапазон значений внутриглазного давления. Контроллер производит вычисление внутриглазного давления в глазном яблоке на основе показаний датчика ирригационного давления, датчика источника давления, или датчика аспирационного давления, или с учетом расчетной величины количества протекающей жидкости с корректировкой за счет поправочного коэффициента. Контроллер также производит вычисление расчетной величины количества протекающей жидкости на основе показаний датчика ирригационного давления, датчика источника давления и импеданса ирригационной магистрали.
Система также содержит аспирационную магистраль, выполненную с возможностью соединения по текучей среде с рукояткой; датчик аспирационного давления, расположенный в аспирационной магистрали или рядом с ней; и аспирационный насос, выполненный с возможностью отсасывания текучей среды через аспирационную магистраль. В таком случае контроллер производит вычисление расчетной величины количества протекающей жидкости на основе показаний датчика аспирационного давления, максимальной всасывающей способности насоса, достижимой с помощью аспирационного насоса, и импеданса аспирационного насоса.
Система также содержит эластичный пакет с жидкостью и две противостоящие пластины. Эластичный пакет расположен между двумя противостоящими пластинами. В указанном случае контроллер производит вычисление расчетной величины количества протекающей жидкости на основе перемещения или передвижения двух противостоящих пластин.
В некоторых вариантах реализации изобретения поправочный коэффициент рассчитывается в зависимости от истечения жидкости в области разреза и/или степени сжатия в патрубке, игле и патрубке, выбранных для операции, или характеристик потока жидкости в комбинации иглы и патрубка. Устройство ввода контроллера принимает информацию об игле и патрубке, а затем контроллер использует информацию об игле и патрубке для того, чтобы выбрать или рассчитать поправочный коэффициент. Устройство ввода контроллера может получить поправочный коэффициент в качестве входных данных от пользователя.
Контроллер использует показания датчика аспирационного давления для того, чтобы определить наличие окклюзии или возникновение прорыва окклюзии. В таком случае контроллер управляет источником ирригационной жидкости, находящейся под давлением, для приспосабливания к изменениям в потоке жидкости, которые возникают в результате окклюзии или прорыва окклюзии. Контроллер использует показания датчика ирригационного давления для того, чтобы определить наличие окклюзии или возникновение прорыва окклюзии. В таком случае контроллер управляет источником ирригационной жидкости, находящейся под давлением, для приспосабливания к изменениям в потоке жидкости, которые возникают в результате окклюзии или прорыва окклюзии.
В других вариантах реализации настоящего изобретения хирургическая система содержит: источник ирригационной жидкости, находящейся под давлением, при этом источник ирригационной жидкости, находящейся под давлением, содержит эластичный пакет, расположенный между двумя противостоящими пластинами, причем эластичный пакет содержит жидкость; датчик положения, расположенный в или на одной из двух противостоящих пластин, наряду с этим датчик положения предназначен для определения расстояния между двумя противостоящими пластинами; привод для перемещения по меньшей мере одной из двух противостоящих пластин с возможностью сдавливания эластичного пакета; и контроллер для управления относительным перемещением противостоящих пластин. Контроллер принимает показания от датчика положения, определяет расстояние между пластинами и обеспечивает оценку количества жидкости в эластичном пакете.
В других вариантах реализации настоящего изобретения хирургическая система содержит: источник ирригационной жидкости, находящейся под давлением, источник ирригационной жидкости, находящейся под давлением, содержащий эластичный пакет, расположенный между двумя противостоящими пластинами, эластичный пакет, содержащий жидкость; шарнирно сочлененную пластину, расположенную на поверхности одной из двух противостоящих пластин; датчик источника давления, расположенный между поверхностью шарнирно сочлененной пластины и поверхностью одной из двух противостоящих пластин, в результате чего поверхность шарнирно сочлененной пластины прижимает датчик источника давления вплотную к поверхности одной из двух противостоящих пластин.
Следует понимать, что как предшествующее общее описание, так и последующее подробное описание являются только пояснительными и приводятся в качестве примера, и предназначены для обеспечения дополнительного разъяснения заявленного изобретения. Изложены последующее описание, а также практическая реализация изобретения, и рассмотрены дополнительные преимущества и цели настоящего изобретения.
В одном варианте реализации изобретения в соответствии с принципами настоящего изобретения способ управления хирургической системой с путем потока жидкости, включает: прием показаний давления от датчика ирригационного давления, расположенного по пути потока жидкости; вычисление расчетной величины количества протекающей жидкости через хирургическую систему; корректирование расчетной величины количества протекающей жидкости с учетом поправочного коэффициента; и управление источником ирригационной жидкости, находящейся под давлением, на основе показаний давления и расчетной величины количества протекающей жидкости с учетом поправочного коэффициента.
В других вариантах реализации настоящего изобретения способ также включает один или более из следующего: получение желаемой величины внутриглазного давления; и управление источником ирригационной жидкости, находящейся под давлением, таким образом, чтобы поддерживать желаемую величину внутриглазного давления; получение желаемого диапазона внутриглазного давления; и управление источником ирригационной жидкости, находящейся под давлением, таким образом, чтобы поддерживать желаемый диапазон внутриглазного давления; расчет внутриглазного давления в глазном яблоке на основании показаний от датчика ирригационного давления; расчет внутриглазного давления в глазном яблоке на основе расчетной величины количества протекающей жидкости, скорректированной с учетом поправочного коэффициента; получение показаний от датчика аспирационного давления, расположенного по пути текучей среды, максимальной всасывающей способности насоса, достижимой аспирационным насосом, и импеданса аспирационного насоса; и определение количества протекающей жидкости на основе разности между показаниями от датчика аспирационного давления и максимальной всасывающей способности насоса, достижимой аспирационным насосом; получение показаний от датчика ирригационного давления, показаний от датчика источника давления, и импеданса пути потока жидкости между датчиком источника давления и датчиком ирригационного давления; и определение количества протекающей жидкости на основе разности между показаниями от датчика ирригационного давления и датчика источника давления; получение поправочного коэффициента от пользователя; получение информации об игле и патрубке; и использование информации об игле и патрубке для того, чтобы выбрать или рассчитать поправочный коэффициент; получение показаний давления от датчика аспирационного давления, расположенного по пути текучей среды; и определение с помощью показаний давления от датчика аспирационного давления наличия окклюзии или возникновения прорыва окклюзии; приспосабливание к изменениям потока текучей среды в результате окклюзии или прорыва окклюзии; получение показаний давления от датчика ирригационного давления; и определение с помощью показаний давления от датчика ирригационного давления наличия окклюзии или возникновения прорыва окклюзии.
В других вариантах реализации изобретения в соответствии с принципами настоящего изобретения способ вычисления количества жидкости при истечении в области разреза включает: вычисление количества протекающей ирригационной жидкости; вычисление количества протекающей аспирационной жидкости; и вычитание рассчитанной величины количества протекающей аспирационной жидкости из рассчитанной величины количества протекающей ирригационной жидкости; при этом рассчитанная величина количества протекающей ирригационной жидкости и рассчитанная величина количества протекающей аспирационной жидкости определяются в результате измерений перепадов давления.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Сопроводительные графические материалы, объединенные и составляющие часть этой спецификации, иллюстрируют некоторые варианты реализации настоящего изобретения и вместе с описанием раскрывают принципы изобретения ниже.
На Фиг. 1 проиллюстрирована схема составляющих элементов в системе циркуляции жидкости факоэмульсификационной системы, которая содержит источник ирригации, находящийся под давлением, в соответствии с принципами настоящего изобретения.
На Фиг. 2 проиллюстрирован источник ирригационной жидкости, находящейся под давлением в соответствии с принципами настоящего изобретения.
Фиг. 3 и 4 иллюстрируют шарнирно сочлененную конструкцию датчика давления для источника ирригационной жидкости, находящейся под давлением, в соответствии с принципами настоящего изобретения.
На Фиг. 5 проиллюстрирована схема составляющих элементов системы в системе управления источником ирригационной жидкости, находящейся под давлением.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ
Обратимся теперь к подробно описанным приводимым в качестве примера вариантам реализации изобретения, примеры которых проиллюстрированы в прилагаемых графических материалах. Везде, где это возможно, одинаковые ссылочные номера использованы на всех чертежах для обозначения одинаковых или подобных частей.
На Фиг. 1 проиллюстрирована схема составляющих элементов в системе циркуляции жидкости факоэмульсификационной системы, которая содержит источник ирригации, находящийся под давлением, в соответствии с принципами настоящего изобретения. На Фиг. 1 проиллюстрирована система циркуляции жидкости через глазное яблоко 1145 во время операции по удалению катаракты. Составляющие элементы содержат источник 1105 ирригационной жидкости, находящейся под давлением, датчик источника давления 1110, датчик ирригационного давления 1130, трехходовой клапан 1135, ирригационную магистраль 1140, рукоятку 1150, аспирационную магистраль 1155, датчик аспирационного давления 1160, выпускной клапан 1165, насос 1170, резервуар 1175 и пакет для сбора жидкости 1180. Ирригационная магистраль 1140 обеспечивает подачу ирригационной жидкости в глазное яблоко 1145 во время операции по удалению катаракты. По аспирационной магистрали 1155 удаляются текучая среда и эмульгированные частицы хрусталика из глазного яблока во время операции по удалению катаракты.
При выходе ирригационной жидкости из источника 1105 ирригационной жидкости, находящейся под давлением, она проходит через ирригационную магистраль 1140 и далее в глазное яблоко 1145. Датчик ирригационного давления 1130 измеряет давление ирригационной жидкости в ирригационной магистрали 1140. Датчик ирригационного давления 1130 может быть расположен в любом месте на всем протяжении ирригационной магистрали 1140 или канала для ирригационной жидкости. При варианте расположения в непосредственной близости к глазному яблоку 1145 датчик ирригационного давления также может быть встроен в ирригационный канал рукоятки 1150. В некоторых случаях ирригационная магистраль 1140 может содержать канал в жидкостной кассете и проходить через нее. В таком случае датчик ирригационного давления 1130 расположен в жидкостной кассете. Для целей настоящего описания ирригационная магистраль 1140 содержит гибкую трубку, канал через жидкостную кассету, жесткую трубку или другие жидкостные пути, через которые проходит ирригационная жидкость из источника 1105 ирригационной жидкости, находящейся под давлением, через рукоятку 1150 внутрь глазного яблока 1145. Датчик источника давления 1110 также измеряет давление ирригационной жидкости в источнике 1105 ирригационной жидкости, находящейся под давлением. Трехходовой клапан 1135 обеспечивает управление включением/выключением ирригации и обусловливает путь к пакету для сбора жидкости 1180. Датчик ирригационного давления 1130 и датчик источника давления 1110 реализованы любым из числа серийно производимых датчиков давления текучей среды. Датчик ирригационного давления 1130 и/или датчик источника давления 1110 представляют информацию о давлении в контроллер (проиллюстрированный на Фиг. 5), который управляет источником 1105 ирригационной жидкости, находящейся под давлением. Источник ирригационной жидкости, находящейся под давлением 1105, регулирует давление и/или скорость потока ирригационной жидкости, которая из него выходит.
В некоторых вариантах реализации настоящего изобретения источник 1105 ирригационной жидкости, находящейся под давлением, содержит эластичный пакет, который содержит ирригационную жидкость. В таком случае является возможным сжатие пакета для создания повышенного давления содержащейся в нем жидкости. К примеру, пакет располагается между двумя противостоящими пластинами, которые сжимаются для создания повышенного давления содержимого пакета (как более подробно описано в соответствии с Фиг. 2). В другом примере эластичная полоса охватывает пакет и натягивается для того, чтобы сжать пакет и создать повышенное давление его содержимого. В других вариантах реализации настоящего изобретения источник 1105 ирригационной жидкости, находящейся под давлением, содержит бутылку или другой контейнер, который может находиться под давлением. В дополнительных вариантах реализации настоящего изобретения источник 1105 ирригационной жидкости, находящейся под давлением, находится под давлением за счет использования насоса или сжатого газа.
Датчик источника давления 1110 может быть единственным датчиком давления или же может быть представлен в виде множества датчиков давления. Датчик источника давления 1110 входит в контакт с источником 1105 ирригационной жидкости, находящейся под давлением, для того, чтобы определить давление его содержимого. К примеру, когда источник 1105 ирригационной жидкости, находящейся под давлением, представляет собой эластичный пакет, расположенный между двумя противостоящими пластинами, датчик источника давления 1110 располагается на одной из пластин, прилегающих к пакету. При перемещении пластин пакет сжимается под давлением, а датчик источника давления 1110 измеряет это давление. В этом случае датчик источника давления 1110 представляет собой множество датчиков, расположенных на пластине или же единственный датчик, расположенный на пластине. В другом примере используется шарнирно сочлененная пластина, как это более подробно описано в соответствии с Фиг. 4.
Фиг. 2 иллюстрирует источник 1105 ирригационной жидкости, находящейся под давлением, представленный в виде эластичного пакета 1109 (к примеру, пакета для внутривенного вливания (IV)), расположенного между двумя противостоящими пластинами 1106 и 1107. Одна из двух пластин 1106 или 1107 является зафиксированной, в то время как другая пластина перемещается для сжатия или сжимает эластичный пакет 1109. К примеру, пластина 1106 является зафиксированной, а пластина 1107 перемещается для того, чтобы сжать эластичный пакет 1109. На Фиг. 3 проиллюстрировано, что пластина 1106 имеет множество датчиков источника давления 1110, расположенных на поверхности, обращенной к эластичному пакету 1109. Таким образом, показания от каждого из четырех проиллюстрированных датчиков источника давления 1110 приводят к более точным показаниям давления. В этом примере показания взяты от каждого из четырех датчиков источника давления 1110, а средняя величина показаний или ошибочные показания отброшены. На Фиг. 4 датчик источника давления 1110 (или множество датчиков) расположен на пластине 1106 под шарнирно сочлененной пластиной 1108. Плоская поверхность шарнирно сочлененной пластины 1108 контактирует с датчиком источника давления 1110. В некоторых случаях поверхность эластичного пакета 1109 может сминаться или иметь складки при сжимании между пластинами 1106 и 1107. Эти морщины или складки приводят к неточным показаниям давления, если морщины или складки находятся около датчика источника давления 1110. Применение множества датчиков, как это проиллюстрировано на Фиг. 3, является одним из способов решения этой проблемы. Использование шарнирно сочлененной пластины 1108 представляет собой другой способ. При применении шарнирно сочлененной пластины 1108 плоская однородная поверхность всегда контактирует с датчиком источника давления 1110.
На Фиг. 5 проиллюстрирована блок-схема, представляющая некоторые составляющие элементы факоэмульсификационной машины. Фиг. 5 иллюстрирует ирригационную магистраль 1140, датчик ирригационного давления 1130 в, вдоль, или соединенный с ирригационной магистралью 1140, аспирационную магистраль 1155, датчик аспирационного давления 1160 в, вдоль, или соединенный с аспирационной магистралью 1155, рукоятку 1150, контроллер 1230, устройство ввода команд для потока 1210 (к примеру, ножная педаль), дисплей 1220 и присоединенное устройство ввода контроллера 1240 для ввода данных или команд для программирования системы.
Ирригационная магистраль 1140 проходит от источника 1105 ирригационной жидкости, находящейся под давлением, до рукоятки 1150 и осуществляет подачу жидкости в рукоятку 1150 для ирригации глазного яблока во время хирургической операции (как проиллюстрировано на Фиг. 1). В одном примере стерильная жидкость представляет собой физиологический раствор, тем не менее могут быть применены другие жидкости. По меньшей мере часть ирригационной магистрали 1140 может быть выполнена из гибкой трубки, а в некоторых вариантах реализации изобретения путь 1140 выполнен из нескольких сегментов, при этом некоторые сегменты являются жесткими, а другие являются гибкими.
Датчик ирригационного давления 1130 соединен с ирригационной магистралью 1140 и выполняет функцию измерения ирригационного давления в ирригационной магистрали 1140. В некоторых вариантах реализации изобретения датчик 1130 представляет собой датчик давления, выполненный с возможностью обнаружения текущих условий давления. Датчик 1130 передает сигналы, показывающие измеренное давление, в контроллер 1230. После получения контроллер 1230 обрабатывает полученные сигналы для того, чтобы определить, является ли измеренное давление выше или ниже желаемого давления или же оно находится в пределах заранее установленного диапазона желаемого давления. Несмотря на то, что указанный датчик описан в качестве датчика давления, датчиком ирригационного давления 1130 может быть другой тип датчика, такой как датчик потока, который обнаруживает фактический расход жидкости, и может содержать дополнительные датчики для мониторинга дополнительных параметров. В некоторых вариантах реализации изобретения датчик 1130 содержит свою собственную функцию обработки, и обработанные данные затем передаются в контроллер 1230.
Аспирационная магистраль 1155 проходит от рукоятки к резервуару для сбора жидкости 1180 (как проиллюстрировано на Фиг. 1). По аспирационной магистрали 1155 удаляют жидкость, которую применяют для промывки глазного яблока, а также любые малейшие эмульгированные частицы.
Датчик аспирационного давления 1160 соединен с аспирационной магистралью 1155 и выполняет функцию измерения давления отводимой текучей среды в аспирационной магистрали 1155. Подобно датчику 1130, описанному выше, датчик 1160 представляет собой датчик давления, выполненный с возможностью обнаружения текущих условий давления. Он передает сигналы, показывающие измеренное давление, в контроллер 1230. Датчиком 1160, подобно датчику 1130, может быть любой подходящий тип датчика, такой как датчик потока, который обнаруживает фактический расход жидкости, и может содержать дополнительные датчики для мониторинга дополнительных параметров.
Рукоятка 1145 представляет собой ультразвуковую рукоятку, которая подает ирригационную жидкость в операционное поле. Рукоятка сконфигурирована, как известно в данной области техники, для того, чтобы принимать и работать с различными иглами или принадлежностями в зависимости от направления практического применения и выполняемых операций. Следует обратить внимание на то обстоятельство, что, хотя рассматривается ультразвуковая рукоятка, принципы настоящего изобретения предназначены для охватывания применения режущих рукояток для витрэктомии или других рукояток, известных в данной области техники. Только лишь для удобства это направление практического применения будет относиться только к рукоятке 1145, признавая факт того, что система работает таким же образом с другими рукоятками.
В проиллюстрированном примере устройством ввода команд для жидкости 1210 является, как правило, ножная педаль. Оно может принимать входные сигналы, указывающие на желаемую скорость потока, желаемое давление или другие характеристики жидкости. Оно выполнено с возможностью управления функциональными параметрами машины за счет применения множества основных параметров управления, в том числе регулирования скорости подачи ирригационной жидкости или давления в каждом из основных параметров управления. В некоторых вариантах реализации изобретения устройством ввода команд для потока является не ножная педаль, а другое устройство ввода, расположенное на машине где-нибудь в другом месте.
Устройство ввода контроллера 1240 позволяет пользователю вводить данные или команды, которые воздействуют на программирование системы. В этом варианте реализации изобретения устройство ввода контроллера 1240 соединено с дисплеем 1220. Тем не менее, оно может быть соединено непосредственно с контроллером способом, известным в данной области техники. К примеру, в некоторых вариантах реализации изобретения устройство ввода контроллера 1240 представляет собой стандартную клавиатуру компьютера, стандартное указывающее устройство, такое как мышь или шаровое устройство ввода графической информации, сенсорный экран или другое устройство ввода.
Как видно из Фиг. 5, контроллер 1230 соединен с дисплеем 1220, устройством ввода команд для потока 1210, рукояткой 1150, датчиком ирригационного давления 1130, датчиком аспирационного давления 1160 и устройством ввода контроллера 1240. Он сконфигурирован или запрограммирован для управления давлением ирригационной системы на основании заранее установленных программ или последовательностей.
При использовании, контроллер 1230 выполнен с возможностью приема сигналов от датчика ирригационного давления 1130 и обработки сигналов для того, чтобы определить, находится ли обнаруженное ирригационное давление за пределами допустимого диапазона, или выше, или ниже допустимых пороговых значений. Если контроллер 1230 обнаруживает недопустимое ирригационное давление, то он регулирует давление ирригационной системы для того, чтобы откорректировать давление до желаемого диапазона. Таким же образом, в еще одном примере, контроллер 1230 выполнен с возможностью приема сигналов от датчика аспирационного давления 1160 и обработки сигналов для того, чтобы определить, находится ли обнаруженное давление за пределами допустимого диапазона, или выше, или ниже допустимых пороговых значений. Если контроллер 1230 обнаруживает недопустимое давление, то он регулирует находящуюся под давлением ирригационную систему для того, чтобы откорректировать давление до желаемого диапазона. Таким образом, датчик ирригационного давления 1130 и/или датчик аспирационного давления 1160 применяют для регулирования давления жидкости в глазном яблоке (ВГД).
Возвращаясь к Фиг. 1, датчик аспирационного давления 1160 измеряет давление в аспирационной магистрали 1155 или аспирационном пути. Датчик аспирационного давления 1160 может быть расположен в любом месте аспирационной магистрали 1155 или аспирационного пути. При варианте расположения в непосредственной близости к глазному яблоку 1145 датчик аспирационного давления располагается в рукоятке 1150. Датчик аспирационного давления 1160 реализован в виде любого из числа серийно производимых датчиков давления текучей среды. Датчик аспирационного давления 1160 представляет информацию о давлении в контроллер (проиллюстрированный на Фиг. 5), который управляет источником 1105 ирригационной жидкости, находящейся под давлением.
Рукоятка 1150 располагается в области глазного яблока 1145 во время операции факоэмульсификации. Рукоятка 1150 имеет полую иглу, которая с помощью ультразвука вибрирует в глазном яблоке для того, чтобы разрушить больной хрусталик. Патрубок, расположенный вокруг иглы, обеспечивает подачу ирригационной жидкости из ирригационной магистрали 1140. Ирригационная жидкость проходит через пространство между наружной поверхностью иглы и внутренней поверхностью патрубка. Жидкость и частицы хрусталика аспирируются через полую иглу. Таким образом, внутренний канал полой иглы выполнен с возможностью соединения по текучей среде с аспирационной магистралью 1155. Насос 1170 отсасывает аспирированную текучую среду из глазного яблока 1145. Датчик аспирационного давления 1160 измеряет давление в аспирационной магистрали. Необязательно может быть применен выпускной клапан для того, чтобы снизить давление вакуума, созданного с помощью насоса 1170. Аспирационная жидкость проходит через резервуар 1175 и далее в пакет для сбора жидкости 1180.
Во время операции факоэмульсификации в тонком конце иглы на рукоятке 1150 может возникнуть закупорка частицами хрусталика. Это создает состояние, которое называется окклюзией. Во время окклюзии, как правило, из глазного яблока аспирируется меньше жидкости, а разрежение в аспирационной магистрали 1155 в результате окклюзии увеличивается. Соответственно, во время окклюзии, датчик аспирационного давления 1160 обнаруживает повышенный вакуум, который присутствует в аспирационной магистрали 1155. При прорыве окклюзии (иными словами, когда частицы хрусталика, которые являются причиной окклюзии, разбиваются с помощью ультразвуковой иглы), возникает постокклюзионная волна. Повышенный вакуум в аспирационной магистрали 1155 приводит к внезапному отсасыванию жидкости из глазного яблока, в результате чего происходит быстрое снижение ВГД и обмеление свободного пространства внутри глазного яблока. Это приводит к опасной ситуации, в которой могут быть повреждены различные структуры глазного яблока.
При прорыве окклюзии датчик аспирационного давления 1160 обнаруживает падение давления в аспирационной магистрали 1155. Таким же образом, датчик ирригационного давления 1130 также обнаруживает падение давления в ирригационной магистрали 1140, которое происходит в результате прорыва окклюзии. Сигналы от датчика ирригационного давления 1130 и/или датчика аспирационного давления 1160 используются контроллером 1230 для управления источником ирригации 1105, как более подробно описано ниже.
Ирригационная система, находящаяся под давлением, в соответствии с настоящим изобретением, выполнена с возможностью реагирования на постокклюзионную волну, вызванную прорывом окклюзии, за счет увеличения ирригационного давления в ирригационной магистрали 1140. При прорыве окклюзии и возникновении постокклюзионной волны источник 1105 ирригационной жидкости, находящейся под давлением, повышает в ответ давление ирригационной жидкости. Увеличение ирригационного давления источником 1105 ирригационной жидкости, находящейся под давлением, соответствует увеличению потребления жидкости, которое вызвано прорывом окклюзии. Таким образом, давление и полученное в результате свободное пространство в глазном яблоке 1145 поддерживается на относительно постоянном уровне, который выбран хирургом.
Точно так же, при возникновении окклюзии, ирригационное давление возрастает в связи с тем, что аспирация жидкости из глазного яблока уменьшается. Увеличение давления ирригационной жидкости, обнаруженное с помощью датчика ирригационного давления 1130, применяют для управления источником 1105 ирригационной жидкости, находящейся под давлением, для регулирования давления в глазном яблоке 1145, иными словами, для того, чтобы поддерживать давление в глазном яблоке 1145 в допустимых пределах. В таком случае датчик аспирационного давления 1160 также обнаруживает наличие окклюзии, и показания от него используются контроллером 1230 для управления источником 1105 ирригации, находящимся под давлением. В этом случае давление в источнике 1105 ирригационной жидкости, находящейся под давлением, не увеличивается, а остается таким же или снижается.
Как правило, управление источником 1105 ирригационной жидкости, находящейся под давлением, осуществляется на основании двух параметров: (1) показаний давления и (2) оценки ирригационного потока через систему (или результатов измерения фактического потока через систему). Показания давления могут поступать от датчика ирригационного давления 1130 (т.е. давление в ирригационной магистрали), датчика аспирационного давления 1160 (т.е. давление в аспирационной магистрали) или датчика источника давления 1110 (т.е. давление в источнике ирригации, находящемся под давлением).
В одном из вариантов реализации настоящего изобретения, управление источником 1105 ирригационной жидкости, находящейся под давлением, осуществляется на основе ирригационного давления и количества протекающей жидкости через систему с учетом корректировки на поправочный коэффициент (как подробно описано ниже). Ирригационное давление применяют для управления при прорыве окклюзии и для поддержания постоянного ВГД. Ирригационный поток также определяет ВГД. Количество протекающей жидкости через систему с учетом корректировки на поправочный коэффициент (что эквивалентно ирригационному потоку) применяют для управления истечением жидкости в области разреза и степенью сжатия в патрубке. В совокупности эти параметры применяют для поддержания постоянного ВГД во время операции.
Подсчитанное количество протекающей жидкости через систему представляет собой, как правило, количество протекающей жидкости от источника 1105 ирригации, находящегося под давлением, через ирригационную магистраль 1140, через рукоятку 1150, в глазное яблоко 1145, из глазного яблока 1145, через рукоятку 1150, через аспирационную магистраль 1155 и в пакет для сбора жидкости 1180. В процессе работы жидкость также теряется из системы в результате утечки из глазного яблока 1145 или раны, через которую вводится игла рукоятки 1150 (также называется "истечение жидкости в области разреза"). Таким образом, общее количество протекающей жидкости в системе является равным количеству жидкости, протекающей через глазное яблоко минус количество жидкости, которая теряется в связи с истечением жидкости в области разреза.
Подсчитанное количество протекающей жидкости основано на нескольких различных расчетах. К примеру, количество протекающей жидкости может быть подсчитано с помощью любого из следующего:
Измерение перепада давления для вычисления количества протекающей жидкости происходит на основании показаний датчика аспирационного давления, плюс импеданс насоса, плюс максимальное значение вакуума, достигаемого с помощью аспирационного насоса. Количество протекающей жидкости рассчитывается по разности между измеренным аспирационным давлением в датчике аспирационного давления 1160, максимальным значением вакуума, который создается с помощью насоса 1170 и импедансом насоса. Импеданс насоса 1170 является известным параметром, а максимальное значение вакуума, который создает насос, измеряется точно, как давление аспирации (с помощью датчика аспирационного давления 1160). Таким образом, количество протекающей жидкости рассчитывается по разности двух давлений в системе циркуляции жидкости и импеданса этой системы циркуляции жидкости. В этом случае два давления представляют собой результат измерения давления с помощью датчика аспирационного давления 1160 и максимального давления, достигаемого с помощью насоса 1170. Импеданс в этом примере представляет собой импеданс насоса 1170.
Измерение перепада давления для вычисления количества протекающей жидкости основано на давлении источника, измеренном на датчике источника давления 1110, давлении ирригации, измеренном на датчике ирригационного давления 1130, и импеданса ирригационной магистрали (или ирригационного пути) от источника ирригации 1105 до датчика ирригационного давления 1130. Количество протекающей жидкости рассчитывается с помощью разности давлений между источником ирригации 1105 и датчиком ирригационного давления 1130, и импеданса ирригационной магистрали 1140 от источника ирригации до датчика ирригационного давления. Таким образом, количество протекающей жидкости рассчитывается по разности двух давлений в системе циркуляции жидкости и импеданса этой системы циркуляции жидкости.
В тех случаях, когда источником 1105 ирригационной жидкости, находящейся под давлением, является эластичный пакет 1109, расположенный между двумя противостоящими пластинами 1106 и 1107 (как проиллюстрировано на Фиг. 2), перемещение пластин 1106 и 1107 соответствует количеству протекающей через систему жидкости. Количество протекающей жидкости и/или объем жидкости, которую применяют в ходе операции, рассчитывают непосредственно от расположения пластин 1106 и 1107. В целом, во время операции, пластины 1106 и 1107 перемещаются в направлении друг к другу для того, чтобы выжимать жидкость за пределы эластичного пакета 1109 с желаемым давлением или скоростью потока жидкости. Общее количество жидкости, которая выходит из эластичного пакета 1109, напрямую связано с расположением противостоящих пластин 1106 и 1107. Чем ближе друг к другу расположены пластины 1106 и 1107, тем большее количество жидкости вышло из эластичного пакета 1109. Таким образом, положение пластин 1106 и 1107 также применяют для указания количества оставшейся в эластичном пакете 1109 жидкости и обеспечения индикации для хирурга уровня жидкости в эластичном пакете 1109 (к примеру, путем отображения уровня жидкости на дисплее 1220).
Фактическое количество протекающей через систему жидкости также зависит от двух разных факторов: истечения жидкости в области разреза и степени сжатия в патрубке. Как было отмечено выше, рукоятка 1150 имеет патрубок, расположенный вокруг иглы. Патрубок обеспечивает подачу ирригационной жидкости из ирригационной магистрали 1140 в глазное яблоко 1145. Ирригационная жидкость проходит через пространство между наружной поверхностью иглы и внутренней поверхностью патрубка. Жидкость и частицы хрусталика аспирируются через полую иглу. Во время операции патрубок и игла вводятся в глазное яблоко через небольшой разрез. Таким образом, патрубок контактирует с тканью глазного яблока в области разреза (или раны). Истечение жидкости в области разреза отображает количество жидкости, которая выходит из глазного яблока через рану (или через пространство между патрубком и тканью глазного яблока, которая формирует рану). Во время операции жидкость выходит из глазного яблока через рану - такие потери жидкости выходят из системы (т.е. жидкость, которая выходит из глазного яблока, не проходит через аспирационную магистраль 1155). Истечение жидкости в области разреза, как правило, приводит к потере небольшого количества жидкости и, таким образом, к уменьшению общего количества протекающей через систему жидкости. В математическом выражении, количество протекающей ирригационной жидкости = количеству протекающей аспирационной жидкости + количество жидкости при истечении в области разреза.
Степень сжатия в патрубке в целом отображает состояние, при котором патрубок зажат или прижат вплотную к игле при введении в разрез. Сжатие патрубка происходит более часто при меньших разрезах и приводит или не приводит в результате к уменьшению истечения жидкости в области разреза. Сжатие патрубка ограничивает количество протекающей через систему жидкости. В связи с тем, что зажатие патрубка увеличивает сопротивление потока жидкости в системе, поток жидкости при сжатии патрубка уменьшается.
Как правило, потери, возникшие в результате истечения жидкости в области разреза и сжатия патрубка, зависят от типа применяемых хирургом иглы и патрубка, а также техники. Профили количества протекающей жидкости для различных комбинаций игл и патрубков определены экспериментально и полученные в результате данные включены в алгоритм или базу данных для применения в управлении источником 1105 ирригационной жидкости, находящейся под давлением. В качестве альтернативы, такие экспериментальные данные объединены для того, чтобы обеспечить широкий диапазон значений различных поправочных коэффициентов (как описано в следующем абзаце). Техника хирургов среди офтальмологов в значительной степени отличается. Во время операции некоторые хирурги могут перемещать иглу таким образом, что создается большая степень сжатия патрубка. Хирурги также предпочитают различные размеры игл и патрубков, а также различные размеры разрезов. Эти специфические факторы хирурга также влияют на истечение жидкости в области разреза и степень сжатия патрубка.
Поправочный коэффициент реализован для того, чтобы компенсировать эти два различных значения переменных, которые приводят к уменьшению количества протекающей через систему жидкости: истечение жидкости в области разреза и степень сжатия патрубка. Истечение жидкости в области разреза компенсировано с рассчитанным коэффициентом величины истечения жидкости в области разреза (который реализован в виде смещения, установленного в виде значения по умолчанию). Степень сжатия патрубка компенсирована при помощи рассчитанного коэффициента сжатия. Коэффициент величины истечения жидкости в области разреза и коэффициент сжатия патрубка образуют вместе поправочный коэффициент. Поправочный коэффициент является регулируемым хирургом. Поправочный коэффициент может быть сдвинут, что делается или для увеличения, или же для уменьшения давления в источнике 1105 ирригационной жидкости, находящейся под давлением. К примеру, поправочный коэффициент представляет собой целое число от нуля до семи (с нулевым значением не может быть никакой компенсации, а значение семь дает максимальную компенсацию).
Количество протекающей ирригационной жидкости рассчитывается, исходя из рассчитанного количества протекающей через систему жидкости с учетом поправочного коэффициента. Затем, количество протекающей ирригационной жидкости, как правило, равняется количеству протекающей аспирационной жидкости плюс количество жидкости при истечении в области разреза. Вследствие этого ирригационное давление рассчитывается, исходя из рассчитанного количества протекающей через систему жидкости с учетом поправочного коэффициента.
Как правило, для того, чтобы компенсировать уменьшение количества протекающей жидкости (или потери) в результате истечения жидкости в области разреза и сжатия патрубка, давление в источнике 1105 ирригационной жидкости, находящейся под давлением, слегка увеличивается. Такое увеличение давления может быть реализовано в алгоритме на основании поправочного коэффициента. В приведенном выше примере хирург выбирает значение параметра поправочного коэффициента три для того, чтобы обеспечить умеренную компенсацию при истечении жидкости в области разреза и сжатии патрубка. В этом примере установка параметра поправочного коэффициента в положение три соответствует небольшому увеличению давления в источнике 1105 ирригационной жидкости, находящейся под давлением. Другими словами, исходный уровень давления в источнике 1105 ирригационной жидкости, находящейся под давлением, слегка увеличивается для того, чтобы компенсировать эти факторы.
В другом примере поправочный коэффициент реализован за счет применения значения смещения по умолчанию, которое может быть отрегулировано с помощью хирурга. Номинальная константа представляет собой значение смещения по умолчанию в алгоритме. Хирург может изменить это значение по умолчанию в некоторое число раз (в диапазоне от нуля без компенсации до 2 для двойной компенсации). Значение смещения по умолчанию определено за счет применения экспериментальных данных, связанных с характеристиками потока жидкости при различных комбинациях игл и патрубков. Некоторые комбинации иглы и патрубка являются гораздо более распространенными, чем другие, поэтому для определения значения смещения по умолчанию были применены наиболее распространенные комбинации. В других примерах для того, чтобы определить значение смещения по умолчанию, применено агрегирование таких данных.
В еще одном примере хирург вводит тип патрубка с иглой через устройство ввода контроллера 1240. В том числе для того, чтобы отсканировать штриховой код с хирургического пакета, который содержит патрубок и иглу, применяют устройство для считывания штрихового кода. Контроллер 1230 при получении информации об игле и патрубке определяет характеристики потока жидкости, связанные с иглой и патрубком (или производит поиск характеристик потока жидкости в базе данных) и выбирает соответствующий поправочный коэффициент. Помимо всего прочего, для выбора правильного поправочного коэффициента могут быть использованы предпочтения врача и/или данные от предыдущих операций. К примеру, могут быть применены параметрические данные от предыдущих операций для того, чтобы определить технику врача и корректировать, изменять или выбирать поправочный коэффициент.
Независимо от того, каким образом определяют поправочный коэффициент, поправочный коэффициент применяют для компенсации потерь потока жидкости. Поправочный коэффициент применяют для управления источником 1105 ирригационной жидкости, находящейся под давлением, таким образом, чтобы обеспечить подачу такого количества жидкости, которое является равным количеству жидкости, потерянной в результате истечения жидкости в области разреза. Поправочный коэффициент применяют для управления источником 1105 ирригационной жидкости, находящейся под давлением, таким образом, чтобы обеспечить небольшое увеличение давления для того, чтобы преодолеть увеличение сопротивления потока, которое вызвано сжатием патрубка. Помимо всего прочего, в связи с тем, что ирригационный поток определяет ВГД, поправочный коэффициент применяют для регулировки ВГД, а также для компенсации потерь потока жидкости.
Вследствие этого управление источником 1105 ирригационной жидкости, находящейся под давлением, осуществляется на основании ирригационного давления и количества протекающей жидкости через систему с учетом корректировки на поправочный коэффициент. Ирригационное давление применяют для управления при прорыве окклюзии и для поддержания относительно постоянного ВГД. Количество протекающей жидкости через систему с учетом корректировки на поправочный коэффициент применяют для компенсации истечения жидкости в области разреза и сжатия в патрубке, а также поддержания относительно постоянного ВГД. В совокупности эти параметры применяют для поддержания относительно постоянного ВГД во время операции.
Определение значения ВГД осуществляется с применением датчика ирригационного давления. Перепад давления между датчиком ирригационного давления и глазным яблоком является известным в силу того, что являются известными характеристики канала, проходящего от датчика ирригационного давления до глазного яблока. К примеру, если датчик ирригационного давления находится в жидкостной кассете, которая подсоединена к рукоятке 1150 через отрезок ирригационной магистрали 1140, то являются известными как импеданс потока в отрезке ирригационной магистрали 1140, так и в ирригационном пути через рукоятку 1150 (или же могут быть измерены). Затем, в таком случае, ВГД определяется по показаниям датчика ирригационного давления. Показания ВГД также зависят от степени сжатия патрубка (в силу того, что патрубок находится на пути ирригации между датчиком ирригационного давления и глазным яблоком) и истечения жидкости в области разреза. Поправочный коэффициент применяют для регулирования ВГД в связи с этими потерями (или изменениями импеданса).
В одном из вариантов реализации настоящего изобретения хирург выбирает желаемый уровень ВГД. Затем источник 1105 ирригационной жидкости, находящейся под давлением, является управляемым для того, чтобы поддерживать желаемое ВГД. В связи с тем, что ВГД находится в зависимости от показаний датчика ирригационного давления, датчик ирригационного давления 1130 применяют для управления источником 1105 ирригационной жидкости, находящейся под давлением. В совокупности, ирригационное давление и количество протекающей жидкости через систему с учетом корректировки на поправочный коэффициент, также применяют для управления источником 1105 ирригационной жидкости, находящейся под давлением. Ирригационный поток также определяет ВГД. Количество протекающей через систему жидкости с учетом корректировки на поправочный коэффициент является эквивалентным ирригационному потоку. При наличии окклюзии (с момента определения датчиком ирригационного давления 1130 или датчиком аспирационного давления 1160), ВГД поддерживается за счет применения такой схемы управления. При прорыве окклюзии (с момента обнаружения за счет применения датчика ирригационного давления 1130 или датчика аспирационного давления 1160), источник 1105 ирригационной жидкости, находящейся под давлением, регулирует поддержку относительно постоянного ВГД.
В качестве альтернативы, в вышеприведенной схеме управления вместо датчика ирригационного давления 1130 могут быть применены датчик источника давления 1110 или датчик аспирационного давления 1160.
Управление источником 1105 ирригационной жидкости, находящейся под давлением, также описано в трех различных состояниях: устойчивом режиме работы (в тех случаях, когда отсутствует окклюзия иглы и количество протекающей через систему жидкости является относительно постоянным); состоянии окклюзии (в тех случаях, когда происходит окклюзия иглы, а количество протекающей через систему жидкости является недостаточным или отсутствует); и при прорыве окклюзии или постокклюзионной волне (в тех случаях, когда происходит внезапное и быстрое поступление потока жидкости через систему). Описаны примеры каждого состояния.
К примеру, при устойчивом режиме работы источник 1105 ирригационной жидкости, находящейся под давлением, является управляемым для того, чтобы поддерживать выбранное ВГД. Определение значения ВГД осуществляется с применением датчика ирригационного давления 1130. Показания давления от датчика ирригационного давления 1130 принимаются с помощью контроллера 1230. Желаемое значение ВГД также принимается с помощью контроллера 1230. Контроллер управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, таким образом, чтобы поддерживать желаемое значение ВГД. При устойчивом режиме работы контроллер, как правило, управляет источником 1105 ирригационной жидкости, находящейся под давлением, для обеспечения подачи жидкости при относительно постоянном давлении для того, чтобы поддерживать ВГД. Помимо всего прочего, контроллер вычисляет расчетную величину количества протекающей жидкости с корректировкой за счет поправочного коэффициента. В этом примере, при устойчивом режиме работы, количество протекающей жидкости определяется путем измерения перепадов давления или перемещения пластин. В случае измерения перепадов давления, контроллер 1230 принимает показания давления, необходимые для измерения перепадов давления, и производит вычисления. В случае перемещения пластины контроллер 1230 принимает показания от датчиков положения или им подобных и определяет перемещение пластины. Поправочный коэффициент также принимается с помощью контроллера (в виде входных данных от хирурга, к примеру). В связи с тем, что поток ирригационной жидкости (расчетное количество протекающей через систему жидкости с корректировкой за счет поправочного коэффициента) связан с ВГД, контроллер 1230 управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, для того, чтобы поддерживать скорость потока жидкости в соответствии с желаемой величиной ВГД. Конечным результатом является то, что поправочный коэффициент применяют для регулировки давления жидкости в источнике 1105 ирригационной жидкости, находящейся под давлением, для компенсации потерь потока жидкости.
При возникновении окклюзии тонкий конец иглы является полностью или частично закупоренным частицами хрусталика. При состоянии окклюзии количество протекающей через систему жидкости уменьшается. Определение значения ВГД осуществляется с применением датчика ирригационного давления 1130. Показания давления от датчика ирригационного давления 1130 принимаются с помощью контроллера 1230. Желаемое значение ВГД также принимается с помощью контроллера 1230. Контроллер управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, таким образом, чтобы поддерживать желаемое значение ВГД. При состоянии окклюзии контроллер, как правило, управляет источником 1105 ирригационной жидкости, находящейся под давлением, для обеспечения подачи жидкости при относительно постоянном давлении для того, чтобы поддерживать ВГД. Поддержание давления в состоянии окклюзии означает, что пластины 1106 и 1107 поддерживают эластичный пакет 1109 при относительно постоянном давлении. Помимо всего прочего, контроллер вычисляет расчетную величину количества протекающей жидкости с корректировкой за счет поправочного коэффициента, как подробно описано выше. В связи с тем, что поток ирригационной жидкости (расчетное количество протекающей через систему жидкости с корректировкой за счет поправочного коэффициента) связан с ВГД, контроллер 1230 управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, для того, чтобы поддерживать скорость потока жидкости в соответствии с желаемой величиной ВГД. Конечным результатом является то, что поправочный коэффициент используется для регулировки давления жидкости в источнике 1105 ирригационной жидкости, находящейся под давлением, для компенсации потерь потока жидкости (к примеру, при истечении жидкости в области разреза).
При прорыве окклюзии частицы хрусталика в тонком конце иглы удаляются, и возникает постокклюзионная волна жидкости в глазном яблоке, проходящая через просвет иглы. Во время прорыва окклюзии количество протекающей через систему жидкости увеличивается. Определение значения ВГД осуществляется с применением датчика ирригационного давления 1130. Показания давления от датчика ирригационного давления 1130 принимаются с помощью контроллера 1230. Желаемое значение ВГД также принимается с помощью контроллера 1230. Контроллер управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, таким образом, чтобы поддерживать желаемое значение ВГД. Во время прорыва окклюзии контроллер, как правило, управляет источником 1105 ирригационной жидкости, находящейся под давлением, для обеспечения подачи жидкости при повышенном давлении для того, чтобы поддерживать ВГД. Поддержание давления во время прорыва окклюзии означает, что пластины 1106 и 1107 прикладывают усилие к эластичному пакету 1109 для повышения давления в ирригационной магистрали таким образом, чтобы обеспечить необходимое количество протекающей жидкости для удовлетворения потребности в жидкости при постокклюзионной волне. Помимо всего прочего, контроллер вычисляет расчетную величину количества протекающей жидкости с корректировкой за счет поправочного коэффициента, как подробно описано выше. В связи с тем, что поток ирригационной жидкости (расчетное количество протекающей через систему жидкости с корректировкой за счет поправочного коэффициента) связан с ВГД, контроллер 1230 управляет работой источника 1105 ирригационной жидкости, находящейся под давлением, для того, чтобы поддерживать скорость потока жидкости в соответствии с желаемой величиной ВГД. Конечным результатом является то, что поправочный коэффициент применяют для регулировки давления жидкости в источнике 1105 ирригационной жидкости, находящейся под давлением, для компенсации потерь потока жидкости (к примеру, при истечении жидкости в области разреза).
В еще одном варианте реализации изобретения настоящего изобретения истечение жидкости в области разреза определено как разность между количеством ирригационной жидкости и количеством аспирационной жидкости. Количество ирригационной жидкости измеряется непосредственно датчиком потока и может быть вычислено с применением измерения перепадов давления или же может быть рассчитано на основании перемещения пластины. Показания датчика источника давления 1110 и датчика ирригационного давления 1130 применяют для измерения перепадов давления. В этом случае импеданс потока жидкости между датчиком источника давления 1110 и датчиком ирригационного давления 1130 является известным (или может быть измерен). Вычисляется разность показаний давления, измеренного датчиком источника давления 1110 и датчиком ирригационного давления 1130, и определяется количество протекающей жидкости. В случае перемещения пластины количество протекающей жидкости определяется в зависимости от положения и/или перемещения пластин 1106 и 1107.
Количество аспирационной жидкости также измеряется с применением измерения перепадов давления. Количество протекающей жидкости рассчитывается по разности между измеренным аспирационным давлением в датчике аспирационного давления 1160, максимальным значением вакуума, который создается с помощью насоса 1170, и импедансом насоса. Импеданс насоса 1170 является известным параметром, а максимальное значение вакуума, который создает насос, измеряется точно, как давление аспирации (с помощью датчика аспирационного давления 1160). Таким образом, количество протекающей жидкости рассчитывается по разности двух давлений в системе циркуляции жидкости и импеданса этой системы циркуляции жидкости. В этом случае два давления представляют собой результат измерения давления с помощью датчика аспирационного давления 1160 и максимального давления, достигаемого с помощью насоса 1170. Импеданс в этом примере представляет собой импеданс насоса 1170.
Применяя вычисленные значения для количества протекающей ирригационной жидкости и количества протекающей аспирационной жидкости, можно найти количество жидкости при истечении в области разреза как разность между количеством протекающей ирригационной жидкости и количеством протекающей аспирационной жидкости. Это вычисление количества жидкости при истечении в области разреза применяют для более точного определения поправочного коэффициента. В одном варианте реализации настоящего изобретения поправочный коэффициент определяется динамически частично на основании вычисленного количества жидкости при истечении в области разреза.
В конечном счете, следует отметить, что положение пластин 1106 и 1107 применяют для отображения объема жидкости, используемой во время операции, оставшейся в эластичном мешке 1109. Как было отмечено выше, взаимное расположение противостоящих пластин 1106 и 1107 указывает на объем жидкости, который вышел из эластичного пакета 1109. В некоторых случаях, если имеющийся эластичный пакет 1109 содержит мало жидкости, то в источник 1105 ирригационной жидкости, находящейся под давлением, должен быть установлен новый пакет с ирригационной жидкостью. В связи с тем, что взаимное расположение противостоящих пластин 1106 и 1107 указывает на объем использованной жидкости, а также в связи с тем, что общий объем жидкости в эластичном пакете 1109 является известным, эти два параметра применяют для того, чтобы обеспечить индикацию для хирурга уровня жидкости в эластичном пакете 1109 (к примеру, путем отображения уровня жидкости на дисплее 1220). При низком уровне жидкости для хирурга подается предупреждающий сигнал для того, чтобы установить новый эластичный пакет 1109 с жидкостью в источник 1105 ирригационной жидкости, находящейся под давлением.
Исходя из вышеизложенного, является понятным, что настоящее изобретение представляет усовершенствованную факоэмульсификационную систему. Настоящее изобретение обеспечивает активное управление давлением в глазном яблоке во время хирургической операции. Настоящее изобретение проиллюстрировано в настоящем документе в качестве примера, и специалистом в данной области техники могут быть сделаны различные модификации.
Другие варианты реализации изобретения будут очевидны для специалистов в данной области техники из рассмотрения подробного описания и практического применения изобретения, раскрытого в настоящем документе. Предполагается, что подробное описание и примеры следует рассматривать только как приводимые в качестве примера, а истинный объем и сущность изобретения указаны в следующей формуле изобретения.

Claims (44)

1. Хирургическая система, содержащая:
источник находящейся под давлением ирригационной жидкости;
ирригационную магистраль, выполненную с возможностью жидкостного соединения с источником находящейся под давлением ирригационной жидкости;
рукоятку, выполненную с возможностью жидкостного соединения с ирригационной магистралью, причем рукоятка имеет ирригационный патрубок;
датчик ирригационного давления, расположенный внутри или вдоль источника находящейся под давлением ирригационной жидкости либо внутри или вдоль ирригационной магистрали; и
контроллер для управления источником находящейся под давлением ирригационной жидкости,
при этом контроллер выполнен с возможностью управления источником находящейся под давлением ирригационной жидкости на основании показаний датчика ирригационного давления и расчетной величины количества протекающей жидкости с корректировкой за счет поправочного коэффициента, причем поправочный коэффициент основан на степени сжатия ирригационного патрубка, ограничивающего количество протекающей ирригационной жидкости.
2. Хирургическая система по п. 1, отличающаяся тем, что поправочный коэффициент дополнительно основывается на количестве жидкости, истекающей в области разреза.
3. Хирургическая система по п. 1, дополнительно содержащая:
дисплей; и
устройство ввода контроллера.
4. Хирургическая система по п. 3, отличающаяся тем, что устройство ввода контроллера принимает желаемое значение внутриглазного давления, а контроллер управляет источником находящейся под давлением ирригационной жидкости таким образом, чтобы поддерживать желаемое значение внутриглазного давления.
5. Хирургическая система по п. 3, отличающаяся тем, что устройство ввода контроллера выполнено с возможностью принимать желаемый диапазон значений внутриглазного давления, а контроллер выполнен с возможностью управлять источником находящейся под давлением ирригационной жидкости таким образом, чтобы поддерживать желаемый диапазон значений внутриглазного давления.
6. Хирургическая система по п. 1, отличающаяся тем, что контроллер выполнен с возможностью исчислять значения внутриглазного давления на основании показаний датчика ирригационного давления.
7. Хирургическая система по п. 1, отличающаяся тем, что контроллер выполнен с возможностью исчислять значения внутриглазного давления на основании расчетной величины количества протекающей жидкости с корректировкой за счет поправочного коэффициента.
8. Хирургическая система по п. 1, дополнительно содержащая:
аспирационную магистраль, выполненную с возможностью жидкостного соединения с рукояткой;
датчик аспирационного давления, расположенный внутри или вдоль аспирационной магистрали; и
аспирационный насос, выполненный с возможностью отсасывания жидкости через аспирационную магистраль.
9. Хирургическая система по п. 8, отличающаяся тем, что контроллер выполнен с возможностью исчислять расчетную величину количества протекающей жидкости на основании показаний, полученных от датчика аспирационного давления, максимально достижимой всасывающей способности аспирационного насоса и импеданса аспирационного насоса.
10. Хирургическая система по п. 1, дополнительно содержащая датчик давления источника для измерения давления источника находящейся под давлением ирригационной жидкости.
11. Хирургическая система по п. 10, отличающаяся тем, что контроллер выполнен с возможностью исчислять расчетную величину количества протекающей жидкости на основании показаний, полученных от датчика ирригационного давления, датчика давления источника и импеданса ирригационной магистрали.
12. Хирургическая система по п. 1, отличающаяся тем, что источник находящейся под давлением ирригационной жидкости содержит:
эластичный пакет с жидкостью; и
две противостоящие пластины;
при этом эластичный пакет расположен между двумя противостоящими пластинами.
13. Хирургическая система по п. 12, отличающаяся тем, что контроллер выполнен с возможностью исчислять расчетную величину количества протекающей жидкости на основании перемещения или передвижения двух противостоящих пластин.
14. Хирургическая система по п. 3, отличающаяся тем, что устройство ввода контроллера выполнено с возможностью принимать поправочный коэффициент от пользователя.
15. Хирургическая система по п. 3, отличающаяся тем, что устройство ввода контроллера выполнено с возможностью принимать информацию о выбранной для операции игле и ирригационном патрубке, и эта информация об игле и ирригационном патрубке используется в контроллере для выбора или исчисления поправочного коэффициента.
16. Хирургическая система по п. 15, отличающаяся тем, что контроллер выполнен с возможностью производить выбор или исчисление поправочного коэффициента на основании характеристик потока жидкости при сочетании иглы и ирригационного патрубка.
17. Хирургическая система по п. 10, отличающаяся тем, что контроллер выполнен с возможностью исчислять значения внутриглазного давления на основании показаний датчика давления источника.
18. Хирургическая система по п. 8, отличающаяся тем, что контроллер использует показания датчика аспирационного давления для установления наличия закупорки или прорыва закупорки.
19. Хирургическая система по п. 1, отличающаяся тем, что контроллер использует показания датчика ирригационного давления для установления наличия закупорки или прорыва закупорки.
20. Хирургическая система по п. 19, отличающаяся тем, что контроллер выполнен с возможностью управлять источником находящейся под давлением ирригационной жидкости с тем, чтобы принимать в расчет изменения в потоке жидкости, возникающие вследствие закупорки или прорыва закупорки.
21. Хирургическая система, содержащая:
источник находящейся под давлением ирригационной жидкости, при этом источник находящейся под давлением ирригационной жидкости содержит эластичный пакет, расположенный между двумя противостоящими пластинами, причем эластичный пакет содержит жидкость;
датчик положения, расположенный в или на одной из двух противостоящих пластин, при этом датчик положения предназначен для определения расстояния между двумя противостоящими пластинами;
привод для перемещения по меньшей мере одной из двух противостоящих пластин с возможностью сдавливания эластичного пакета; и
контроллер для управления относительным перемещением противостоящих пластин;
при этом контроллер принимает показания датчика положения, определяет расстояние между пластинами и обеспечивает оценку количества жидкости в эластичном пакете.
22. Хирургическая система по п. 21, дополнительно содержащая дисплей.
23. Хирургическая система по п. 22, отличающаяся тем, что показатели количества жидкости в эластичном пакете отображаются на дисплее.
24. Хирургическая система по п. 22, отличающаяся тем, что показатели низкого уровня жидкости отображаются на дисплее.
25. Хирургическая система по п. 21, отличающаяся тем, что контроллер выполнен с возможностью инициировать предупреждающий сигнал при низком значении количества жидкости в эластичном пакете.
RU2015119265A 2012-10-22 2013-10-11 Управление давлением в факоэмульсификационной системе RU2654606C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/657,324 2012-10-22
US13/657,324 US9119701B2 (en) 2012-10-22 2012-10-22 Pressure control in phacoemulsification system
PCT/US2013/064433 WO2014066060A1 (en) 2012-10-22 2013-10-11 Pressure control in phacoemulsification system

Publications (2)

Publication Number Publication Date
RU2015119265A RU2015119265A (ru) 2016-12-10
RU2654606C2 true RU2654606C2 (ru) 2018-05-21

Family

ID=50485973

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119265A RU2654606C2 (ru) 2012-10-22 2013-10-11 Управление давлением в факоэмульсификационной системе

Country Status (17)

Country Link
US (5) US9119701B2 (ru)
EP (1) EP2869801B1 (ru)
JP (1) JP6240204B2 (ru)
KR (1) KR102182490B1 (ru)
CN (1) CN104661624B (ru)
AU (1) AU2013335087B2 (ru)
BR (1) BR112015005502B1 (ru)
CA (1) CA2881395C (ru)
DK (1) DK2869801T3 (ru)
ES (1) ES2596455T3 (ru)
IN (1) IN2015KN00322A (ru)
MX (1) MX2015003718A (ru)
PH (1) PH12015500337A1 (ru)
PL (1) PL2869801T3 (ru)
PT (1) PT2869801T (ru)
RU (1) RU2654606C2 (ru)
WO (1) WO2014066060A1 (ru)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI1991275T1 (sl) 2006-03-08 2015-03-31 Archemix Llc Komplement vezavni aptameri in sredstva proti C5, uporabni pri zdravljenju očesnih motenj
CA2705898C (en) 2007-11-21 2020-08-25 Smith & Nephew Plc Wound dressing
CA2814657A1 (en) 2010-10-12 2012-04-19 Kevin J. Tanis Medical device
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
RU2014138377A (ru) 2012-03-20 2016-05-20 СМИТ ЭНД НЕФЬЮ ПиЭлСи Управление работой системы терапии пониженным давлением, основанное на определении порога продолжительности включения
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
AU2013264938B2 (en) 2012-05-22 2017-11-23 Smith & Nephew Plc Apparatuses and methods for wound therapy
EP4170031A1 (en) 2012-10-23 2023-04-26 Caris Science, Inc. Aptamers and uses thereof
US9205186B2 (en) 2013-03-14 2015-12-08 Abbott Medical Optics Inc. System and method for providing pressurized infusion
CA2902634C (en) 2013-03-14 2023-01-10 Smith & Nephew Inc. Systems and methods for applying reduced pressure therapy
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10155070B2 (en) 2013-08-13 2018-12-18 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10137034B2 (en) 2013-11-26 2018-11-27 Novartis Ag Pressure-sensing vitrectomy surgical systems and methods
CA3179001A1 (en) 2014-07-31 2016-02-04 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
JP6725528B2 (ja) 2014-12-22 2020-07-22 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company 陰圧閉鎖療法の装置および方法
US10549016B2 (en) 2014-12-30 2020-02-04 Smith & Nephew, Inc. Blockage detection in reduced pressure therapy
US10463780B2 (en) * 2015-01-29 2019-11-05 Johnson & Johnson Surgical Vision, Inc. Fluid depletion warning system for phacoemulsification surgical applications
DE102015003799B4 (de) * 2015-03-21 2016-12-08 Carl Zeiss Meditec Ag Phakoemulsifikationssystem
US20160346123A1 (en) * 2015-05-27 2016-12-01 Richard S. KOPLIN Phaco emulsification device with pressure feedback
CA3014354A1 (en) 2016-02-12 2017-08-17 Smith & Nephew, Inc. Systems and methods for detecting operational conditions of reduced pressure therapy
US9782232B1 (en) * 2016-04-25 2017-10-10 Novartis Ag Automated intraocular pressure tamponade
US11051978B2 (en) 2016-05-10 2021-07-06 Alcon Inc. Automated aspiration throttling in vitreoretinal surgery
EP3458002A1 (en) * 2016-05-17 2019-03-27 Novartis AG Automated viscous fluid control in vitreoretinal surgery
US20180028359A1 (en) * 2016-07-28 2018-02-01 Novartis Ag Pressure control in phacoemulsification system
US10702415B2 (en) 2016-08-18 2020-07-07 Alcon Inc. Surgical apparatus including aspiration device sensors
US10406033B2 (en) 2016-09-01 2019-09-10 Novartis Ag Systems and methods for non-invasive measurement of cassette pressure
ES2707800T3 (es) 2016-09-06 2019-04-05 FRITZ RUCK Ophthalmologische Systeme GmbH Sistema para la medición de una cantidad de líquido en una bolsa elástica
US11357907B2 (en) 2017-02-10 2022-06-14 Johnson & Johnson Surgical Vision, Inc. Apparatus, system, and method of gas infusion to allow for pressure control of irrigation in a surgical system
WO2019069259A1 (en) 2017-10-04 2019-04-11 Johnson & Johnson Surgical Vision, Inc. SYSTEMS FOR MEASURING FLUID FLOW IN A VENTURI-BASED SYSTEM
US20190099547A1 (en) * 2017-10-04 2019-04-04 Abbott Medical Optics Inc. System, Apparatus and Method for Maintaining Anterior Chamber Intraoperative Intraocular Pressure
WO2019069189A1 (en) 2017-10-04 2019-04-11 Johnson & Johnson Surgical Vision, Inc. SYSTEM AND METHOD FOR INCREASING IRRIGATION PRESSURE AND MAINTAINING IOP DURING POST-OCCLUSION AFFLUX
US11969380B2 (en) 2017-10-04 2024-04-30 Johnson & Johnson Surgical Vision, Inc. Advanced occlusion management methods for a phacoemulsification system
US11071816B2 (en) * 2017-10-04 2021-07-27 Johnson & Johnson Surgical Vision, Inc. System, apparatus and method for monitoring anterior chamber intraoperative intraocular pressure
CN109745099A (zh) * 2017-11-01 2019-05-14 锐泰安医疗科技(苏州)有限公司 超声外科手术系统及其控制方法
US11154421B2 (en) 2018-04-20 2021-10-26 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion transfer reservoirs
CN108670547B (zh) * 2018-06-07 2020-12-04 河源光明眼科医院有限公司 白内障手术装置
US11759219B2 (en) * 2018-07-24 2023-09-19 Penumbra, Inc. Apparatus and methods for controlled clot aspiration
JP2022502224A (ja) * 2018-09-24 2022-01-11 ストライカー・コーポレイション 吸引中の制御応答性を向上させるシステム及び方法
CN110338970B (zh) * 2019-07-23 2024-02-02 以诺康医疗科技(苏州)有限公司 带传感器的超声乳化手柄及浪涌控制系统、方法
CN112451204A (zh) * 2019-09-09 2021-03-09 荷兰眼科研究中心(国际)有限公司 眼科压力控制系统、成套部件以及方法
WO2021070050A1 (en) * 2019-10-10 2021-04-15 Johnson & Johnson Surgical Vision, Inc. Systems and methods for controlling continuous irrigation in surgical systems
DE102019216669A1 (de) * 2019-10-29 2021-04-29 Carl Zeiss Meditec Ag Ophthalmochirurgische Einrichtung
AU2020408299A1 (en) * 2019-12-17 2022-08-11 Johnson & Johnson Surgical Vision, Inc. Cassette design and systems and methods thereof
BR112022013207A2 (pt) 2020-01-03 2022-09-13 Lensar Inc Métodos e sistemas para aplicações combinadas sônicas e laser para o olho
US20240325140A1 (en) 2023-03-27 2024-10-03 Alcon Inc. Intraocular lenses with anti-anterior capsular contraction feature and method of implantation thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232439A (en) * 1992-11-02 1993-08-03 Infusion Technologies Corporation Method for pumping fluid from a flexible, variable geometry reservoir
WO2002017833A1 (en) * 2000-08-29 2002-03-07 Alcon Manufacturing, Ltd. Method of controlling intraocular pressure and temperature
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US20100145302A1 (en) * 2008-12-08 2010-06-10 Cull Laurence J Flow control system based on leakage
US20100280435A1 (en) * 2008-11-07 2010-11-04 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
RU2434608C1 (ru) * 2010-06-02 2011-11-27 Закрытое акционерное общество "Оптимедсервис" Аспирационный насос для офтальмохирургических систем
US20110295191A1 (en) * 2010-05-25 2011-12-01 Alcon Research, Ltd. Infusion Pressure Monitoring System
RU112035U1 (ru) * 2011-07-19 2012-01-10 ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ОПТИМЕДСЕРВИС" (ЗАО "Оптимедсервис") Аспирационная магистраль факоэмульсификатора
RU2011152000A (ru) * 2009-05-20 2013-06-27 Алькон Рисерч, Лтд. Ирригационная сдавливающая лента под давлением

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718494A (en) 1929-06-25 Electromagnetic pressure-measuring means
US2260837A (en) 1940-07-26 1941-10-28 Gen Electric Pressure measuring apparatus
US2583941A (en) 1946-11-13 1952-01-29 Jr Thurlow M Gordon Device for detecting variations in fluid pressure
US2510073A (en) 1947-05-19 1950-06-06 Clark James Pressure actuated pickup device
US3805617A (en) 1969-01-20 1974-04-23 Nippon Denso Co Device for converting fluid pressure into electrical quantity having linearity
CA1068574A (en) 1974-01-28 1979-12-25 Steven N. Weiss Flow control system
US3902495A (en) 1974-01-28 1975-09-02 Cavitron Corp Flow control system
US4452202A (en) 1981-12-24 1984-06-05 Acf Industries, Inc. Vacuum pressure transducer
US4475904A (en) 1982-12-29 1984-10-09 Medical Instrument Dev. Labs., Inc. Fast response vacuum aspiration collection system
US4713051A (en) 1985-05-21 1987-12-15 Coopervision, Inc. Cassette for surgical irrigation and aspiration and sterile package therefor
US4832685A (en) 1985-06-05 1989-05-23 Coopervision, Inc. Fluid flow control system and connecting fitting therefor
US4935005A (en) 1985-06-05 1990-06-19 Nestle, S.A. Opthalmic fluid flow control system
CA1280326C (en) 1985-09-25 1991-02-19 Leif Joakim Sundblom Fast response tubeless vacuum aspiration collection cassette
US4750643A (en) 1986-08-04 1988-06-14 Sugrin Surgical Instrumentation, Inc. Sterile fluid dispensing system and method
GB2198239A (en) 1986-11-27 1988-06-08 Ford Motor Co Monitoring fluid pressure in a flexible pipe
US4900301A (en) 1987-09-22 1990-02-13 Vitreoretinal Development, Inc. Method for ocular perfusion
US5047009A (en) 1987-09-22 1991-09-10 Vitreoretinal Development, Inc. Method and apparatus for ocular perfusion
US5032111A (en) 1987-09-22 1991-07-16 Vitreoretinal Development, Inc. Method and apparatus for ocular perfusion
US4813927A (en) 1987-09-22 1989-03-21 Vitreoretinal Development, Inc. Parallel infusion apparatus and method
JP2734513B2 (ja) 1988-01-29 1998-03-30 アイシン精機株式会社 負圧応動スイツチ
US4856317A (en) 1988-05-02 1989-08-15 Fiberoptic Sensor Technologies, Inc. Vacuum calibration system and method for fiberoptic pressure transducer
US4963131A (en) 1989-03-16 1990-10-16 Surgin Surgical Instrumentation, Inc. Disposable cassette for ophthalmic surgery applications
US5163900A (en) 1989-03-16 1992-11-17 Surgin Surgical Instrumentation, Inc. Disposable cassette systems
US5041096A (en) 1989-10-27 1991-08-20 Nestle, S.A. Fluid handling method and system and fluid interface apparatus usable therewith
US5098037A (en) 1989-11-06 1992-03-24 The B. F. Goodrich Company Structural airfoil having integral expulsive system
US5080098A (en) 1989-12-18 1992-01-14 Sentinel Monitoring, Inc. Non-invasive sensor
US5106366A (en) 1990-03-08 1992-04-21 Nestle, S.A. Medical fluid cassette and control system
ES2129434T3 (es) 1991-08-21 1999-06-16 Smith & Nephew Inc Sistema de control de fluidos.
US5267956A (en) 1992-02-05 1993-12-07 Alcon Surgical, Inc. Surgical cassette
US5499969A (en) 1992-02-05 1996-03-19 Nestle S.A. Microsurgical cassette
JP3155975B2 (ja) 1992-06-03 2001-04-16 アラーガン、インコーポレイテッド 圧力トランスデューサインターフェース
USD352106S (en) 1992-09-02 1994-11-01 Alcon Laboratories, Inc. Surgical console for ophthalmic surgery
US5354268A (en) 1992-11-04 1994-10-11 Medical Instrument Development Laboratories, Inc. Methods and apparatus for control of vacuum and pressure for surgical procedures
US5591127A (en) 1994-01-28 1997-01-07 Barwick, Jr.; Billie J. Phacoemulsification method and apparatus
US5582601A (en) 1994-09-12 1996-12-10 Surgin Surgical Instrumentation, Inc. Cassette for receiving aspirated fluids
EP0717970A1 (de) 1994-12-20 1996-06-26 GRIESHABER & CO. AG SCHAFFHAUSEN Opthalmologische Aspirations- und Irrigationseinrichtung sowie Verfahren zum Betreiben derselben
US5620312A (en) 1995-03-06 1997-04-15 Sabratek Corporation Infusion pump with dual-latching mechanism
US5910110A (en) 1995-06-07 1999-06-08 Mentor Ophthalmics, Inc. Controlling pressure in the eye during surgery
USD380550S (en) 1995-11-14 1997-07-01 Alcon Laboratories, Inc. Surgical console
US5800396A (en) 1995-11-15 1998-09-01 Alcon Laboratories, Inc. Surgical cassette adapter
US5588815A (en) 1995-11-15 1996-12-31 Alcon Laboratories, Inc. Surgical cassette loading and unloading system
USD375553S (en) 1995-11-15 1996-11-12 Alcon Laboratories, Inc. Surgical cassette adapter
US6059544A (en) 1995-12-01 2000-05-09 Alcon Laboratories, Inc. Identification system for a surgical cassette
CA2186805C (en) 1995-12-01 2001-03-27 Christopher C. Jung Apparatus and method for sensing fluid level
US5899674A (en) 1995-12-01 1999-05-04 Alcon Laboratories, Inc. Indentification system for a surgical cassette
US5840058A (en) 1995-12-04 1998-11-24 Alphamed Incorporated Infusion pump with disposable tubing and size indicating means
US5830176A (en) 1995-12-26 1998-11-03 Mackool; Richard J. Maintenance of pressure within a surgical site during a surgical procedure
US5676530A (en) 1996-01-24 1997-10-14 Alcon Laboratories, Inc. Surgical cassette latching mechanism
CN1218380A (zh) 1996-05-09 1999-06-02 Itos眼科手术新技术有限公司 进行白内障手术的方法和装置
US5830192A (en) 1996-12-09 1998-11-03 Staar Surgical Company, Inc. Irrigation sleeve for phacoemulsification apparatus
US5865764A (en) 1996-12-30 1999-02-02 Armoor Opthalmics, Inc. Device and method for noninvasive measurement of internal pressure within body cavities
US5897524A (en) 1997-03-24 1999-04-27 Wortrich; Theodore S. Compact cassette for ophthalmic surgery
DE19728069C1 (de) 1997-07-01 1999-02-11 Acritec Gmbh Vorrichtung zur Messung des Augeninnendrucks
US6986753B2 (en) 1998-05-21 2006-01-17 Buivision Constant ocular pressure active infusion system
DE19852574A1 (de) 1998-11-06 2000-05-11 Aesculap Meditec Gmbh Medizinisches Instrument zur Phakoemulsifikation
US6058779A (en) * 1999-02-10 2000-05-09 Cole; Mark S. Coupled diaphragm interface for phacoemulsification apparatus
US6179808B1 (en) 1999-06-18 2001-01-30 Alcon Laboratories, Inc. Method of controlling the operating parameters of a surgical system
US20040253129A1 (en) 1999-08-31 2004-12-16 Sorensen Gary P. Liquid venting surgical cassette
US6902542B2 (en) 2002-05-28 2005-06-07 Alcon, Inc. Identification system for a surgical cassette
US6261283B1 (en) 1999-08-31 2001-07-17 Alcon Universal Ltd. Liquid venting surgical system and cassette
US6293926B1 (en) 1999-11-10 2001-09-25 Alcon Universal Ltd. Peristaltic pump and cassette
US6962488B2 (en) 1999-11-10 2005-11-08 Alcon, Inc. Surgical cassette having an aspiration pressure sensor
US6740074B2 (en) 1999-08-31 2004-05-25 Alcon, Inc. Liquid venting surgical cassette
US20020022810A1 (en) * 1999-12-07 2002-02-21 Alex Urich Non-linear flow restrictor for a medical aspiration system
WO2001066172A2 (en) 2000-03-09 2001-09-13 Gambro, Inc. Extracorporeal blood processing method and apparatus
US6561999B1 (en) 2000-09-29 2003-05-13 Alcon Universal Ltd. Surgical cassette and consumables for combined ophthalmic surgical procedure
US6579255B2 (en) 2001-07-31 2003-06-17 Advanced Medical Optics, Inc. Pressurized flow of fluid into the eye using pump and pressure measurement system
EP1427607A4 (en) 2001-09-12 2004-12-08 Gen Electric BUMPER WITH CRUSH CAN
ITRM20010669A1 (it) 2001-11-09 2003-05-09 Optikon 2000 Spa Cassetta infusione aspirazione (i/a) con sistema di aspirazione sia mediante pompa peristaltica o comunque volumetrica che mediante pompa pr
US20030101825A1 (en) 2001-11-30 2003-06-05 Neubert William J. Aspiration tube for use with flow meter control system
US6599277B2 (en) 2001-11-30 2003-07-29 Bausch & Lomb Incorporated Aspiration flow meter and control
US6634237B2 (en) 2001-11-30 2003-10-21 Bausch & Lomb Incorporated Collection reservoir for use with flow meter control system
US7070578B2 (en) 2002-04-25 2006-07-04 Alcon, Inc. Surgical cassette latching mechanism
US20030225363A1 (en) 2002-05-28 2003-12-04 Raphael Gordon Surgical cassette
US20050117117A1 (en) 2003-12-02 2005-06-02 Dan Bourla Intraoperative biometry
US20050285025A1 (en) 2004-06-29 2005-12-29 Mikhail Boukhny Optical noninvasive pressure sensor
US8092427B2 (en) 2004-09-16 2012-01-10 Data, LLC Aspiration system for ophthalmic medical devices
US7648465B2 (en) 2005-06-28 2010-01-19 Alcon, Inc. Method of testing a surgical system
US7326183B2 (en) 2005-09-28 2008-02-05 Alcon, Inc. Intraocular pressure control
US20080004610A1 (en) 2006-06-30 2008-01-03 David Miller System for calculating IOL power
US10342701B2 (en) 2007-08-13 2019-07-09 Johnson & Johnson Surgical Vision, Inc. Systems and methods for phacoemulsification with vacuum based pumps
US8469050B2 (en) 2008-11-07 2013-06-25 Abbott Medical Optics Inc. Capacitive fluid level sensing
DE102010008146B4 (de) 2010-02-12 2022-03-31 Carl Zeiss Meditec Ag Messsystem und Verfahren zum Ermitteln des Innendrucks eines Auges sowie Verfahren und System zum Einstellen des Augeninnendrucks
US20110313343A1 (en) 2010-06-18 2011-12-22 Alcon Research, Ltd. Phacoemulsification Fluidics System Having a Single Pump Head
US20120238857A1 (en) 2010-09-16 2012-09-20 Orthomems, Inc. Expandable implantable pressure sensor for intraocular surgery
WO2012092018A1 (en) 2010-12-31 2012-07-05 Bausch & Lomb Incorporated Ophthalmic surgical systems having intraocular pressure stabilizing apparatus
RU2477110C2 (ru) 2011-02-04 2013-03-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Лазерная офтальмологическая многофункциональная система
WO2012137067A2 (en) 2011-04-07 2012-10-11 Oculox Technology Intraocular pressure monitoring device and methods
US9943405B2 (en) 2011-05-16 2018-04-17 Ico, Inc. Filling and implanting accommodative intraocular lenses
US9517162B2 (en) 2011-11-30 2016-12-13 Alcon Research, Ltd. Retinal surgery
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US9119699B2 (en) * 2012-10-22 2015-09-01 Alcon Research, Ltd. Pressure control in phacoemulsification system
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US20180028359A1 (en) 2016-07-28 2018-02-01 Novartis Ag Pressure control in phacoemulsification system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232439A (en) * 1992-11-02 1993-08-03 Infusion Technologies Corporation Method for pumping fluid from a flexible, variable geometry reservoir
WO2002017833A1 (en) * 2000-08-29 2002-03-07 Alcon Manufacturing, Ltd. Method of controlling intraocular pressure and temperature
US20080125697A1 (en) * 2006-09-14 2008-05-29 Alcon, Inc. Method of controlling an irrigation/aspiration system
US20100280435A1 (en) * 2008-11-07 2010-11-04 Abbott Medical Optics Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
US20100145302A1 (en) * 2008-12-08 2010-06-10 Cull Laurence J Flow control system based on leakage
RU2011152000A (ru) * 2009-05-20 2013-06-27 Алькон Рисерч, Лтд. Ирригационная сдавливающая лента под давлением
US20110295191A1 (en) * 2010-05-25 2011-12-01 Alcon Research, Ltd. Infusion Pressure Monitoring System
RU2434608C1 (ru) * 2010-06-02 2011-11-27 Закрытое акционерное общество "Оптимедсервис" Аспирационный насос для офтальмохирургических систем
RU112035U1 (ru) * 2011-07-19 2012-01-10 ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ОПТИМЕДСЕРВИС" (ЗАО "Оптимедсервис") Аспирационная магистраль факоэмульсификатора

Also Published As

Publication number Publication date
US11510811B2 (en) 2022-11-29
AU2013335087A1 (en) 2015-02-26
US10729581B2 (en) 2020-08-04
US20150335484A1 (en) 2015-11-26
CN104661624B (zh) 2017-03-22
EP2869801A4 (en) 2015-08-05
PT2869801T (pt) 2016-10-11
KR102182490B1 (ko) 2020-11-25
JP6240204B2 (ja) 2017-11-29
EP2869801A1 (en) 2015-05-13
US20140114236A1 (en) 2014-04-24
US9119701B2 (en) 2015-09-01
CA2881395C (en) 2021-06-01
DK2869801T3 (en) 2016-10-24
PL2869801T3 (pl) 2017-08-31
CN104661624A (zh) 2015-05-27
RU2015119265A (ru) 2016-12-10
EP2869801B1 (en) 2016-08-03
US20200297534A1 (en) 2020-09-24
US10052228B2 (en) 2018-08-21
WO2014066060A1 (en) 2014-05-01
BR112015005502B1 (pt) 2021-05-11
CA2881395A1 (en) 2014-05-01
KR20150079549A (ko) 2015-07-08
JP2015536168A (ja) 2015-12-21
ES2596455T3 (es) 2017-01-09
PH12015500337A1 (en) 2015-04-20
BR112015005502A2 (pt) 2017-07-04
US9849030B2 (en) 2017-12-26
MX2015003718A (es) 2015-06-05
US20180338862A1 (en) 2018-11-29
US20160081850A1 (en) 2016-03-24
IN2015KN00322A (ru) 2015-07-10
AU2013335087B2 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
RU2654606C2 (ru) Управление давлением в факоэмульсификационной системе
JP6352934B2 (ja) 水晶体超音波乳化吸引術システムにおける圧力制御
AU2013360295B2 (en) Phacoemulsification hand piece with integrated aspiration and irrigation pump
US20180028359A1 (en) Pressure control in phacoemulsification system
US20180318131A1 (en) Pressure control in phacoemulsification system
WO2009017921A1 (en) Intraocular pressure control

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20200429

PC41 Official registration of the transfer of exclusive right

Effective date: 20201012