RU2652084C1 - Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления - Google Patents

Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления Download PDF

Info

Publication number
RU2652084C1
RU2652084C1 RU2017119832A RU2017119832A RU2652084C1 RU 2652084 C1 RU2652084 C1 RU 2652084C1 RU 2017119832 A RU2017119832 A RU 2017119832A RU 2017119832 A RU2017119832 A RU 2017119832A RU 2652084 C1 RU2652084 C1 RU 2652084C1
Authority
RU
Russia
Prior art keywords
tritium
waste
crystalline hydrate
radioactive
crystalline
Prior art date
Application number
RU2017119832A
Other languages
English (en)
Inventor
Владимир Эрнестович Петров
Сергей Анатольевич Коновалов
Виктор Светов
Original Assignee
Владимир Эрнестович Петров
Сергей Анатольевич Коновалов
Виктор Светов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Эрнестович Петров, Сергей Анатольевич Коновалов, Виктор Светов filed Critical Владимир Эрнестович Петров
Priority to RU2017119832A priority Critical patent/RU2652084C1/ru
Application granted granted Critical
Publication of RU2652084C1 publication Critical patent/RU2652084C1/ru
Priority to PCT/RU2018/000301 priority patent/WO2019078758A2/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Группа изобретений относится к области переработки жидких радиоактивных отходов. Способ иммобилизации загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов заключается в их отверждении в солевой кристаллической матрице, которая затем иммобилизуется в прочной минеральной матрице. Отверждение отходов осуществляют с помощью гидратации слаборастворимого фосфатного кристаллогидрата путем засыпания предварительно обезвоженного слаборастворимого фосфатного кристаллогидрата в емкость с отходами и перемешивания для образования новых кристаллогидратов. Пространство до верхней герметичной крышки емкости заполняют прочной минеральной композицией. Имеется также устройство для иммобилизации загрязненных солями и органикой тритийсодержащих жидких радиоактивных отходов. Группа изобретений позволяет обеспечить минимизацию радиоактивного загрязнения материалов и оборудования. 2 н. и 1 з.п. ф-лы, 1 ил., 2 пр.

Description

Группа изобретений относится к области переработки радиоактивных отходов, конкретно, к иммобилизации жидких содержащих тритий радиоактивных отходов. Способ предназначен для применения в емкостях, используемых для хранения жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой.
Из уровня техники известна установка для очистки жидких радиоактивных отходов от трития по патенту РФ на полезную модель № 126185, содержащая емкость для исходного раствора, соединенную с ректификационной колонной, оборудованной конденсатором паров и кубом-испарителем, накопительную емкость для обогащенной тритием воды, колонну холодного изотопного химического обмена, колонну горячего изотопного химического обмена, магистраль для циркуляции водорода по колоннам двухтемпературного изотопного химического обмена, магистраль для подачи воды из колонны горячего изотопного химического обмена в голову процесса, дополнительную колонну холодного изотопного химического обмена, вход которой соединяется магистралью с выходом колонны холодного изотопного химического обмена, электролизер и контейнер для сбора водорода, обогащенного тритием, на выходе из верхней части дополнительной колонны холодного изотопного химического обмена установлена каталитическая горелка для сжигания водорода, сообщающаяся магистралью для возвращения образовавшейся воды для доочистки в колонну горячего изотопного химического обмена. Недостатками установки является её сложность и малая производительность.
Известен компаунд для иммобилизации жидких тритийсодержащих радиоактивных отходов по авторскому свидетельству СССР № 1447173, который, помимо отходов, содержит известь в качестве минерального связующего и петролатум в качестве гидроизолирующего компонента и дополнительного связующего. Содержание воды в компаунде - 9,4 -12,1%, извести- 37,9- 40,6%, петролатум - остальное. Недостатком компаунда для иммобилизации жидких содержащих тритий радиоактивных отходов низкий уровень энергии связи извести с содержащей тритий водой, что допускает выход тритиевой воды в окружающую среду. Недостатками этого технического решения являются также низкая степень наполнения компаунда содержащей тритий водой – всего 9,4 -12,1%, и невысокая прочность.
Известен способ иммобилизации жидких радиоактивных отходов по патенту РФ № 2214011, который включает их концентрирование и отверждение с выдерживанием смеси до формирования прочного твердого монолитного блока. Отверждение осуществляют путем смешивания отходов с раствором хлористого магния плотностью 1,2-1,35 г/см3, магнезиального вяжущего и тонкодисперсного минерального наполнителя с размерами частиц 0,005-0,015 мм. Преимущества изобретения заключаются в использовании недорогих природных материалов, высокой степени наполнения компаунда радиоактивными отходами и низкой выщелачиваемости радионуклидов. Недостатком способа применительно к иммобилизации жидких тритийсодержащих радиоактивных отходов является низкий уровень энергии связи молекул тритиевой воды с молекулами отвердителя, поскольку способ направлен на иммобилизацию солевых и органических отходов, растворенных в воде, а не на фиксирование самих молекул воды. Поэтому необходим способ, позволяющий надёжно закрепить молекулы воды в молекулярной структуре прочного твердого монолитного блока.
Ближайшим аналогом заявленной группы изобретений является способ иммобилизации жидких содержащих тритий радиоактивных отходов по патенту РФ № 2592078, который включает их отверждение в устойчивой кристаллической матрице, получаемой путем обезвоживания кристаллогидрата соли металла, удаления кристаллизационной воды, добавления к безводному солевому основанию кристаллогидрата жидких, содержащих тритий, отходов в количестве по жидкости на 5-7% больше количества удаленной воды, и перемешивания до образования новых кристаллогидратов соли металла. В качестве кристаллогидрата соли металла в этом способе предлагается использовать железный, медный или цинковый купоросы. Недостатком способа является достаточно высокая растворимость железного, медного и цинкового купоросов, что приводит к неустойчивости получаемых компаундов при погружении в воду. В 100 г воды растворяется 26,6 г безводного FeSO4 при 20°C и 54,4 г при 56 °C. Растворимость в воде цинкового купороса(%): 29,4 (0°C), 37,7 (99°C). При 15°C в 1 л воды растворяется 302 г медного купороса, а при 70°С – 716 г (см. Большую энциклопедию нефти и газа). Вторым и очень существенным недостатком способа является высокая степень радиоактивного загрязнения оборудования и материалов, возникающая при перемешивании жидких содержащих тритий радиоактивных отходов с дегидратированным кристаллогидратом соли металла в реакторах, бочках или баках с использованием химических мешалок или миксеров. В этом случае радиоактивному загрязнению подвергаются как сами ёмкости, так и мешалки или миксеры. Ещё одним недостатком прототипа является невысокая степень заполнения обезвоженных кристаллогидратов тритиевой водой.
Задачей заявляемых способа и устройства является устранение недостатков ближайшего аналога. Предложенный способ предназначен для применения непосредственно в емкостях, где уже хранятся загрязненные радиоактивными солями и органикой жидкие радиоактивные отходы, содержащие тритий.
Техническими результатами заявленной группы изобретений являются минимизация радиоактивного загрязнения материалов и оборудования, минимизация радиационных рисков для персонала, повышение экологической безопасности при длительном хранении жидких содержащих тритий радиоактивных отходов при высокой степени заполнения обезвоженных кристаллогидратов тритиевой водой.
Указанные технические результаты достигаются при осуществлении заявленного способа и устройства.
Способ иммобилизации находящихся в емкостях загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов заключается в их отверждении в солевой кристаллической матрице, которая затем иммобилизуется в прочной минеральной матрице. Отверждение отходов осуществляют с помощью гидратации слаборастворимого фосфатного кристаллогидрата путем засыпания предварительно обезвоженного слаборастворимого фосфатного кристаллогидрата в емкость с отходами и перемешивания для образования новых кристаллогидратов. Количество засыпаемого обезвоженного слаборастворимого фосфатного кристаллогидрата
Figure 00000001
выбирают из расчета устойчивого состояния при обводнении
Figure 00000002
(1)
где
Figure 00000003
– измеренная масса отходов в емкости;
Figure 00000004
– измеренная плотность отходов емкости;
Figure 00000005
- плотность воды;
Figure 00000006
– молярная масса соли кристаллогидрата;
18 – молярная масса молекулы воды;
N – количество молекул воды, устойчиво удерживаемое одной молекулой соли кристаллогидрата. После кристаллизации и слеживания кристаллогидрата (под слеживанием понимается закрытие пор в порошке кристаллогидрата и образование соляного камня) на его поверхность выдавливаются (выделяются) не связанные органические соединения, которые иммобилизуются тем, что пространство до верхней герметичной крышки емкости заполняют прочной минеральной композицией, например, на основе магнезиального вяжущего, таким образом образуется прочная минеральная матрица.
Заявленный способ осуществляется в устройстве для иммобилизации загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов. Устройство содержит емкость, верхнюю герметичную крышку, шток с перемешивающими лопастями, привод и электродвигатель. Привод встроен в верхнюю герметичную крышку емкости через сальник. Электродвигатель выполнен съемным и подсоединен к приводу снаружи крышки. С внутренней стороны крышки к приводу через соединительную муфту подсоединен шток с перемешивающими лопастями, причем шток с лопастями отделяется от привода при превышении усилия на приводе в 2 раза по сравнению с начальным усилием. Шток с лопастями после перемешивания остается в емкости, а электродвигатель отсоединяется и используется на следующей емкости.
Осуществление заявленных способа и устройства.
Тритий имеет период полураспада (12,32 ± 0,02) года. Реакция распада трития имеет следующий вид:
Figure 00000007
.
При этом выделяется 18,59 кэВ энергии, из них на электрон (бета-частицу) приходится в среднем 5,7 кэВ, а на электронное антинейтрино — оставшаяся часть. Образовавшиеся бета-частицы распространяются в воздухе всего на 6,0 мм и не могут преодолеть даже верхний слой кожи человека.
В силу малой энергии распада трития (см. источники информации [1, 2, 3, 4]), испускаемые электроны хорошо задерживаются даже простейшими преградами типа одежды или резиновых хирургических перчаток. Тем не менее, этот изотоп считается одним из самых радиотоксичных и представляет радиационную опасность при вдыхании, поглощении с пищей, впитывании через кожу.
Тритиевая вода (сверхтяжёлая вода) (см. источник информации [6]) — вода, в молекулах которой атомы протия (лёгкого водорода) замещены атомами трития (тяжёлого радиоактивного изотопа водорода). В чистой форме называется оксидом трития (T2O или 3H2O) или супертяжёлой водой. Из-за собственной радиоактивности чистый T2O имеет высокую коррозионную активность — при спонтанном бета-распаде трития в 3He происходит выделение атомарного кислорода. Кроме того, из-за собственной радиоактивности происходит радиолиз воды с выделением трития и кислорода. Удельная объёмная активность тяжёлой воды составляет 2650 Ки/мл, поэтому она не может быть получена в больших количествах в неразбавленном виде. Тритиевая вода, участвуя в метаболизме почти одинаковым образом с обычной водой, обладает высокой радиотоксичностью
Критериями оценки качества иммобилизации жидких тритийсодержащих радиоактивных отходов путем их отверждения являются надёжность закрепления молекул содержащей тритий воды в матрице отвердителя и количество содержащей тритий воды в создаваемом компаунде. Чем выше энергия химической связи между молекулами содержащей тритий воды и отвердителя, тем надёжней иммобилизация жидких содержащих тритий радиоактивных отходов и тем выше экологическая безопасность при длительном их хранении. Чем выше содержание тритиевой воды в создаваемом компаунде, тем эффективней иммобилизация жидких содержащих тритий радиоактивных отходов. Итак, устойчивость компаунда и содержание в нём жидких содержащих тритий радиоактивных отходов - главные критерии эффективности иммобилизации жидких содержащих тритий радиоактивных отходов.
Отверждение содержащей тритий воды обеспечивает повышение экологической безопасности при длительном хранении жидких содержащих тритий радиоактивных отходов. Прочность (энергия) химической связи между молекулами содержащей тритий воды и отвердителя – при прочих равных условиях – оценивается прочностью получаемого компаунда.
Варианты использования различных кристаллогидратов солей металлов для целей иммобилизации жидких содержащих тритий радиоактивных отходов.
Кристаллогидрат железного купороса FeSO4·7Н2О имеет общую молярную массу 278,01756 (г/моль) при молярной массе FeSO4-151,9106 (г/моль), кристаллогидрат медного купороса CuSO4·5H2O имеет общую молярную массу 249,686 (г/моль) при молярной массе CuSO4-159,6096 (г/моль), а кристаллогидрат цинкового купороса ZnSO4·7H2O имеет общую молярную массу 287,56056 (г/моль) при молярной массе ZnSO4 -161,4536 (г/моль). Таким образом, доля воды в молекулах кристаллогидратов железного, медного и цинкового купоросов составит 45% , 36% и 44%.
Кристаллогидрат фосфата натрия Na3PO4·12Н2О имеет общую молярную массу 380,12376 (г/моль) при молярной массе Na3PO4-163,9404 (г/моль), доля воды в его молекулах составляет 57%. Таким образом, возникает возможность заполнения получаемого в конце процесса компаунда тритиевой водой более чем на 50%. Учитывая высокую слёживаемость кристаллогидрата фосфата натрия Na3PO4·12Н2О, образование при длительном хранении соляного камня, использование данного кристаллогидрата в процессе иммобилизации жидких содержащих тритий радиоактивных отходов представляется весьма целесообразным. При слёживании объём кристаллогидрата фосфата натрия, содержащего до 57% тритиевой воды будет существенно сокращаться (до 50-60% от первоначального).
Сравнительная оценка энергии связей молекул воды в различных кристаллогидратах по температуре полной дегидратации кристаллогидрата соли металла.
Для кристаллогидрата железного купороса FeSO4·7Н2О эта температура составила 2500C, для кристаллогидрата медного купороса CuSO4·5H2O - 2200C (см. источник информации [7]), для кристаллогидрата цинкового купороса ZnSO4·7H2O - 2380C, для кристаллогидрата фосфата натрия Na3PO4·12Н2О - 4000C. Таким образом, прочность (энергия) химической связи между молекулами содержащей тритий воды и отвердителя существенно выше у кристаллогидрата фосфата натрия Na3PO4·12Н2О. Растворимость фосфата натрия в воде 14,4 г/100 г при температуре 25°C (см. http://chemiday.com/ru/encyclopedia/na3po4).
Особый интерес среди фосфатов для процесса иммобилизации жидких содержащих тритий радиоактивных отходов представляет очень плохо растворимый в воде кристаллогидрат фосфата марганца Mn3(PO4)2·7Н2О. Молярная масса фосфата марганца составляет 354,76 г/моль, кристаллогидрата фосфата марганца Mn3(PO4)2·7Н2О - 480,76 г/моль. Кристаллогидрат Mn3(PO4)2·7Н2О при нагревании ступенчато разлагается:
Figure 00000008
При этом Mn3(PO4)2 может быть получен при нагревании Mn3(PO4)2·7Н2О до 7000C, что говорит о высокой энергия химической связи между молекулами содержащей тритий воды и отвердителя при иммобилизации жидких содержащих тритий радиоактивных отходов.
Таким образом, слаборастворимые фосфатные кристаллогидраты (например, Na3PO4·12Н2О и Mn3(PO4)2·7Н2О) наиболее удачны для целей иммобилизации жидких содержащих тритий радиоактивных отходов.
Указанные технические результаты обеспечиваются за счет:
- гидратации слаборастворимых фосфатных кристаллогидратов путем засыпания предварительно обезвоженного кристаллогидрата в емкость с жидкими радиоактивными отходами, содержащими тритий, и постоянного перемешивание в течение первых 5-7 минут;
- выбора количества обезвоженного слаборастворимого фосфатного кристаллогидрата
Figure 00000001
из расчета устойчивого состояния при обводнении
Figure 00000002
где
Figure 00000003
– измеренная масса отходов в емкости;
Figure 00000004
– измеренная плотность отходов емкости;
Figure 00000005
- плотность воды;
Figure 00000006
– молярная масса соли кристаллогидрата;
18 – молярная масса молекулы воды;
N – количество молекул воды, устойчиво удерживаемое одной молекулой соли кристаллогидрата;
- заполнения, после кристаллизации, слёживания кристаллогидрата и выделения на его поверхности не связанных органических соединений, пространства до верхней крышки емкости прочной минерально-солевой композицией, например, на основе магнезиального вяжущего;
- встраивания перемешивающих лопастей в верхнюю крышку, выведения привода через сальник на верхнюю сторону крышки, монтажа съемного электродвигателя на верхней стороне крышки, отсоединения штока с лопастями (после использования) от привода и оставление их в емкости, съёма электродвигателя и использование на следующей емкости.
Повышение экологической безопасности при длительном хранении жидких содержащих тритий радиоактивных отходов обеспечивается за счёт более высокой энергии химической связи, между молекулами содержащей тритий воды и отвердителя, и низкой растворимости выбранных кристаллогидратов.
Сокращение объёма вторичных радиоактивных отходов обеспечивается за счёт значительного увеличения количества содержащей тритий воды в создаваемом компаунде.
Исключение контакта вторичных радиоактивных отходов с окружающей средой обеспечивается за счёт создания «пробки», создаваемой путём заполнения пространства до верхней крышки емкости прочной минерально-солевой композицией на основе магнезиального вяжущего.
Высокий коэффициент заполнения получаемого компаунда тритиевой водой обеспечивается за счёт высокого содержания кристаллизационной воды в выбранных кристаллогидратах.
Существенное снижение радиационных рисков для персонала, обеспечивается за счет того, что радиоактивные вещества не покидают емкости, где они уже находятся, и весь процесс отверждения кристаллогидрата происходит непосредственно в емкости без участия персонала. Кроме того, лопасти, с помощью которых осуществлялось перемешивание кристаллогидрата и отходов, остаются в емкости. В автоматическом режиме процесс перемешивания прекращается в момент, когда усилия на приводе превысят в 2 раза начальные усилия, которые были на приводе во время запуска устройства. Этот момент характеризует существенную стадию гидратации. Таким образом, лопасти являются одноразовым расходным оборудованием, с которым не предусмотрены никакие операции с участием человека после использования.
Устройство для иммобилизации загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов поясняется графическими материалами (см. фиг 1).
Заявленное устройство содержит емкость 1, верхнюю герметичную крышку 2, воронку 3 для засыпания в емкость обезвоженного слаборастворимого кристаллогидрата. В крышке 2 выполнено отверстие с клапаном 4, в которое вставляется воронка 3. Привод 6 съемного электродвигателя 5 встроен в крышку 2 емкости 1 через сальник 7. Привод 6 и съемный электродвигатель 5 расположены снаружи крышки 2. С внутренней стороны крышки 2 внутри полости емкости 1 к приводу 6 через соединительную муфту 8 подсоединен шток с перемешивающими лопастями 9.
Заявленный способ предназначен для применения в емкостях, используемых для хранения загрязненных радиоактивными солями и органикой содержащих тритий жидких радиоактивных отходов. Для применения способа нам следует знать требуемое для иммобилизации количество обезвоженного кристаллогидрата фосфата натрия Na3PO4·12Н2О или марганца Mn3(PO4)2·7Н2О при известной массе (или объёме) и плотности содержащих тритий жидких радиоактивных отходов. Это количество обезвоженного кристаллогидрата
Figure 00000001
определяется по формуле (1).
При образовании новых кристаллогидратов из суспензии, которую представляет собой смесь загрязненных радиоактивными солями и органикой содержащих тритий жидких радиоактивных отходов, с солями происходит фазовый переход – вместо суспензии образуется порошок, а затем камень.
Заявляемое устройство основано на простом и очевидном эффекте – резком повышении сопротивления вращательному движению лопастей 9 при образовании новых кристаллогидратов. Соединительная муфта 8 рассчитана на то, что при достижении двукратного увеличения сопротивления вращению в твердеющем кристаллогидрате по сравнению с начальным, шток с лопастями 9 автоматически отсоединяется. Так как, лопасти 9 являются одноразовыми, то выбор материала, из которого они изготавливаются – его прочность, долговечность, износостойкость, коррозионная устойчивость и т.д. – можно существенно минимизировать. Поэтому, отделив лопасти 9 от привода 6 и оставив их в ёмкости 1, закрытой крышкой 2, мы практически не увеличиваем стоимость процесса.
Примеры осуществления заявленного способа.
Пример 1. В ёмкости 1 содержится 1 тонна загрязненных радиоактивными солями и органикой содержащих тритий жидких радиоактивных отходов плотностью 1,08г/см3. Иммобилизуем эти отходы по заявленному способу с использованием кристаллогидрата фосфата натрия Na3PO4·12Н2О, который имеет общую молярную массу 380,12376 (г/моль) при молярной массе Na3PO4 -163,9404(г/моль). Количество обезвоженного кристаллогидрата
Figure 00000001
выбираем из расчета устойчивого состояния при обводнении по формуле (1). Объём отходов составит 0,926м3. Отношение молекулярных масс соли Na3PO4 и кристаллизационной воды 12Н2О - 0,755. Таким образом, требуемое количество обезвоженного кристаллогидрата Na3PO4 составит 699 кг. Для получения 699 кг обезвоженного кристаллогидрата Na3PO4 нам потребуется 699*380,12376/163,9404=1620 кг кристаллогидрата фосфата натрия Na3PO4·12Н2О. Рассчитанные 1620 кг кристаллогидрата фосфата натрия Na3PO4·12Н2О подвергаем обезвоживанию, получаем Na3PO4. Перемешивающие лопасти 9 встраиваем в верхнюю герметичную крышку 2, привод 6 через сальник 7 выводим на верхнюю сторону крышки 2, на которой монтируем съемный электродвигатель 5. Полученную соль засыпаем через воронку 3 в ёмкость 1 с отходами, после чего воронка 3 извлекается. Отверстие в крышке 2 закрывается клапаном 4. Смесь в емкости 1 постоянно перемешивается до образования нового кристаллогидрата (5-7 минут). Образование новых кристаллов приводит к увеличению сопротивления вращению лопастей и, когда это усилие вдвое превышает начальное, шток с лопастями 9 (после использования) отсоединяется от привода 6 и остается в емкости 1. Электродвигатель 5 снимается и устанавливается на следующую емкость. Через 12-30 часов (в основном), завершится процесс гидратации кристаллогидрата и выделения на его поверхности не связанных солей и органики. После этого персонал открывает крышку 2 и заполняет пространство от лежалого камня до верхней крышки прочной минеральной композицией, например, на основе магнезиального вяжущего (например, в соответствии с патентом РФ № 2214011).
Пример 2. В ёмкости 1 содержится 1 тонна загрязненных радиоактивными солями и органикой содержащих тритий жидких радиоактивных отходов плотностью 1,08г/см3. Иммобилизуем эти отходы по заявленному способу с использованием кристаллогидрата фосфата марганца Mn3(PO4)2·7Н2О. Молярная масса фосфата марганца составляет 354,76 г/моль, кристаллогидрата фосфата марганца Mn3(PO4)2·7Н2О - 480,76 г/моль. Количество обезвоженного кристаллогидрата
Figure 00000001
выбираем из расчета устойчивого состояния при обводнении по формуле (1). Объём отходов составит 0,926м3. Отношение молекулярных масс соли Mn3(PO4)2 и кристаллизационной воды 12Н2О -1,54. Таким образом, требуемое количество обезвоженного кристаллогидрата Mn3(PO4)2 составит 1,426 т. Для получения этого количества обезвоженного кристаллогидрата фосфата марганца нам потребуется 1.426*480,76/354,76 =1,93 т кристаллогидрата фосфата марганца Mn3(PO4)2·7Н2О. Рассчитанное количество кристаллогидрата фосфата марганца подвергаем обезвоживанию, получаем Mn3(PO4)2. Перемешивающие лопасти 9 встраиваем в крышку 2, привод 6 через сальник 7 выводим на верхнюю сторону крышки 2, на которой монтируем съемный электродвигатель 5. Полученная соль через воронку 3 засыпается в емкость 1 с отходами и постоянно перемешивается до образования нового кристаллогидрата (5-7 минут) после чего воронка 3 извлекается. Отверстие в крышке 2 закрывается клапаном 4. Образование новых кристаллов приводит к увеличению сопротивления вращению лопастей и, когда это усилие вдвое превышает начальное, шток с лопастями 9 (после использования) отсоединяется от привода 6 и остается в емкости 1. Электродвигатель 5 снимается и устанавливается на следующую емкость. Через 12-30 часов (в основном), завершится процесс гидратации кристаллогидрата и выделения на его поверхности не связанных солей и органики. После этого персонал открывает крышку 2 и заполняет пространство от лежалого камня до верхней крышки прочной минеральной композицией, например, на основе магнезиального вяжущего (например, в соответствии с патентом РФ № 2214011).
Литература
1. Эванс Э. Тритий и его соединения. М., «Атомиздат», 1970.
2. Ленский Л.А. Физика и химия трития. М., «Атомиздат», 1981.
3. Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. М., «Атомиздат», 1985.
4. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. М., «Атомиздат», 1987.
5. Леенсон И.А. 100 вопросов и ответов по химии. М., АСТ–Астрель, 2002.
6. Большой медицинский словарь, 2000, http://dic.academic.ru/
7. Васильев З.Г. Лабораторный практикум по общей химии Издание 2.
8. Мирмусаева. К.С. Технология производства ортофосфатов натрия на основе экстракционной фосфорной кислоты из фосфоритов Центральных Кызылкумов.- Автореферат диссертации на соискание звания кандидата технических наук. Ташкент, 2011.
9. Большая Энциклопедия Нефти Газа http://www.ngpedia.ru/id659260p1.html

Claims (11)

1. Способ иммобилизации находящихся в емкостях загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов, включающий их отверждение в солевой кристаллической матрице, которая затем иммобилизуется в прочной минеральной матрице, отличающийся тем, что отверждение отходов осуществляют с помощью гидратации слаборастворимого фосфатного кристаллогидрата путем засыпания предварительно обезвоженного слаборастворимого фосфатного кристаллогидрата в емкость с отходами и перемешивания для образования новых кристаллогидратов, при этом количество засыпаемого обезвоженного слаборастворимого фосфатного кристаллогидрата
Figure 00000009
выбирают из расчета устойчивого состояния при обводнении
Figure 00000010

где
Figure 00000011
– измеренная масса отходов в емкости;
Figure 00000012
– измеренная плотность отходов емкости;
Figure 00000013
- плотность воды;
Figure 00000014
– молярная масса соли кристаллогидрата;
18 – молярная масса молекулы воды;
N – количество молекул воды, устойчиво удерживаемое одной молекулой соли кристаллогидрата,
после кристаллизации, слёживания кристаллогидрата и выделения на его поверхности не связанных органических соединений, для образования прочной минеральной матрицы, пространство до верхней герметичной крышки емкости заполняют прочной минеральной композицией.
2. Способ иммобилизации находящихся в емкостях загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов по п. 1, отличающийся тем, что минеральная композиция представляет собой композицию на основе магнезиального вяжущего.
3. Устройство для иммобилизации загрязненных радиоактивными солями и органикой тритийсодержащих жидких радиоактивных отходов, содержащее емкость, верхнюю герметичную крышку, шток с перемешивающими лопастями, привод и электродвигатель, отличающееся тем, что привод встроен в верхнюю герметичную крышку емкости через сальник, электродвигатель выполнен съемным и подсоединен к приводу снаружи крышки, с внутренней стороны крышки к приводу через соединительную муфту подсоединен шток с перемешивающими лопастями, причем шток с лопастями отделяется от привода при превышении усилия на приводе в 2 раза по сравнению с начальным усилием.
RU2017119832A 2017-06-07 2017-06-07 Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления RU2652084C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2017119832A RU2652084C1 (ru) 2017-06-07 2017-06-07 Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления
PCT/RU2018/000301 WO2019078758A2 (ru) 2017-06-07 2018-05-11 Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017119832A RU2652084C1 (ru) 2017-06-07 2017-06-07 Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2652084C1 true RU2652084C1 (ru) 2018-04-25

Family

ID=62045829

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017119832A RU2652084C1 (ru) 2017-06-07 2017-06-07 Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления

Country Status (2)

Country Link
RU (1) RU2652084C1 (ru)
WO (1) WO2019078758A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727711C1 (ru) * 2019-12-25 2020-07-23 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ кондиционирования тритийсодержащей воды

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196169A (en) * 1974-06-27 1980-04-01 Nuclear Engineering Company, Inc. System for disposing of radioactive waste
US5550310A (en) * 1990-04-18 1996-08-27 Stir-Melter, Inc. Method for waste for vitrification
RU2380144C1 (ru) * 2008-05-06 2010-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки воды от трития каталитическим изотопным обменом между водой и водородом
RU2518501C2 (ru) * 2012-02-27 2014-06-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина" Способ иммобилизации жидких радиоактивных отходов
RU2592078C1 (ru) * 2015-07-20 2016-07-20 Общество с ограниченной ответственностью "ТВЭЛЛ" Способ иммобилизации жидких содержащих тритий радиоактивных отходов

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1447173A1 (ru) * 1987-04-13 1990-10-15 Предприятие П/Я Р-6710 Компаунд дл иммобилизации жидких тритийсодержащих радиоактивных отходов
RU2374706C1 (ru) * 2008-04-14 2009-11-27 Закрытое Акционерное Общество "Альянс-Гамма" Установка для цементирования жидких радиоактивных отходов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196169A (en) * 1974-06-27 1980-04-01 Nuclear Engineering Company, Inc. System for disposing of radioactive waste
US5550310A (en) * 1990-04-18 1996-08-27 Stir-Melter, Inc. Method for waste for vitrification
RU2380144C1 (ru) * 2008-05-06 2010-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки воды от трития каталитическим изотопным обменом между водой и водородом
RU2518501C2 (ru) * 2012-02-27 2014-06-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина" Способ иммобилизации жидких радиоактивных отходов
RU2592078C1 (ru) * 2015-07-20 2016-07-20 Общество с ограниченной ответственностью "ТВЭЛЛ" Способ иммобилизации жидких содержащих тритий радиоактивных отходов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727711C1 (ru) * 2019-12-25 2020-07-23 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ кондиционирования тритийсодержащей воды

Also Published As

Publication number Publication date
WO2019078758A2 (ru) 2019-04-25
WO2019078758A3 (ru) 2019-07-25

Similar Documents

Publication Publication Date Title
Koťátková et al. Concrete and cement composites used for radioactive waste deposition
Merceille et al. The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes
Osmanlioglu Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey
Mertz et al. Selective Removal of Cs+, Sr2+, and Ni2+ by K2 x Mg x Sn3–x S6 (x= 0.5–1)(KMS-2) relevant to nuclear waste remediation
RU2592078C1 (ru) Способ иммобилизации жидких содержащих тритий радиоактивных отходов
KR910005930B1 (ko) 붕산 슬러리의 캡슐화 방법
Kononenko et al. Immobilization of NPP evaporator bottom high salt-bearing liquid radioactive waste into struvite-based phosphate matrices
Mulyutin et al. Sorption of Cs, Sr, U, and Pu radionuclides on natural and modified clays
RU2652084C1 (ru) Способ иммобилизации жидких радиоактивных отходов, содержащих тритий и загрязненных радиоактивными солями и органикой, и устройство для его осуществления
Kimura et al. Vitrification processes of simulated cesium sorbing zeolite waste
RU2381580C1 (ru) Способ стабилизации жидких высокосолевых высокоактивных отходов
Grambow et al. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water
US4537710A (en) Method of storing radioactive wastes using modified tobermorite
Mishra et al. Ion-exchangers in radioactive waste management Part XIV: Removal behavior of hydrous titanium oxide and sodium titanate for Cs (I)
Vinokurov et al. Hydrolytic and thermal stability of magnesium potassium phosphate compound for immobilization of high level waste
RU2627690C1 (ru) Способ кондиционирования воды, содержащей тритий
RU2342721C1 (ru) Способ переработки жидких радиоактивных отходов атомных электрических станций (варианты)
RU2727711C1 (ru) Способ кондиционирования тритийсодержащей воды
Matsuzuru et al. Immobilization of cesium-137 in cement-waste composites by addition of mineral zeolites
Kononenko et al. Incorporation of bottoms from nuclear power plants into a matrix based on portland cement and silicic additives
Cho et al. Effect of particle size on cesium exchange kinetics by K-depleted phlogopite
Muratov Magnesium immobilization matrices for LRW of a complex chemical composition
Kim et al. Cesium Removal from Nonexpandable Illite Clay by Chloride Salt Treatment
Sayenko et al. Experimental study on radioactive waste immobilization in low-temperature magnesium-potassium phosphate ceramic matrix
RU2720463C1 (ru) Наномодифицированный магнезиальный цемент

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190608