RU2654309C2 - Способ для охлаждения богатой углеводородами фракции - Google Patents

Способ для охлаждения богатой углеводородами фракции Download PDF

Info

Publication number
RU2654309C2
RU2654309C2 RU2015120287A RU2015120287A RU2654309C2 RU 2654309 C2 RU2654309 C2 RU 2654309C2 RU 2015120287 A RU2015120287 A RU 2015120287A RU 2015120287 A RU2015120287 A RU 2015120287A RU 2654309 C2 RU2654309 C2 RU 2654309C2
Authority
RU
Russia
Prior art keywords
gas
refrigerant
nitrogen
fraction
rich
Prior art date
Application number
RU2015120287A
Other languages
English (en)
Other versions
RU2015120287A (ru
Inventor
Мартин КАМАНН
Бернд ЮНГФЕР
Штефан БУРМБЕРГЕР
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2015120287A publication Critical patent/RU2015120287A/ru
Application granted granted Critical
Publication of RU2654309C2 publication Critical patent/RU2654309C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • F04D29/124Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Mechanical Sealing (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Изобретение относится к газовой промышленности, в частности к охлаждению богатой углеводородами фракции (1). Ее охлаждают относительно по меньшей мере одного контура циркуляции хладагента (10-15). Хладагент в контуре циркуляции хладагента содержит по меньшей мере: азот, двуокись углерода, метан и/или С2+-углеводороды. Хладагент сжимают посредством по меньшей мере одного турбокомпрессора (С1), содержащего одно или более контактных уплотнительных колец на газовой смазке. Обеспечивают первичный затворный газ, содержащий: частичный поток хладагента и/или наружный газ или газовую смесь, содержащую азот и/или метан. Подают первичный затворный газ на турбокомпрессор (С1). Обеспечивают вторичный затворный газ, содержащий азот, и подают вторичный затворный газ на турбокомпрессор (С1). Обеспечивают линию отбора в контуре циркуляции хладагента и осуществляют контроль потока в линии отбора для отбора по меньшей мере одного богатого азотом потока (21) по меньшей мере в определенные моменты времени из контура циркуляции хладагента (10-15). В результате компенсируются потери хладагента. 7 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу для охлаждения богатой углеводородами фракции, в частности природного газа, причем
- богатую углеводородами фракцию охлаждают относительно по меньшей мере одного контура циркуляции хладагента,
- хладагент содержит по меньшей мере азот и/или двуокись углерода, и/или метан, и/или С2+-углеводороды,
- сжатие хладагента осуществляют посредством по меньшей мере одного турбокомпрессора, содержащего одно или несколько контактных уплотнительных колец на газовой смазке,
- и на турбокомпрессор подают в качестве первичного затворного газа частичный поток хладагента, и/или наружный газ, или газовую смесь, содержащую по существу азот и/или метан, а в качестве вторичного затворного газа азот.
Типовые способы для охлаждения богатой водородом фракции находят применение, в частности, в сжижении природного газа. Для процесса сжижения требуется холод, который обычно поставляют один или несколько контуров циркуляции хладагента. При этом особое значение имеют замкнутые и работающие от турбокомпрессоров контуры циркуляции хладагента. В качестве хладагентов в замкнутых контурах используются частично чистые вещества, однако большей частью смеси с использованием ассортимента компонентов, таких как азот, метан, а также С2Н4, С2Н6, С3Н6, i/n-C4H10 и i/n-C5H12 и т.д. в различных пропорциях. Под термином «С2+-углеводороды» в предлагаемом случае следует понимать вышеназванные компоненты С2Н4, С2Н6, С3Н6, i/n-C4H10 и i/n-C5H12 и т.д.
Для стационарной рабочей установки постоянно сохраняется инвентарь контура циркуляции хладагента в отношении расхода и молярного состава. Однако вынужденно случаются утечки в контуре циркуляции хладагента или дополнительное внесение газовых или компонентных потоков в контур циркуляции хладагента. Виновниками этого являются по существу уплотнения вала турбокомпрессора, предусмотренного для сжатия хладагента, а также подаваемый для них затворный газ.
Это загрязнение и/или утечки хладагента должны компенсироваться. В то время как наличие азота внутри сжижающей установки, а также поставка метана из сжижаемого природного газа обычно гарантируются, то постоянная компенсация потерь С2+-углеводородов связана с высокими затратами по монтажу оборудования, высокими производственными издержками и возможными проблемами в плане логистики.
Следовательно, необходимо обратить внимание на то, чтобы при выборе уплотнения вала турбокомпрессоров, а также дизайна, относящихся к уплотнению периферии, обеспечить наилучшим образом защиту инвентаря хладагентов контура охлаждения. С этой целью в настоящее время используются преимущественно в различных конструктивных формах контактные уплотнительные кольца на газовой смазке. Они наполняются хладагентом, циркулирующим в соответствующем контуре охлаждения как первичный затворный газ, чтобы избежать загрязнения со стороны технологического процесса. Как вторичный затворный газ, по соображениям функциональной безопасности постоянно используется азот, так что первичный отвод газового уплотнения составляет смесь из хладагента и азота. Эта смесь отводится, как правило, для сжигания в факеле, так что составляет потерю хладагентов.
В принципе, для первичной подачи затворного газа может быть привлечен также наружный затворный газ, однако в этом случае даже при надлежащем выборе способа сжатия постоянно случается внесение чужеродных компонентов в контур циркуляции хладагента и, следовательно, загрязнение хладагента. Поскольку при известных условиях загрязнение приводит к потере более значительных объемов инвентаря, то обычно предпочитают осуществлять затворение посредством хладагента и идут на сниженные за счет надлежащего регулирования потери при сжатии, в частности, сравнительно ценных С2+-углеводородов или компонентов.
Задача предлагаемого изобретения состоит в том, чтобы предложить типовой способ охлаждения богатой углеводородами фракции, который устраняет вышеназванные недостатки.
Для решения этой задачи предлагается способ охлаждения богатой углеводородами фракции, который отличается тем, что из контура циркуляции хладагента по меньшей мере время от времени отбирают по меньшей мере один богатый азотом поток.
При этом богатый азотом поток отбирают предпочтительно на холодном конце контура циркуляции хладагента. Отбор богатого азотом потока осуществляют, в частности, в тот момент, когда в циркулирующем в контуре охлаждения хладагенте содержание азота и/или метана превышает заданное пороговое значение.
Применение способа согласно изобретению позволяет предотвратить обогащение контура циркуляции хладагента азотом и/или метаном. Желательная пропорция между этими компонентами и С2+-углеводородами остается по существу неизменной. Поэтому для регулирования состава хладагента достаточно, если отслеживается лишь содержание этих двух компонентов в желательном объеме или объемах.
Предпочтительным образом отобранный богатый азотом поток содержит долю С2+-углеводородов менее 2 мол.%, предпочтительно менее 0,5 мол.%.
В сравнении с относящимся к уровню техники способам способ согласно изобретению для охлаждение богатой углеводородами фракции делает возможным сокращение потерь С2+-углеводородов или С2+-компонентов хладагента примерно на 99%. Из этого следуют существенное сокращение производственных издержек за счет минимизации затрат на закупку и транспортировку С2+-углеводородов, а также сокращение расходов по монтажу оборудования для введения в оборот этих компонентов контура циркуляции хладагента. Кроме того, могут быть снижены нежелательные выбросы, так как углеводороды не отводятся для сжигания в факеле.
Другое предпочтительное выполнение способа согласно изобретению для охлаждения богатой углеводородами фракции отличается тем, что в процессе сжижения богатой углеводородами фракции, подачи ее по меньшей мере в один расходный резервуар и отгонки из него выкипающей газовой фракции отобранный богатый азотом поток по меньшей мере частично смешивается с выкипающей газовой фракцией и/или сжигается в факеле. Под термином «выкипающая газовая фракция» здесь следует понимать испаряющийся за счет подачи тепла в расходный резервуар жидкий природный газ (ЖПГ) и отходящий во время введения ЖПГ в расходный резервуар вытесняющий газ.
При одно- или многоступенчатом сжатии циркулирующего в контуре охлаждения хладагента, особенно предпочтительно если полученная отгонкой из турбокомпрессора посредством первичного отвода газового уплотнения смесь затворного газа подается со стороны всасывания на компрессор или на первую ступень сжатия посредством повышения давления затворного газа.
Если на турбокомпрессор в качестве первичного затворного газа подается наружный газ или газовая смесь, содержащая по существу азот и/или метан, этот газ/газовая смесь предпочтительным образом изготовлен/а из отходящей в рамках технологического процесса охлаждения и/или уже имеющейся фракции. Для этого может быть привлечен, например, частичный поток сжатой выкипающей газовой фракции и/или частичный поток азота, участвующего в технологическом процессе.
Ниже способ согласно изобретению для охлаждения богатой углеводородами фракции детально поясняется на основе представленного на фиг. 1 примера осуществления, который показывает процесс сжижения природного газа.
По трубопроводу 1 охлаждаемый и сжижаемый природный газ подается на теплообменник Е, в котором он посредством хладагента контура циркуляции хладагента, о котором в дальнейшем речь пойдет более детально, охлаждается и сжижается. После завершения сжижения и, возможно, переохлаждения сжиженный природный газ (СПГ) по трубопроводу 2 подается в расходный резервуар S. Отбор сжиженного природного газа из расходного резервуара S осуществляется по трубопроводу 3. Отходящая внутри расходного резервуара S выкипающая газовая фракция отгоняется по трубопроводу 4, нагревается предпочтительно в теплообменнике Е охлаждаемым природным газом 1 и затем по трубопроводу 5 – при необходимости, после предшествующего сжатия компрессором С2 выкипающей газовой фракции - отводится по трубопроводу 22 как так называемая фракция топливного газа. Частичный поток этой фракции по трубопроводным участкам 23 и 18 может подаваться как первичный затворный газ в описанный в дальнейшем турбокомпрессор С1.
Циркулирующий внутри контура охлаждения хладагент содержит, например, компоненты, такие как азот, метан и С2+-углеводороды. Сжатие этого хладагента происходит в выполненном одно- или многоступенчатом, содержащем контактные уплотнительные кольца на газовой смазке турбокомпрессоре С1. Сжатый на желательное контурное давление хладагент по трубопроводу 10 подается на теплообменник Е и охлаждается в нем за счет самого себя. По трубопроводу 11 охлажденный хладагент отгоняют из теплообменника Е и он расширяется с отдачей холода в расширительном клапане а.
Затем расширившийся хладагент по трубопроводу 12 подается на сепаратор D1 и в нем разделяется на жидкую, богатую С2+-углеводородами фракцию 13 и газообразную фракцию 14, содержащую по существу исключительно азот и метан. Обе вышеназванные фракции вновь соединяются непосредственно перед теплообменником Е и направляются теплообменником Е противотоком к охлаждающему потоку природного газа 1, а также охлаждающему потоку хладагента 10. Затем нагретый при этом хладагент по трубопроводу 15 подается в подключенный впереди турбокомпрессора С1 резервуар D2. Последний служит для отделения содержащихся, возможно, в нагретом потоке хладагента 15 жидких компонентов; отходящая в резервуаре D2 газовая фракция подается по трубопроводу 16 на турбокомпрессор С1.
Как альтернатива вышеописанному применению способа хладагент на холодном конце контура циркуляции хладагента расширяется в две ступени. На первой ступени расширения в клапане а расширенный хладагент разделяется, как описано, в сепараторе D1 на жидкую, богатую С2+-углеводородами фракцию 13 и газообразную фракцию 14, содержащую по существу исключительно азот и метан, при этом жидкая, богатая С2+-углеводородами фракция 13 расширяется затем в обозначенном штриховкой клапане а’ на давление испарения хладагента. Это применение способа имеет преимущество в сравнении с описанным прежде применением в том, что отделяемые, низкокипящие компоненты обогащаются при первом расширении в газовой фазе. Это позволяет более селективное осуществление процесса.
На турбокомпрессор С1 в качестве первичного затворного газа подается частичный поток циркулирующего в контуре охлаждения хладагента, и/или наружный газ, или газовая смесь, которая представляет собой по существу азот и/или метан. Эта подача частичного потока хладагента осуществляется по трубопроводу 17, в котором расположен регулировочный клапан с. Наружный газ или газовая смесь может подаваться как первичный затворный газ на турбокомпрессор С1 по трубопроводу 18, в котором также расположен регулировочный клапан d. Кроме того, на турбокомпрессор С подается как вторичный затворный газ азот или богатая азотом фракция. Для наглядности на фиг. 1 это не показано.
Если в рамках контура циркуляции хладагента это приводит к обогащению компонентов азота и/или метана, то они могут отбираться из контура циркуляции хладагента по трубопроводу 21, в котором расположен регулировочный клапан b. Предусмотренный вышеописанный сепаратор D1 обеспечивает, что отобранный по трубопроводу 21 из контура циркуляции хладагента богатый азотом поток 21 практически не содержит С2+-углеводородов. Потому их потери в рамках контура циркуляции хладагента могут не приниматься в расчет.
Как показано на фиг. 1, при определенных обстоятельствах может быть целесообразным подмешивать богатый азотом поток 21 к отобранной из расходного резервуара S выкипающей газовой фракции 4 и нагревать вместе с ней. Альтернативно или дополнительно богатый азотом поток 21 также может сжигаться в факеле.
Предпочтительно отбор богатого азотом потока 21 осуществляется на холодном конце контура циркуляции хладагента. Однако в виде альтернативы, допустимы также другие места отбора. Кроме того, отбор богатого азотом потока 21 может производиться непрерывно или периодически. Отбор богатого азотом потока 21 осуществляют, в частности, если в циркулирующем хладагенте контура охлаждения содержание азота и/или метана превысило заданное пороговое значение. С этой целью необходимо проверять состав хладагента.
Кроме того, полученная отгонкой из турбокомпрессора С1 через его первичный отвод газового уплотнения затворная газовая смесь может вновь подаваться на компрессор или, в случае многоступенчатого сжатия, на ступень сжатия с всасывающей стороны, предпочтительно через вышеописанный резервуар D2, что на фиг. 1 представлено посредством трубопровода 20. Вышеописанная обратная подача полученной отгонкой через первичный отвод затворной газовой смеси перед турбокомпрессором С1 или его первой ступенью сжатия может производиться непосредственно повышением первичного давления затворного газа без использования дополнительных технических средств. Вышеописанная обратная подача полученной отгонкой через первичный отвод затворной газовой смеси перед турбокомпрессором С1 или его первой ступенью сжатия может быть осуществлена также с использование эжектора или другого компрессора. При этом как вытесняющий поток для эжектора может быть использован хладагент со стороны давления турбокомпрессора С1.
Особо следует отметить, что применение способа согласно изобретению может быть реализовано или целесообразно не только в комбинации с показанным на фиг. 1 контуром циркуляции хладагента. Более того, сущность изобретения может быть реализована в комбинации с любым известным контуром циркуляции хладагента или комбинациями нескольких контуров циркуляции хладагента независимо от того, циркулируют ли в них чистые газы или смеси.

Claims (17)

  1. 1. Способ охлаждения богатой углеводородами фракции, при котором
  2. - богатую углеводородами фракцию (1) охлаждают относительно по меньшей мере одного контура циркуляции хладагента (10-15),
  3. - причем хладагент в контуре циркуляции хладагента содержит по меньшей мере: азот, двуокись углерода, метан и/или С2+-углеводороды,
  4. - осуществляют сжатие хладагента в контуре циркуляции хладагента посредством по меньшей мере одного турбокомпрессора (С1), содержащего одно или более контактных уплотнительных колец на газовой смазке,
  5. - обеспечивают первичный затворный газ, содержащий: частичный поток хладагента, и/или наружный газ, или газовую смесь, содержащую по существу азот и/или метан, и подают первичный затворный газ на указанный по меньшей мере один турбокомпрессор (С1),
  6. - обеспечивают вторичный затворный газ, содержащий азот, и подают вторичный затворный газ на указанный по меньшей мере один турбокомпрессор (С1),
  7. причем способ дополнительно включает этапы, на которых
  8. обеспечивают линию отбора в контуре циркуляции хладагента,
  9. осуществляют контроль потока в линии отбора для отбора по меньшей мере одного богатого азотом потока (21) по меньшей мере в определенные моменты времени из контура циркуляции хладагента (10-15).
  10. 2. Способ по п.1, отличающийся тем, что богатый азотом поток (21) отбирают на холодном конце контура циркуляции хладагента (10-16).
  11. 3. Способ по п.1 или 2, отличающийся тем, что отобранный богатый азотом поток (21) содержит долю С2+-углеводородов менее 2 мол.%, предпочтительно менее 0,5 мол.%.
  12. 4. Способ по п.1 или 2, отличающийся тем, что отбор богатого азотом потока (21) осуществляют как только содержание азота и/или метана в циркулирующем в контуре охлаждения (10-16) хладагенте превышает заданное пороговое значение.
  13. 5. Способ по п.1 или 2, отличающийся тем, что богатую углеродами фракцию сжижают, подают по меньшей мере в один расходный резервуар и из него отгоняют выкипающую газовую фракцию, при этом отобранный богатый азотом поток (21) по меньшей мере частично подмешивают к выкипающей газовой фракции и/или сжигают в факеле.
  14. 6. Способ по п.1 или 2, отличающийся тем, что сжатие циркулирующего в контуре охлаждения хладагента осуществляют в одну или несколько ступеней, при этом осуществляют отгонку смеси затворного газа (20) из указанного по меньшей мере одного турбокомпрессора (С1) через первичный отвод газового уплотнения и затем подают ее на турбокомпрессор или на первую ступень сжатия посредством повышения давления затворного газа со стороны всасывания турбокомпрессора.
  15. 7. Способ по п.1 или 2, отличающийся тем, что на турбокомпрессор в качестве первичного затворного газа подают наружный газ или газовую смесь, содержащую по существу азот и/или метан, при этом этот газ/газовую смесь получают из отходящей в рамках технологического процесса охлаждения и/или уже имеющейся фракции, и предпочтительно газ/газовая смесь представляет собой частичный поток сжатой выкипающей газовой фракции (24) и/или участвующего в технологическом процессе азота.
  16. 8. Способ по п.1 или 2, отличающийся тем, что хладагент расширяется на холодном конце контура циркуляции хладагента в две ступени, причем расширенный на первой ступени (а) хладагент разделяют в сепараторе (D1) на жидкую, богатую С2+-углеводородами фракцию (13) и газообразную фракцию (14), содержащую по существу исключительно азот и метан, и затем жидкую, богатую С2+-углеводородами фракцию (13) расширяют (а’) до давления испарения хладагента.
RU2015120287A 2012-11-02 2013-10-29 Способ для охлаждения богатой углеводородами фракции RU2654309C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012021637.8 2012-11-02
DE102012021637.8A DE102012021637A1 (de) 2012-11-02 2012-11-02 Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
PCT/EP2013/003259 WO2014067652A2 (de) 2012-11-02 2013-10-29 Verfahren zum abkühlen einer kohlenwasserstoff-reichen fraktion

Publications (2)

Publication Number Publication Date
RU2015120287A RU2015120287A (ru) 2016-12-27
RU2654309C2 true RU2654309C2 (ru) 2018-05-17

Family

ID=49513899

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120287A RU2654309C2 (ru) 2012-11-02 2013-10-29 Способ для охлаждения богатой углеводородами фракции

Country Status (10)

Country Link
US (1) US20150253068A1 (ru)
CN (1) CN105143800B (ru)
AU (1) AU2013339779B2 (ru)
BR (1) BR112015009199A2 (ru)
CA (1) CA2887205C (ru)
DE (1) DE102012021637A1 (ru)
MY (1) MY173231A (ru)
NO (1) NO20150685A1 (ru)
RU (1) RU2654309C2 (ru)
WO (1) WO2014067652A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711374C2 (ru) * 2018-10-22 2020-01-16 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ и установка сжижения природного газа
RU2711888C2 (ru) * 2018-10-22 2020-01-23 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ сжижения газообразного потока испарения, происходящего в системе хранения потока сжиженного природного газа

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339605A1 (en) * 2016-12-23 2018-06-27 Linde Aktiengesellschaft Method for compressing a gas mixture comprising neon
GB2563021A (en) * 2017-05-30 2018-12-05 Linde Ag Refrigeration circuit system and method of maintaining a gas seal of a compressor system
FR3108167B1 (fr) * 2020-03-11 2022-02-11 Gaztransport Et Technigaz Système de traitement d’un gaz naturel issu d’une cuve d’un ouvrage flottant configuré pour alimenter en gaz naturel en tant que carburant un appareil consommateur de gaz naturel
FR3140938A1 (fr) * 2022-10-17 2024-04-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de récupération de gaz pour compresseur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
WO2004068049A1 (en) * 2003-01-31 2004-08-12 Shell Internationale Research Maatschappij B.V. Process of liquefying a gaseous, methhane-rich feed to obtain liquefied natural gas
RU2272228C1 (ru) * 2005-03-30 2006-03-20 Анатолий Васильевич Наумейко Универсальный способ разделения и сжижения газа (варианты) и устройство для его осуществления
WO2010102940A1 (de) * 2009-03-10 2010-09-16 Siemens Aktiengesellschaft Wellendichtung für eine strömungsmaschine
US20100293996A1 (en) * 2007-11-16 2010-11-25 Michiel Gijsbert Van Aken Method and apparatus for liquefying a hydrocarbon stream and floating vessel or offshore platform comprising the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311004A (en) * 1979-10-26 1982-01-19 Rotoflow Corporation Gas compression system and method
US5651270A (en) * 1996-07-17 1997-07-29 Phillips Petroleum Company Core-in-shell heat exchangers for multistage compressors
US6394764B1 (en) * 2000-03-30 2002-05-28 Dresser-Rand Company Gas compression system and method utilizing gas seal control
DE102005000634A1 (de) * 2005-01-03 2006-07-13 Linde Ag Verfahren zum Abtrennen einer C2+-reichen Fraktion aus LNG
US9377239B2 (en) * 2007-11-15 2016-06-28 Conocophillips Company Dual-refluxed heavies removal column in an LNG facility
US8534094B2 (en) * 2008-04-09 2013-09-17 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
DE102009008230A1 (de) * 2009-02-10 2010-08-12 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
FR2965608B1 (fr) * 2010-09-30 2014-10-17 IFP Energies Nouvelles Procede de liquefaction d'un gaz naturel avec un changement continu de la composition d'au moins un melange refrigerant
JP5231611B2 (ja) * 2010-10-22 2013-07-10 株式会社神戸製鋼所 圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
WO2004068049A1 (en) * 2003-01-31 2004-08-12 Shell Internationale Research Maatschappij B.V. Process of liquefying a gaseous, methhane-rich feed to obtain liquefied natural gas
RU2272228C1 (ru) * 2005-03-30 2006-03-20 Анатолий Васильевич Наумейко Универсальный способ разделения и сжижения газа (варианты) и устройство для его осуществления
US20100293996A1 (en) * 2007-11-16 2010-11-25 Michiel Gijsbert Van Aken Method and apparatus for liquefying a hydrocarbon stream and floating vessel or offshore platform comprising the same
WO2010102940A1 (de) * 2009-03-10 2010-09-16 Siemens Aktiengesellschaft Wellendichtung für eine strömungsmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711374C2 (ru) * 2018-10-22 2020-01-16 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ и установка сжижения природного газа
RU2711888C2 (ru) * 2018-10-22 2020-01-23 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Способ сжижения газообразного потока испарения, происходящего в системе хранения потока сжиженного природного газа

Also Published As

Publication number Publication date
CN105143800B (zh) 2017-10-27
NO20150685A1 (en) 2015-05-28
DE102012021637A1 (de) 2014-05-08
CA2887205A1 (en) 2014-05-08
WO2014067652A2 (de) 2014-05-08
CA2887205C (en) 2021-05-04
AU2013339779A1 (en) 2015-04-23
WO2014067652A3 (de) 2015-07-16
BR112015009199A2 (pt) 2017-07-04
CN105143800A (zh) 2015-12-09
US20150253068A1 (en) 2015-09-10
RU2015120287A (ru) 2016-12-27
AU2013339779B2 (en) 2017-08-31
MY173231A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
RU2654309C2 (ru) Способ для охлаждения богатой углеводородами фракции
RU2228486C2 (ru) Способ транспортировки сжиженного природного газа
US5755114A (en) Use of a turboexpander cycle in liquefied natural gas process
RU2195611C2 (ru) Способ охлаждения многокомпонентным хладагентом для сжижения природного газа
RU2607708C2 (ru) Способ и устройство для удаления азота из криогенной углеводородной композиции
RU2436024C2 (ru) Способ и устройство для обработки потока углеводородов
AU2009300946B2 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
BG64011B1 (bg) Методи за втечняване под налягане на газов поток чрез каскадно охлаждане
EA013234B1 (ru) Полузакрытый способ получения сжиженного природного газа
JP2002508054A (ja) 天然ガスの改良液化方法
RU2622212C2 (ru) Способ и устройство для удаления азота из криогенной углеводородной композиции
EA016330B1 (ru) Способ и технологическая установка для сжижения газа
CN106196881A (zh) 用于液化含烃气体的方法和系统
CA3073283C (en) Refrigerant and nitrogen recovery
RU2224192C2 (ru) Способ производства богатой метаном жидкости
SK242017A3 (sk) Dvojitý systém so zmiešaným chladivom
RU2344359C1 (ru) Способ сжижения газа на шельфе или побережье арктических морей
JP5615543B2 (ja) 炭化水素流の液化方法及び装置
EP3252406B1 (fr) Procédé de liquéfaction de dioxyde de carbone issu d'un courant de gaz naturel
CA3031299A1 (en) Method and apparatus for cooling down a cryogenic heat exchanger
RU2711888C2 (ru) Способ сжижения газообразного потока испарения, происходящего в системе хранения потока сжиженного природного газа
US20160003526A1 (en) Methods and apparatuses for liquefying hydrocarbon streams
KR20230034899A (ko) 천연 가스의 액화를 위한 통합 질소 제거
FR3048492B1 (fr) Utilisation d’un compresseur centrifuge dans une unite de liquefaction de gaz naturel
WO2015059233A1 (fr) Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée