RU2653176C2 - Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе - Google Patents

Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе Download PDF

Info

Publication number
RU2653176C2
RU2653176C2 RU2016134861A RU2016134861A RU2653176C2 RU 2653176 C2 RU2653176 C2 RU 2653176C2 RU 2016134861 A RU2016134861 A RU 2016134861A RU 2016134861 A RU2016134861 A RU 2016134861A RU 2653176 C2 RU2653176 C2 RU 2653176C2
Authority
RU
Russia
Prior art keywords
electrically conductive
conductive composition
film
binder
dimension
Prior art date
Application number
RU2016134861A
Other languages
English (en)
Other versions
RU2016134861A (ru
RU2016134861A3 (ru
Inventor
Вячеслав Борисович Авишев
Денис Геннадьевич Антоненко
Original Assignee
Вячеслав Борисович Авишев
Денис Геннадьевич Антоненко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вячеслав Борисович Авишев, Денис Геннадьевич Антоненко filed Critical Вячеслав Борисович Авишев
Priority to RU2016134861A priority Critical patent/RU2653176C2/ru
Publication of RU2016134861A publication Critical patent/RU2016134861A/ru
Publication of RU2016134861A3 publication Critical patent/RU2016134861A3/ru
Application granted granted Critical
Publication of RU2653176C2 publication Critical patent/RU2653176C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Abstract

Изобретение относится к электропроводящей композиции, которая может быть использована для изготовления электропроводящих электронагревательных элементов в строительстве, в сельском хозяйстве, в бытовых нагревательных приборах, в автомобилестроении. Электропроводящая композиция включает пленкообразующее связующее с соответствующими отвердителем и/или растворителем и углеродсодержащий наполнитель в виде дегидратированного минерала шунгита в количестве от 30-70% от массы связующего. Дегидратированный минерал шунгит вводят в виде смеси фракций, полученных дроблением - размерностью 22-50 мкм и помолом - размерностью 0,1-20 мкм, при их массовом соотношении 1:9-1:1. Также описан способ изготовления нагревательных панелей включает многослойное размещение электропроводящей композиции с пленкообразующим связующим и углеродсодержащим наполнителем между параллельно закрепленными электродами по краям подложки. Электропроводящую композицию наносят послойно от электрода к электроду до взаимокомпенсации статической погрешности удельной электропроводимости поверхности со снижением удельного сопротивления и со смещением 1-2 верхних слоев на 2-3% межэлектродного расстояния. В качестве электродов используют медную луженую плетенку. Техническим результатом заявленного изобретения является обеспечение равномерного распределения удельного сопротивления по поверхности, позволяющего расширить диапазон удельного сопротивления изготовляемых нагревательных панелей. Возможность регулирования мощности теплоизлучения и повышение КПД при упрощении, удешевлении способа и увеличении срока эксплуатации нагревательных панелей. 2. н. и 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к изготовлению электропроводящей композиции на основе пленкообразующих связующих и может быть использовано в различных областях техники для получения искусственных пленочных токопроводящих покрытий на больших площадях поверхности изделий, предназначенных для электротепловыделения с целью обогрева окружающей среды.
Известна электропроводящая краска на основе полимерного пленкообразующего связующего, в состав которой входит растворитель полимерного связующего и мелкодисперсный электропроводный наполнитель в виде смеси серебра - 60-75% от общего веса компонентов и графита 0,5-10% от общей массы компонентов. Пленка лакокрасочного покрытия из данной краски после высыхания имеет удельное объемное сопротивление порядка 103-10 Ом × см (заявка Франция №2662703, опубл. 1992 г.).
Однако данная краска имеет очень высокое удельное объемное сопротивление 103-104 ом на см2, пленки лакокрасочного состава, что неприменимо при изготовлении бытовых тепловыделяющих электропроводящих поверхностей нагревательных устройств. Электропроводящая краска данного состава является дорогостоящей, что ограничивает область ее использования, преимущественно, космической и авиационной промышленностью.
Известна эмаль электропроводящая для формирования защитных антикоррозионных покрытий, в состав которой входит пленкообразующий компонент - 15% раствор частично омыленного сополимера винилхлорида с винилацетатом в смеси органических растворителей, технический углерод, природный минерал воллостонит и шунгит. (Патент РФ №2368632, опубл. 2009 г.).
Однако данная эмаль предназначена для защиты от коррозии и не может быть использована в качестве электропроводящих композиций для нагревательных панелей.
Наиболее близким техническим решением заявляемому является электропроводящая краска, которая содержит эпоксидное связующее 8-20%, наполнитель в виде смеси графита с сажей при массовом соотношении 0,1:1,0:11-39%, отвердитель 0,5-1,5%, органический растворитель остальное. Характеристика свойств: удельное сопротивление 103- 10 Ом см. (Патент РФ №2042694, опубл. 2006 г.).
Недостатком данной электропроводящей краски является двухкомпонентность состава наполнителя, что усложняет подготовку ингредиентов и приводит к удорожанию получаемой продукции. Краска содержит одноразмерные фракции наполнителя, что приводит к снижению адгезии и не обеспечивает равномерного распределения удельного сопротивления по поверхности подложки. Кроме того, краска является пожароопасной, так как наличие воды в углеродосодержащих материалах наполнителя при нагревании до температуры более 100 градусов приводит к их растрескиванию и искрообразованию, что в свою очередь уменьшает срок эксплуатации.
Задачей предлагаемого изобретения является создание пожаробезопасной электропроводящей композиции с использование дешевого углеродсодержащего минерального сырья, обладающей высокими техническими характеристиками при снижение материальных, трудовых и энергетических затрат.
Техническим результатом изобретения является обеспечение равномерного распределения удельного сопротивления по поверхности, регулирование мощности теплоизлучения и повышение КПД.
Заявленный технический результат достигается тем, что электропроводящая композиция, включающая пленкообразующее связующее и углеродсодержащий наполнитель, согласно изобретению в качестве углеродсодержащего наполнителя используют дегидратированный минерал шунгит Зажогинского месторождения в количестве от 30-70% от массы связующего с соответствующими отвердителем и (или) растворителем, который вводят в виде смеси фракций, полученных дроблением размерностью - 22-50 мкм и помолом - размерностью 0,1-20 мкм, при их массовом соотношении: 1:9-1:1.
Технический результат достигается так же тем, что в качестве углеродсодержащего наполнителя используют минерал шунгит Зажогинского месторождения, имеющего следующий химический состав (мас.%): SiO2 - 57.5, TiO2 - 0.2, Al2O3 - 4.0, Fe2O3 - 2.5, MgO - 1.1, CaO - 0.6, Na2O - 0.2, K2O - 1.5, S - 1.1, С - 29.0, H2O крист. - 2.3.
Другим отличием изобретения является то, что в качестве пленкообразующего связующего используют жидкое стекло, эпоксидную смолу, олифу, кремнийорганические смолы, жидкую резину с соответствующими растворителем и (или) отвердителем.
Описание состава:
Для получения заявляемой электропроводящей композиции использовали минерал шунгит Зажогинского месторождения (Республика Карелия), который предварительно дегидратируют при температуре от 150-200 градусов Цельсия, в течение 60 минут. Осуществление дегидратации при температуре выше 200 градусов Цельсия приводит к искрообразованию и растрескиванию электропроводящей композиции, а осуществление указанного процесса при температуре ниже 150 градусов Цельсия не целесообразно, т.к. процесс дегидратации шунгита начинается только при достижении 150 градусов Цельсия. Затем готовят смесь фракций минерала шунгита размерностью, полученных дроблением -22-50 мкм и помолом - 0,1-20 мкм, при их массовом соотношении: 1:9-1:1. Применение минерала Шунгит с других месторождений Медвежегорского района Республики Карелия с корректировкой состава позволяет еще более расширить технические характеристики композиции.
Соотношение фракций подбирается исходя из расчета удельного сопротивления и задаваемой мощности. Смесь фракций обеспечивает более надежный электрический контакт частиц при тепловом расширении и обеспечивает более равномерное распределение удельного сопротивления по поверхности. Фракции, полученные методом дробления, имеют более высокую электропроводность, чем фракции полученные методом помола за счет большей площади соприкосновения поверхностей.
Далее в полученную смесь вводят пленкообразующее связующее с добавлением соответствующего отвердителя и (или) растворителя, в качестве пленкообразующего связующего используют жидкое стекло, эпоксидную смолу, олифу, кремнийорганические смолы, жидкую резину. Виды пленкообразующего связующего с техническими характеристиками представлены в таблице №2.
Полученную массу гомогенизируют механически или другим способом до вязкости композиции в 15-20 din.
В таблице №1 представлены составы электропроводящей композиции и их технические характеристики.
Из анализа таблиц следует, что заявляемая электропроводящая композиция за счет использования различной дисперсности фракций, их оптимального соотношения дает возможность изготовлять композиции с различными пленкообразующими связующими. Это позволяет получать композиции с широким диапазоном создаваемого резистивного сопротивления на поверхности подложки от 0,5 до 10000 ом, с удельным сопротивлением в диапазоне от 0,5 ом⋅см до 10 кОм⋅см, мощности теплоизлучения до 2,5 Вт на см2 и высоким КПД до 90%.
Для реализации электропроводящей композиции разработан способ изготовления нагревательных панелей на ее основе.
Известен способ изготовления полимерного электронагревателя, при котором наносят на электроизоляционную подложку токопроводящий слой путем пропитки с уплотнением на основе углерода элементного графита и модифицированной фенолоформальдегидной смолы с образованием резистивного элемента. Резистивный элемент подготавливают путем электроизоляционного покрытия, затем стопируют с аналогичными резистивными элементами и термообрабатывают при температуре 130-140 градусов Цельсия, в течение 10-12 минут на каждый миллиметр толщины стопы. После извлечения из стопы и на каждый резистивный элемент наносят электроизоляционное покрытие со связующим. Полученные слои прессуют при соответствующих температурно-временных режимах и давлений. (Патент РФ №2074519, опубл. 1997 г.).
Недостатком данного способа являются многооперационность, что ведет к увеличению материальных, временных и трудовых затрат.
Наиболее близким является способ изготовления излучающих панелей, включающий нанесение электропроводящего материала на диэлектрическую подложку, которую предварительно подготавливают (зачищают, промывают, обезжиривают, сушат). На подготовленную подложку наносят токопроводящие шины. Затем готовят электропроводящую композицию, включающую пленкообразующий полимер с соответствующим наполнителем, в виде сажи с графитом или без графита размерностью в пределах 10-100 мкм и другие ингредиенты (термостабилизаторы, светостабилизаторы, антипирен и др). Композицию наносят на диэлектрическую подложку многослойно методом электростатического напыления с последующим оплавлением с одной или более сторон. Затем осуществляют механическую и электрическую защиту токопроводящего покрытия, проводя операции нанесения лака и его сушки, при этом толщина пленки лежит в пределах 3-5 мкм. Лак для защитного слоя готовят путем растворения пленкообразующего полимера в соответствующем растворителе. (Патент РФ №2141177, опубл. 1999 г.).
Недостаток данного способа обусловлен составом и размерностью фракций наполнителя, используемой электропроводящей композиции, не позволяющий обеспечить расширение диапазона удельного сопротивления и регулирование мощности теплоизлучения, а так же повышение КПД. Получаемые нагревательные панели пожароопасны, поскольку в углеродосодержащих материалах наполнителя содержится вода, которая при нагревании до температуры более 100 градусов приводит к их растрескиванию и искрообразованию, что в свою очередь уменьшает срок эксплуатации. Электропроводящая композиция наносится многослойно без смещения 1-2 верхних слоев, что не создает плавный ступенчатый переход электропроводимости на основную теплоизлучающую поверхность. Данный способ в качестве электродов использует электропроводящие шины, в виде медных пластин, которые не обеспечивают необходимый контакт со всеми слоями электропроводящей композиции. Способ является сложным, трудоемким.
Задачей заявляемого изобретения является разработка способа изготовления нагревательных панелей, которые были бы недорогими по сравнению с известными, более безопасными и несложными в производстве.
Техническим результатом заявляемого способа является расширение диапазона удельного сопротивления, регулирование мощности теплоизлучения, повышение КПД, упрощение и удешевление способа изготовления нагревательных панелей, увеличение срока эксплуатации нагревательных панелей.
Заявляемый технический результат достигается тем, что многослойное размещение электропроводящей композиции с пленкообразующим связующим и углеродсодержащим наполнителем между параллельно закрепленными электродами по краям предварительно подготовленной диэлектрической подложки, согласно изобретения в качестве электропроводящей композиции, включающей дегидратированный минерал шунгит Зажогинского месторождения в виде смеси фракций размерностью - 22-50 мкм и размерностью 0,1-20 мкм, при их массовом соотношении 1:9-1:1, в количестве от 30-70% от массы связующего, при этом электропроводящую композицию наносят послойно от электрода к электроду до взаимокомпенсации статической погрешности удельной электропроводимости поверхности со снижением удельного сопротивления и со смещением 1-2 верхних слоев на 2-3% межэлектродного расстояния, а в качестве электродов используют медную лужоную плетенку. Нанесение композиции от электрода к электроду уменьшает удельное сопротивление по сравнению с продольным нанесением на 35-40% за счет более плотного расположения кристаллов шунгита в связующем.
Технический результат достигается так же тем, что в качестве пленкообразующего связующего используют жидкое стекло, эпоксидную смолу, олифу, кремнийорганические смолы, жидкую резину с соответствующим растворителем и (или) отвердителем.
Способ изготовления нагревательных панелей осуществляют следующим образом:
Диэлектрическую подложку зачищают, обезжиривают, а при использовании металлической подложки наносят токоизолирующую термостойкую грунтовку в несколько слоев.
По краям подготовленной подложки закрепляют электроды параллейно друг другу, путем механического крепления или наклеиванием с помощью токопроводящего клея. В качестве электродов используют медную лужоную плетенку, которая не окисляется, обеспечивая наилучший контакт с многослойным покрытием, не вызывает электрической и тепловой перегрузки в местах контактов.
Затем подготовленную электропроводящую композицию, включающую дегидратированный минерал шунгит Зажогинского месторождения в виде смеси фракций размерностью - 22-50 мкм и размерностью 0,1-20 мкм, при их массовом соотношении: 1:9 - 1:1, в количестве от 30-70% от массы связующего, наносят кистью, валиком или распылителем максимально возможным равным слоем. Причем нанесение осуществляют послойно от электрода к электроду для равномерного распределения электропроводящей композиции. При нанесении электропроводящей композиции в один слой разброс удельного сопротивления составляет от 15-20%, а при нанесении композиции в два или три слоя разброс удельного сопротивления компенсируется и составляет не более 2-3%, таким образом, происходит перераспределение электропроводности между слоями электропроводящей композиции. Измерение удельной электропроводности проводилось тестером VC890C+, путем наложения медных электродов на отдельные участки поверхности и пирометром ark.ru, путем замеров температуры нагрева поверхности в различных точках. Композицию наносят со смещением 1-2 верхних слоев на 2-3% межэлектродного расстояния. Это обеспечивает плавный ступенчатый переход электропроводимости на основную теплоизлучающую поверхность. Причем каждый слой просушивают ультрафиолетовой лампой от 2-60 минут, в зависимости от используемого связующего.
Сверху на нанесенную электропроводящую композицию наносят электроизоляционный слой, путем покрытия ламинатной пленкой в ламинаторе или нанесением лакокрасочного покрытия или слоем эпоксидной смолы. Выбор материала подложки зависит от способности нагревательных панелей выдержать задаваемую температуру нагрева. Например для повышенных температур применимы в качестве диэлектрической подложки слюдопласт, фторопласт, керамика, бетон.
Использование данного способа позволяет получать нагревательные панели с удельным сопротивлением в диапазоне от 0,5 ом⋅см до 10 кОм⋅см и задаваемой мощности теплоизлучения от 0,01 до 2,5 Вт при КПД до 90%.
Таким образом, применение указанной электропроводящей композиции и заявляемого способа ее многослойного нанесения с использованием в качестве электродов медной плетенки позволяет производить электронагревательные панели различного применения с широким спектром выбора свойств и оптимальными высоконадежными характеристиками, не требующие сложного дорогостоящего оборудования в производстве, характеризуется низкой себестоимость. Нагревательные панели могут быть использованы в качестве электропроводящих электронагревательных элементов в строительстве - теплые полы, поверхности, обогрев подъездных путей, дорог, дорожек, гаражей, крыш, водостоков; в сельском хозяйстве - обогрев теплиц, парников, сушилок; в бытовых нагревательных приборах - электропечи, камины, бойлеры; медицине - инфракрасное излучение; в автомобилестроении - подогрев двигатели, салона автомобиля, сидений; экранирование электромагнитных излучений.
Figure 00000001
Figure 00000002

Claims (4)

1. Электропроводящая композиция, включающая пленкообразующее связующее и углеродсодержащий наполнитель, отличающаяся тем, что в качестве углеродсодержащего наполнителя используют дегидратированный минерал шунгит Зажогинского месторождения в количестве от 30-70% от массы связующего с соответствующими отвердителем и/или растворителем, который вводят в виде смеси фракций, полученных дроблением - размерностью 22-50 мкм и помолом - размерностью 0,1-20 мкм, при их массовом соотношении: 1:9-1:1.
2. Электропроводящая композиция по п. 1. отличающаяся тем, что в качестве пленкообразующего связующего используют жидкое стекло, эпоксидную смолу, олифу, кремнийорганические смолы, жидкую резину с соответствующими растворителем и/или отвердителем.
3. Электропроводящая композиция по п. 1. отличающаяся тем, что в качестве углеродсодержащего наполнителя используют минерал шунгит Зажогинского месторождения, имеющего следующий химический состав, мас.%: SiO2 – 57,5, TiO2 – 0,2, Al2O3 – 4,0, Fe2O3 – 2,5, MgO - 1,1, CaO – 0,6, Na2O – 0,2, K2O – 1,5, S – 1,1, С – 29,0. Н2О крист. – 2,3.
4. Способ изготовления электронагревательных панелей, включающий многослойное размещение электропроводящей композиции с пленкообразующим связующим и углеродсодержащим наполнителем между параллельно закрепленными электродами по краям предварительно подготовленной диэлектрической подложки, отличающийся тем, что электропроводящая композиция включает дегидратированный минерал шунгит Зажогинского месторождения в виде смеси фракций размерностью 22-50 мкм и размерностью 0,1-20 мкм, при их массовом соотношении 1:9-1:1, в количестве от 30-70% от массы связующего, при этом электропроводящую композицию наносят послойно от электрода к электроду до взаимокомпенсации статической погрешности удельной электропроводимости поверхности со снижением удельного сопротивления и со смещением 1-2 верхних слоев на 2-3% межэлектродного расстояния, а в качестве электродов используют медную луженую плетенку.
RU2016134861A 2016-08-25 2016-08-25 Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе RU2653176C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016134861A RU2653176C2 (ru) 2016-08-25 2016-08-25 Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016134861A RU2653176C2 (ru) 2016-08-25 2016-08-25 Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе

Publications (3)

Publication Number Publication Date
RU2016134861A RU2016134861A (ru) 2018-03-01
RU2016134861A3 RU2016134861A3 (ru) 2018-03-01
RU2653176C2 true RU2653176C2 (ru) 2018-05-07

Family

ID=61596969

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016134861A RU2653176C2 (ru) 2016-08-25 2016-08-25 Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе

Country Status (1)

Country Link
RU (1) RU2653176C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009413A1 (en) * 2019-07-12 2021-01-21 Prima Carbo Solutions Oy Electric heater solution comprising shungite mineral
RU204207U1 (ru) * 2020-10-05 2021-05-14 Общество с ограниченной ответственностью "Термо Глас" Инфракрасный обогреватель с токопроводящим клеевым слоем

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042694C1 (ru) * 1994-11-01 1995-08-27 Товарищество с ограниченной ответственностью "ТИКО" Электропроводящая краска
RU2074519C1 (ru) * 1994-05-31 1997-02-27 Борис Арсентьевич Мурашов Способ изготовления полимерного электронагревателя
RU2083619C1 (ru) * 1995-08-23 1997-07-10 Товарищество с ограниченной ответственностью "ТИКО" Электропроводный лакокрасочный материал
WO1998055419A1 (en) * 1997-06-03 1998-12-10 Christian Strandgaard A settable mixture and a method of manufacturing a sound insulating floor construction
RU2141177C1 (ru) * 1998-07-24 1999-11-10 Козликов Вадим Львович Способ изготовления нагревательных излучающих панелей (варианты) и устройство для нагрева
RU54708U1 (ru) * 2004-07-27 2006-07-10 Анисимов Александр Михайлович Электронагревательная вставка
RU64463U1 (ru) * 2007-01-09 2007-06-27 Павел Петрович Горбенко Нагреватель горбенко "ра свет"
RU2540747C1 (ru) * 2013-12-10 2015-02-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Сухая композиция на основе шунгита для получения материалов с уникальным сочетанием свойств (шунгилит)
RU2565184C1 (ru) * 2014-07-22 2015-10-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Многослойное электропроводящее покрытие на основе термостойкого связующего

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074519C1 (ru) * 1994-05-31 1997-02-27 Борис Арсентьевич Мурашов Способ изготовления полимерного электронагревателя
RU2042694C1 (ru) * 1994-11-01 1995-08-27 Товарищество с ограниченной ответственностью "ТИКО" Электропроводящая краска
RU2083619C1 (ru) * 1995-08-23 1997-07-10 Товарищество с ограниченной ответственностью "ТИКО" Электропроводный лакокрасочный материал
WO1998055419A1 (en) * 1997-06-03 1998-12-10 Christian Strandgaard A settable mixture and a method of manufacturing a sound insulating floor construction
RU2141177C1 (ru) * 1998-07-24 1999-11-10 Козликов Вадим Львович Способ изготовления нагревательных излучающих панелей (варианты) и устройство для нагрева
RU54708U1 (ru) * 2004-07-27 2006-07-10 Анисимов Александр Михайлович Электронагревательная вставка
RU64463U1 (ru) * 2007-01-09 2007-06-27 Павел Петрович Горбенко Нагреватель горбенко "ра свет"
RU2540747C1 (ru) * 2013-12-10 2015-02-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Сухая композиция на основе шунгита для получения материалов с уникальным сочетанием свойств (шунгилит)
RU2565184C1 (ru) * 2014-07-22 2015-10-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Многослойное электропроводящее покрытие на основе термостойкого связующего

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009413A1 (en) * 2019-07-12 2021-01-21 Prima Carbo Solutions Oy Electric heater solution comprising shungite mineral
RU204207U1 (ru) * 2020-10-05 2021-05-14 Общество с ограниченной ответственностью "Термо Глас" Инфракрасный обогреватель с токопроводящим клеевым слоем

Also Published As

Publication number Publication date
RU2016134861A (ru) 2018-03-01
RU2016134861A3 (ru) 2018-03-01

Similar Documents

Publication Publication Date Title
US20180063889A1 (en) Paintable surface heating system using graphene nano-platelets apparatus and method
CN1973577A (zh) 加热元件及其制造方法具有所述元件的用具及其制造方法
RU2653176C2 (ru) Электропроводящая композиция и способ изготовления нагревательных панелей на ее основе
WO2011009577A1 (de) Heizung, insbesondere hochtemperaturheizung, sowie verfahren zu dessen herstellung
CN105754462B (zh) 一种柔性基材用复合电热涂料及其制备方法及其用途
CN111511049A (zh) 一种发热板及其制造方法
US3505263A (en) Resin bonded semiconducting compositions of calcined petroleum coke
CN1106850A (zh) 电发热涂料
RU55241U1 (ru) Нагревательный элемент
Tian et al. Rapid electrothermal response and excellent flame retardancy of ethylene‐vinyl acetate electrothermal film
WO2017117873A1 (zh) 一种双面高导热能力的厚膜发热元件
CN104327554A (zh) 电热涂料
US20170238368A1 (en) Flexible resistive heating element
RU2573594C1 (ru) Резистивный углеродный композиционный материал
US20210402429A1 (en) Method for producing, applying and fixing a multilayer surface coating on a host substrate, and host substrate assembly which can be obtained by said method
SU1600003A1 (ru) Способ изготовлени поверхностного резистивного нагревател
CN109003723A (zh) 一种绝缘复合铝漆包线
US20150305092A1 (en) Heater nano dye, system including solid heater nano dye layer, and methods of using the same
KR101551180B1 (ko) 면상 발열체 코팅을 위한 전도성 조성물 제조 방법, 그리고 면상 발열체 코팅을 위한 전도성 조성물
WO2010040139A1 (en) Heated coating compositions and methods of use
KR20190115623A (ko) 발열필름용 전도성 조성물
KR20200018513A (ko) 발열필름용 전도성 조성물
JP3650301B2 (ja) 融雪及び遮熱性を有する積層構造
CN103627241A (zh) 具有高效能远红外发射能力的掺杂石墨电发热涂料
RU27686U1 (ru) Нагревательный элемент

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180826

NF4A Reinstatement of patent

Effective date: 20190828

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200826