RU2651724C2 - Способ извлечения сульфида меди из руды, содержащей сульфид железа - Google Patents

Способ извлечения сульфида меди из руды, содержащей сульфид железа Download PDF

Info

Publication number
RU2651724C2
RU2651724C2 RU2016105555A RU2016105555A RU2651724C2 RU 2651724 C2 RU2651724 C2 RU 2651724C2 RU 2016105555 A RU2016105555 A RU 2016105555A RU 2016105555 A RU2016105555 A RU 2016105555A RU 2651724 C2 RU2651724 C2 RU 2651724C2
Authority
RU
Russia
Prior art keywords
hydrogen peroxide
flotation
copper
added
ore
Prior art date
Application number
RU2016105555A
Other languages
English (en)
Other versions
RU2016105555A (ru
Inventor
Кристофер ГРИТ
Герхард АРНОЛЬД
Инго ХАМАНН
Алан ХИТЧИНЕР
Original Assignee
Эвоник Дегусса Гмбх
Маготто Интернасьональ С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх, Маготто Интернасьональ С.А. filed Critical Эвоник Дегусса Гмбх
Publication of RU2016105555A publication Critical patent/RU2016105555A/ru
Application granted granted Critical
Publication of RU2651724C2 publication Critical patent/RU2651724C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/025Froth-flotation processes adapted for the flotation of fines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0002Preliminary treatment
    • C22B15/0004Preliminary treatment without modification of the copper constituent
    • C22B15/0008Preliminary treatment without modification of the copper constituent by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/008Leaching or slurrying with non-acid solutions containing salts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/007Modifying reagents for adjusting pH or conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores

Abstract

Настоящее изобретение относится к способу извлечения содержащего сульфид меди концентрата путем пенной флотации из руды, содержащей сульфид железа. Способ извлечения содержащего сульфид меди концентрата из руды, содержащей сульфид железа, включает следующие стадии: a) мокрого размола руды с использованием мелющих тел с получением минеральной пульпы, b) кондиционирования минеральной пульпы с использованием соединения-собирателя с получением кондиционированной минеральной пульпы, и c) пенной флотации кондиционированной минеральной пульпы с получением флотационной пены и флотационных хвостов, отделения флотационной пены от флотационных хвостов для извлечения содержащего сульфид меди концентрата. На стадии а) используют мелющие тела, изготовленные из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас.%. К кондиционированной минеральной пульпе между стадиями b) и с) или во время проведения стадии с) добавляют пероксид водорода. Технический результат - увеличение содержания сульфидов меди в концентрате и степени извлечения сульфидов меди, низкий расход химикатов, необходимых для переработки. 9 з.п. ф-лы, 11 ил., 14 табл., 27 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу извлечения содержащего сульфид меди концентрата из руды, содержащей сульфид железа, который обеспечивает увеличение содержания сульфидов меди в концентрате и степени извлечения сульфидов меди, обеспечивает низкий расход химикатов, необходимых для переработки, и его можно легко приспособить к изменяющимся составам руды.
УРОВЕНЬ ТЕХНИКИ
Самым обычным способом извлечения содержащего сульфид меди концентрата из руды является пенная флотация. Руду подвергают мокрому размолу и получают минеральную пульпу, которую обычно кондиционируют с использованием соединения-собирателя, которое адсорбируется на поверхности содержащих сульфид меди минералов и делает поверхность содержащих сульфид меди минералов более гидрофобной. Затем через минеральную пульпу пропускают газ и получают пузырьки газа, гидрофобные частицы минеральной пульпы связываются с пузырьками главным образом на границе раздела фаз газ/жидкость и вместе с пузырьками газа перемещаются в пену, которая образуется сверху на минеральной пульпе. Пену удаляют с поверхности жидкости и извлекают содержащий сульфид меди концентрат.
Мокрый размол с получением минеральной пульпы обычно проводят с использованием мелющих тел, изготовленных из стали, чаще всего с использованием шаров, изготовленных из стали, в шаровой мельнице. Известно, что использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, может привести к увеличению степени извлечения сульфидов меди в ходе проведения флотации по сравнению полученной при использовании мелющих тел, изготовленных из углеродистой стали. Предполагают, что коррозия углеродистой стали и адсорбция образовавшихся вследствие такой коррозии содержащих железо частиц на поверхности сульфидов меди подавляет флотацию сульфидов меди и что использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, приводит к увеличению степени извлечения сульфидов меди в ходе проведения флотации вследствие лучшей коррозийной стойкости таких сплавов.
Большинство содержащих сульфид меди руд в дополнение к сульфидам меди содержат сульфиды железа, и задачей является обеспечение селективной флотации сульфидов меди, при которой сульфиды железа остаются во флотационных хвостах.
В US 5110455 раскрыт способ отделения сульфида меди от окружающего его сульфида железа, в котором используют кондиционирование минеральной пульпы с помощью окислителя, которым предпочтительно является пероксид водорода. В документе показано, что необходимо добавление окислителя в количестве, которое увеличивает окислительно-восстановительный потенциал минеральной пульпы на 20-500 мВ.
В публикации Uribe-Salas et al., Int. J. Miner. Process. 59 (2000) 69-83 описано улучшение селективности флотации халькопирита из руды, содержащей пиритную матрицу, с помощью увеличения окислительно-восстановительного потенциала минеральной пульпы на 0,1 В путем добавления пероксида водорода перед проведением флотации. Для обеспечения постоянного окислительно-восстановительного потенциала регулируют количество добавляемого пероксида водорода.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Авторы настоящего изобретения установили, что использование комбинации мокрого размола содержащей сульфид меди руды с помощью мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас. %, с добавлением пероксида водорода к кондиционированной минеральной пульпе до или во время проведения флотации обеспечивает синергетический эффект, т.е. увеличение содержания сульфидов меди в концентрате и степени извлечения сульфидов меди. Авторы настоящего изобретения также установили, что при использовании такой комбинации уменьшается количество пероксида водорода, необходимое для обеспечения оптимальной степени извлечения сульфидов меди из руды.
Поэтому настоящее изобретение относится к способу извлечения содержащего сульфид меди концентрата из руды, содержащей сульфид железа, этот способ включает стадии
a) мокрого размола руды с использованием мелющих тел с получением минеральной пульпы,
b) кондиционирования минеральной пульпы с использованием соединения-собирателя с получением кондиционированной минеральной пульпы, и
c) пенной флотации кондиционированной минеральной пульпы с получением флотационной пены и флотационных хвостов, отделения флотационной пены от флотационных хвостов для извлечения содержащего сульфид меди концентрата, и где на стадии а) используют мелющие тела, изготовленные из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас. %, и пероксид водорода добавляют к кондиционированной минеральной пульпе между стадиями b) и с) или во время проведения стадии с).
Авторы настоящего изобретения также установили, что оптимальное количество пероксида водорода, которое необходимо использовать в способе, можно определить на основании концентрации растворенного кислорода в минеральной пульпе после добавления пероксида водорода и что оптимальную степень извлечения сульфидов меди можно поддерживать путем доведения количества пероксида водорода до необходимого для поддержания минимальной концентрации растворенного кислорода. Это позволяет приспособить способ к изменениям в составе руды без проведения анализов руды или дополнительных экспериментов по оптимизации.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлена зависимость содержания растворенного кислорода (РК) от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 1.
На фиг. 2 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 2.
На фиг. 3 представлены зависимости суммарного содержания меди в концентрате (ось y) от суммарной степени извлечения меди (ось x) для примеров 3-6, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна.
На фиг. 4 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 7.
На фиг. 5 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 8.
На фиг. 6 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 9-13, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна.
На фиг. 7 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 14.
На фиг. 8 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 15-18, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна.
На фиг. 9 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в экспериментах, описанных в примере 19.
На фиг. 10 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 20-23, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна.
На фиг. 11 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 24-27.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Способом, предлагаемым в настоящем изобретении, извлекают содержащий сульфид меди концентрат из руды, содержащей сульфид железа, с использованием трех стадий способа.
На первой стадии способа, предлагаемого в настоящем изобретении, руду размалывают с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас. %, предпочтительно 10-25 мас. %, более предпочтительно 15-21 мас. %. Размол можно провести в любой мельнице, известной в данной области техники, в которой используют мелющие тела. Подходящими мельницами являются шаровые мельницы, в которых в качестве мелющих тел используют шары, или стержневые мельницы, в которых в качестве мелющих тел используют стержни, причем шаровые мельницы являются предпочтительными. Предпочтительно, если мельница содержит внутреннее покрытие из стойкого к истиранию материала. Наиболее предпочтительно, если мельница содержит внутреннее покрытие из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас. %.
Высокохромистые легированные литейные чугуны, подходящие для задач настоящего изобретения, известны из предшествующего уровня техники. Предпочтительно, если высокохромистым легированным литейным чугуном является высокохромистый легированный белый чугун, содержащий карбидную фазу. Более предпочтительно, если высокохромистым легированным литейным чугуном является мартенситный твердый раствор, не содержащий перлит и содержащий менее 5 мас. % аустенита, такой как высокохромистые легированные литейные чугуны, описанные в GB 1218981 и GB 1315203. Такой фазовый состав обеспечивает высокую стойкость мелющих тел к истиранию. Мелющие тела, подходящие для задач настоящего изобретения, продаются фирмой Magotteaux под торговым названием Duromax®.
Руду подвергают мокрому размолу и получают минеральную пульпу, т.е. водную суспензию размолотой руды. Руду можно загружать в мельницу вместе с водой. Альтернативно, руду и воду можно загружать по отдельности. Обычно размол проводят до получения частиц, обладающих средним размером, равным 50-200 мкм. Предпочтительно, если руду размалывают до получения частиц, обладающих так называемым размером, обеспечивающим высвобождение, т.е. до получения частиц, обладающих наибольшим средним размером, при котором практически весь сульфид меди находится на поверхности частиц и практически не остается сульфида меди, капсулированного внутри частиц.
На второй стадии способа, предлагаемого в настоящем изобретении, руду кондиционируют с использованием соединения-собирателя и получают кондиционированную минеральную пульпу. Соединения-собиратели являются соединениями, которые после добавления к минеральной пульпе адсорбируются на поверхности сульфидов меди и делают поверхность гидрофобной. Соединения-собиратели, подходящие для пенной флотации сульфидов меди, известны из предшествующего уровня техники. Предпочтительно, если в качестве собирателя используют алкилксантат щелочного металла, такой как амилксантат калия или этилксантат натрия. Кондиционирование обычно проводят путем добавления кондиционера к минеральной пульпе и перемешивания в течение периода времени, достаточного для обеспечения адсорбции кондиционера на поверхности минерала, обычно в течение менее 15 мин. Предпочтительно в течение от 0,5 до 15 мин. Альтернативно, на первой стадии размола добавляют собиратель и кондиционирование проводят путем выдерживания минеральной пульпы в течение соответствующего периода времени.
На стадии размола, на стадии кондиционирования или на обеих стадиях можно добавить дополнительные реагенты, такие как пенообразователи, регуляторы рН, подавители и их смеси. Пенообразователи являются соединениями, которые стабилизируют пену, образующуюся при пенной флотации. Подходящие пенообразователи имеются в продаже, например, выпускаются фирмой Huntsman под торговым названием Polyfroth®. Подавители являются соединениями, которые делают поверхность нежелательных минералов более гидрофильной. Из предшествующего уровня техники известно, что в качестве подавителей для сульфидов железа можно использовать полиамины, такие как диэтилентриамин или триэтилентетраамин. Регуляторы рН, такие как оксид кальция, гидроксид кальция или карбонат натрия, можно добавить для обеспечения необходимого значения рН минеральной пульпы, предпочтительно значения, находящегося в диапазоне от 7 до 11.
На третьей стадии способа, предлагаемого в настоящем изобретении, кондиционированную минеральную пульпу подвергают пенной флотации и получают флотационную пену и флотационные хвосты, при этом пероксид водорода добавляют к кондиционированной минеральной пульпе во время проведения пенной флотации или между второй стадией кондиционирования минеральной пульпы и стадией пенной флотации. Флотационную пену отделяют от флотационных хвостов и извлекают содержащий сульфид меди концентрат. Пенную флотацию можно провести с использованием оборудования и процедур для проведения пенной флотации медьсодержащих руд, известных специалисту в данной области техники.
Пенную флотацию можно провести, как одностадийную флотацию или как многостадийную флотацию, с использованием, например, стадий первичной флотации, поглощения и очистки. При проведении многостадийной пенной флотации предпочтительно, если пероксид водорода добавляют перед проведением первой стадии флотации или во время проведения первой стадии флотации.
Если пероксид водорода добавляют между стадией кондиционирования минеральной пульпы и стадией пенной флотации, то предпочтительно, если промежуток времени между добавлением пероксида водорода и проведением пенной флотации составляет менее 15 мин, более предпочтительно менее 3 мин и наиболее предпочтительно менее 1 мин. Ограничение периода времени между добавлением пероксида водорода и проведением пенной флотации приводит к увеличению и содержания сульфидов меди в концентрате, и степени извлечения сульфидов меди.
В предпочтительном варианте осуществления способа, предлагаемого в настоящем изобретении, пенную флотацию проводят в непрерывном режиме и пероксид водорода добавляют непрерывно в ходе проведения пенной флотации.
Предпочтительно, если пероксид водорода добавляют в виде водного раствора, содержащего от 0,5 до 5 мас. % пероксида водорода. Добавление такого разбавленного раствора пероксида водорода обеспечивает лучшие качество концентрата и степень извлечения, чем обеспечиваемые при использовании такого же количества более концентрированного раствора пероксида водорода. Поэтому имеющийся в продаже раствор пероксида водорода, содержащий от 30 до 70 мас. % пероксида водорода, предпочтительно разбавить до его добавления, проводимого в способе, предлагаемом в настоящем изобретении, и получить разбавленный раствор, содержащий от 0,5 до 5 мас. % пероксида водорода.
Количество пероксида водорода, добавленного к кондиционированной минеральной пульпе, может меняться в широких пределах в зависимости от состава руды. В способе, предлагаемом в настоящем изобретении, необходимы лишь небольшие количества пероксида водорода. Обычно необходимо менее 100 г пероксида водорода в пересчете на 1 т руды и предпочтительно использовать менее 50 г/т. Способ можно провести с использованием лишь 2 г пероксида водорода в пересчете на 1 т руды и предпочтительно использовать по меньшей мере 5 г/т.
Обычно существует оптимальное количество пероксида водорода в пересчете на 1 т руды, которое зависит от состава руды. Увеличение количества добавляемого пероксида водорода до оптимального количества приводит к увеличению содержания сульфидов меди в концентрате и степени извлечения сульфидов меди, тогда как увеличение количества добавляемого пероксида водорода до превышающего оптимальное может не привести к дополнительному улучшению, а обычно даже приводит к уменьшению содержания сульфидов меди в концентрате и степени извлечения сульфидов меди.
Целевое количество пероксида водорода, которое является близким к оптимальному количеству пероксида водорода, можно определить по приведенной ниже методике без проведения анализов руды, предназначенных для определения содержания сульфидов меди в концентрате и степени извлечения сульфидов меди. Проводят серии предварительных экспериментов, в которых к кондиционированной минеральной пульпе добавляют разные количества пероксида водорода, и после добавления пероксида водорода определяют концентрацию растворенного кислорода в минеральной пульпе. Затем строят зависимость концентрации растворенного кислорода от количества добавленного пероксида водорода и получают кривую, содержащую точку перегиба, и целевое количество пероксида водорода определяют, как количество пероксида водорода, соответствующее точке перегиба. Предпочтительно, если способ, предлагаемый в настоящем изобретении, проводят с использованием количества, в 0,5-10 раз превышающего целевое количество, более предпочтительно с использованием количества, в 0,5-2 раза превышающего целевое количество. Предпочтительно, если строят зависимость концентрации растворенного кислорода от логарифма количества добавленного пероксида водорода и получают кривую, обладающую практически постоянным наклоном с обеих сторон от точки перегиба.
Концентрацию растворенного кислорода в минеральной пульпе можно определить с помощью оборудования, известного из предшествующего уровня техники. Сенсорами, предпочтительными для определения концентрации растворенного кислорода, являются амперометрические сенсоры или оптические сенсоры, с помощью которых измеряют концентрацию кислорода с помощью электрохимического восстановления кислорода или вызванного кислородом тушения флуоресценции красителя. Предпочтительно, если сенсор содержит проницаемую для кислорода мембрану, расположенную в датчике кислорода, и эта мембрана обладает низкой проницаемостью для пероксида водорода.
В случае способа, предлагаемого в настоящем изобретении, в котором используют мелющие тела, изготовленные из высокохромистого легированного литейного чугуна, на зависимости концентрации растворенного кислорода от логарифма количества добавленного пероксида водорода обычно наблюдается минимум, соответствующий точке перегиба. Эту характеристику используют в предпочтительном варианте осуществления способа, предлагаемого в настоящем изобретении, в котором после добавления пероксида водорода определяют концентрацию растворенного кислорода в минеральной пульпе и количество добавленного пероксида водорода регулируют для поддержания минимальной концентрации растворенного кислорода. Такое регулирование можно с удобством проводить или периодически, или, если в составе руды произошли изменения, путем изменения количества добавленного пероксида водорода и с измерением концентрации растворенного кислорода после добавления пероксида водорода, продолжая проведение таких изменений таким образом, чтобы обеспечивалась более низкая концентрация растворенного кислорода, до тех пор, пока не обеспечена минимальная концентрация растворенного кислорода.
Способ, предлагаемый в настоящем изобретении, обеспечивает неожиданное увеличение содержания сульфидов меди в концентрате и степени извлечения сульфидов меди в полученном содержащем сульфид меди концентрате, которое является более значительным, чем увеличение, которое может ожидать специалист в данной области техники в связи с известным отдельным эффектом, наблюдающимся при использовании мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, вместо мелющих тел, изготовленных из кованой углеродистой стали, и эффектом, наблюдающимся при добавлении пероксида водорода к минеральной пульпе, полученной путем мокрого размола с использованием мелющих тел, изготовленных из кованой углеродистой стали. Кроме того, использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, для мокрого размола руды приводит к существенному уменьшению количества пероксида водорода, необходимого для обеспечения оптимальной степени извлечения сульфидов меди из руды, и, таким образом, приводит к уменьшению полного количества химикатов, необходимых для извлечения сульфидов меди, проводимого путем пенной флотации.
В дополнение к обеспечению увеличения содержания сульфидов меди в концентрате и степени извлечения сульфидов меди способ, предлагаемый в настоящем изобретении, также может обеспечить увеличение степени извлечения золота из руды и уменьшить содержание сульфидов железа и содержащих мышьяк минералов в содержащем сульфид меди концентрате.
Авторы настоящего изобретения также установили, что значение окислительно-восстановительного потенциала минеральной пульпы, которое использовали в предшествующем уровне техники для регулирования добавления окислителя в способах пенной флотации, невозможно использовать для регулирования или корректирования добавления пероксида водорода в способе, предлагаемом в настоящем изобретении. Кроме того авторы установили, что концентрация растворенного кислорода, наблюдающаяся после добавления пероксида водорода, является параметром, подходящим для регулирования количества пероксида водорода, использующегося в способе, предлагаемом в настоящем изобретении, и этот параметр не идентифицирован в предшествующем уровне техники.
Приведенные ниже примеры иллюстрируют настоящее изобретение, но они не предназначены для ограничения объема настоящего изобретения.
ПРИМЕРЫ
Во всех экспериментах по флотации руды размалывали до образования частиц размером P80, равным 200 мкм, с помощью лабораторной мельницы Magotteaux® с использованием в качестве мелющих тел стержней размером 16×1 дюймов. Полученную минеральную пульпу переносили в лабораторную флотационную камеру и перемешивали в течение 2 мин для гомогенизации. В качестве коллектора добавляли этилксантат натрия в количестве, составляющем 21 г в пересчете на 1 т руды, затем добавляли 5 г/т пенообразователя POLYFROTH® Н27, выпускающегося фирмой Huntsman. Полученную минеральную пульпу кондиционировали в течение 1 мин, затем начинали флотацию путем подачи воздуха. Во время проведения флотации собирали четыре порции концентрата через промежутки времени, приведенные в примерах. Каждый концентрат собирали путем проводимого вручную сбора пены с поверхности пульпы каждые 10 с. Концентраты взвешивали и анализировали и из полученных результатов рассчитывали суммарные содержания и степени извлечения. Строили зависимости содержаний от степени извлечения и из этих зависимостей получали представленные в приведенных ниже таблицах значения содержаний при конкретной степени извлечения меди и степени извлечения при конкретном содержании меди.
Примеры 1-6
Флотацию проводили с использованием осадочной медь/золотосодержащей руды; результаты анализа головной пробы руды являлись следующими: 1,74% Cu, 9,95% Fe, 3,27 част./млн Au, 168 част./млн Bi и 3,21% S.
В примерах 1 и 2 предварительные эксперименты проводили с использованием разных количеств пероксида водорода, которые добавляли непосредственно перед началом флотации, и окислительно-восстановительный потенциал (Eh) и содержание растворенного кислорода (РК) определяли сразу после начала флотации. В примере 1 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали. В примере 2 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 15 мас. %. Результаты обобщены в таблице 1. В случае минеральной пульпы, размолотой с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, при добавлении пероксида водорода не наблюдается существенного изменения окислительно-восстановительного потенциала.
На фиг. 1 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в примере 1. На кривой, представленной на фиг. 1, наблюдается точка перегиба при количестве пероксида водорода, равном примерно 66 г/т, при этом содержание РК немного уменьшается при добавлении меньших количеств и содержание РК резко увеличивается при добавлении более значительных количеств. На фиг. 2 представлена соответствующая кривая для примера 2, содержащая точку перегиба примерно при 34 г/т, при этом содержание РК уменьшается при добавлении меньших количеств и содержание РК увеличивается при добавлении более значительных количеств.
Figure 00000001
В примерах 3-6, флотацию проводили с использованием концентратов, собранных через 0,5, 2, 5 и 10 мин. 1 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали. В примерах 3 и 4 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали, и в примерах 5 и 6 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 15 мас. %. В примерах 3 и 5 не добавляли пероксид водорода. В примере 4 непосредственно перед началом флотации добавляли 1 мас. % водный раствор пероксида водорода в количестве, составляющем 75 г/(т руды). В примере 6 непосредственно перед началом флотации добавляли такой же водный раствор пероксида водорода в количестве, составляющем 30 г/(т руды).
На фиг. 3 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 3-6, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна. В таблицах 2 и 3 проведено сопоставление этих результатов при степени извлечения меди, составляющей 90%, и при содержании меди в концентрате, составляющем 18%.
Figure 00000002
Figure 00000003
Результаты, представленные в таблице 2, свидетельствуют о синергетическом увеличении содержания меди в концентрате и повышении селективности по отношению к сульфидам меди по сравнению с селективностью по отношению к сульфидам железа для способа, предлагаемого в настоящем изобретении, по сравнению со случаем использования только пероксида водорода или использования только высокохромистых мелющих тел. Результаты, представленные в таблице 3, свидетельствуют об аналогичном синергетическом увеличении степени извлечения меди и золота.
Примеры 7-13
Флотацию проводили с использованием содержащей сульфид осадочной руды вулканического происхождения; результаты анализа головной пробы руды являлись следующими: 2,63% Cu, 19,2% Fe и 15,9% S.
В примерах 7 и 8 предварительные эксперименты проводили с использованием разных количеств пероксида водорода, которые добавляли непосредственно перед началом флотации, и окислительно-восстановительный потенциал (Eh) и содержание растворенного кислорода (РК) определяли сразу после начала флотации. В примере 7 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали. В примере 8 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 21 мас. %. Результаты обобщены в таблице 4. В случае минеральной пульпы, размолотой с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, при добавлении пероксида водорода не наблюдается существенного изменения окислительно-восстановительного потенциала.
На фиг. 4 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в примере 7. На кривой, представленной на фиг. 4, наблюдается точка перегиба при количестве пероксида водорода, равном примерно 190 г/т, при этом не происходит существенного изменения содержания РК при добавлении меньших количеств и содержание РК резко увеличивается при добавлении более значительных количеств. На фиг. 5 представлена соответствующая кривая для примера 2, содержащая точку перегиба примерно при 16 г/т, при этом содержание РК уменьшается при добавлении меньших количеств и содержание РК увеличивается при добавлении более значительных количеств.
Figure 00000004
В примерах 9-13, флотацию проводили с использованием концентратов, собранных через 0,5, 2, 4 и 7 мин. В примерах 9-11 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали, и в примерах 12 и 13 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 21 мас. %. В примерах 9 и 12 не добавляли пероксид водорода. В примерах 10 и 11 непосредственно перед началом флотации к кондиционированной минеральной пульпе добавляли 1 мас. % водный раствор пероксида водорода в количествах, составляющих 15 г/(т руды) и 240 г/(т руды).
На фиг. 6 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 9-13, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна. В таблицах 5 и 6 проведено сопоставление этих результатов при степени извлечения меди, составляющей 90%, и при содержании меди в концентрате, составляющем 18%.
Результаты, представленные в таблицах 5 и 6, показывают, что в способе, предлагаемом в настоящем изобретении, для обеспечения высокой степени извлечения меди и содержания меди в концентрате необходимо меньшее количество пероксида водорода, чем при флотации руды, размолотой с использованием кованой углеродистой стали.
Figure 00000005
Figure 00000006
Figure 00000007
Примеры 14-18
Флотацию проводили с использованием порфировой медь/золотосодержащей руды; результаты анализа головной пробы руды являлись следующими: 0,43% Cu, 5,4% Fe, 0,18 част./млн Au и 5,0% S.
В примере 14 предварительный эксперимент проводили с использованием руды, размолотой с помощью мелющих тел, изготовленных из кованой углеродистой стали, разных количеств пероксида водорода, которые добавляли непосредственно перед началом флотации, и окислительно-восстановительный потенциал (Eh) и содержание растворенного кислорода (РК) определяли сразу после начала флотации. Результаты обобщены в таблице 7.
Figure 00000008
На фиг. 7 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в примере 14. На кривой, представленной на фиг. 7, наблюдается точка перегиба при количестве пероксида водорода, равном примерно 95 г/т, при этом не происходит существенного изменения содержания РК при добавлении меньших количеств и содержание РК резко увеличивается при добавлении более значительных количеств.
В примерах 15-18, флотацию проводили с использованием концентратов, собранных через 0,5, 2, 4 и 9 мин. В примерах 15 и 16 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали, и в примерах 17 и 18 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 18 мас. %. В примерах 15 и 17 не добавляли пероксид водорода. В примерах 16 и 18 непосредственно перед началом флотации добавляли 1 мас. % водный раствор пероксида водорода в количестве, составляющем 120 г/(т руды).
На фиг. 8 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 15-18, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна. В таблицах 8 и 9 проведено сопоставление этих результатов при степени извлечения меди, составляющей 70%, и при содержании меди в концентрате, составляющем 9%.
Figure 00000009
Figure 00000010
Результаты, представленные в таблице 8, свидетельствуют о синергетическом увеличении содержания меди в концентрате и повышении селективности по отношению к сульфидам меди по сравнению с селективностью по отношению к сульфидам железа для способа, предлагаемого в настоящем изобретении, по сравнению со случаем использования только пероксида водорода или использования только высоко хромистых мелющих тел. Результаты, представленные в таблице 3, свидетельствуют о дополнительном увеличении степени извлечения меди и золота.
Примеры 19-23
Флотацию проводили с использованием содержащей в качестве основы оксид железа медь/золотосодержащей руды; результаты анализа головной пробы руды являлись следующими: 0,83% Cu, 21,7% Fe, 0,39 част./млн Au, 568 част./млн As и 4,0% S.
В примере 19 предварительный эксперимент проводили с использованием руды, размолотой с помощью мелющих тел, изготовленных из кованой углеродистой стали, разных количеств пероксида водорода, которые добавляли непосредственно перед началом флотации, и окислительно-восстановительный потенциал (Eh) и содержание растворенного кислорода (РК) определяли сразу после начала флотации. Результаты обобщены в таблице 10.
Figure 00000011
На фиг. 9 представлена зависимость содержания РК от логарифма количества пероксида водорода, добавленного в примере 19. На кривой, представленной на фиг. 9, наблюдается точка перегиба при количестве пероксида водорода, равном примерно 64 г/т, при этом не происходит существенного изменения содержания РК при добавлении меньших количеств и содержание РК резко увеличивается при добавлении более значительных количеств.
В примерах 20-23, флотацию проводили с использованием концентратов, собранных через 0,5, 2, 4 и 8 мин. В примерах 20 и 21 руду размалывали с использованием мелющих тел, изготовленных из кованой углеродистой стали, и в примерах 22 и 23 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 18 мас. %. В примерах 20 и 22 не добавляли пероксид водорода. В примерах 21 и 23 непосредственно перед началом флотации добавляли 1 мас. % водный раствор пероксида водорода в количестве, составляющем 50 г/(т руды).
На фиг. 10 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 20-23, где Cr- означает использование мелющих тел, изготовленных из кованой углеродистой стали, и Cr+ означает использование мелющих тел, изготовленных из высокохромистого легированного литейного чугуна. В таблицах 11 и 12 проведено сопоставление этих результатов при степени извлечения меди, составляющей 80%, и при содержании меди в концентрате, составляющем 13%.
Figure 00000012
Figure 00000013
Результаты, представленные в таблице 11, свидетельствуют о синергетическом увеличении содержания меди в концентрате и повышении селективности по отношению к сульфидам меди по сравнению с селективностью по отношению к сульфидам железа и содержащим мышьяк минералам для способа, предлагаемого в настоящем изобретении, по сравнению со случаем использования только пероксида водорода или использования только высокохромистых мелющих тел. Результаты, представленные в таблице 12, свидетельствуют об аналогичном синергетическом увеличении степени извлечения меди и золота.
Примеры 24-27
Флотацию проводили с использованием содержащей сульфид осадочной руды вулканического происхождения, эта руда являлась сходной с рудой, использовавшейся в примерах 7-13; результаты анализа головной пробы руды 2,65% Cu, 19,6% Fe и 16,1% S.
В примерах 24-27 руду размалывали с использованием мелющих тел, изготовленных из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим 21 мас. %. Флотацию проводили с использованием концентратов, собранных через 0,5, 2, 4 и 7 мин. В примере 24 не добавляли пероксид водорода. В примерах 25-23 непосредственно перед началом флотации к кондиционированной минеральной пульпе добавляли 1 мас. % водный раствор пероксида водорода в количестве, составляющем 15 г/(т руды). В примере 25 флотацию начинали сразу после добавления пероксида водорода, тогда как в примерах 26 и 27 руду кондиционировали с использованием пероксида водорода, начиная флотацию через 15 и 60 мин после добавления пероксида водорода.
На фиг. 11 представлены зависимости суммарного содержания меди в концентрате от суммарной степени извлечения меди для примеров 24-27. В таблицах 13 и 14 проведено сопоставление этих результатов при степени извлечения меди, составляющей 94%, и при содержании меди в концентрате, составляющем 20%.
Figure 00000014
Figure 00000015
Результаты, представленные в таблицах 13 и 14, показывают, что способ, предлагаемый в настоящем изобретении, обеспечивает наилучшие результаты, если не происходит задержки или происходит лишь небольшая задержка между добавлением пероксида водорода и проведением стадии флотации. Однако, даже если руду кондиционируют с использованием пероксида водорода, способ, предлагаемый в настоящем изобретении, все же обеспечивает улучшение по сравнению со способом, в котором используют мелющие тела, изготовленные из высокохромистого легированного литейного чугуна, и не используют пероксид водорода.

Claims (13)

1. Способ извлечения содержащего сульфид меди концентрата из руды, содержащей сульфид железа, включающий стадии
a) мокрого размола руды с использованием мелющих тел с получением минеральной пульпы,
b) кондиционирования минеральной пульпы с использованием соединения-собирателя с получением кондиционированной минеральной пульпы, и
c) пенной флотации кондиционированной минеральной пульпы с получением флотационной пены и флотационных хвостов, отделения флотационной пены от флотационных хвостов для извлечения содержащего сульфид меди концентрата, где на стадии а) используют мелющие тела, изготовленные из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас.%, и пероксид водорода добавляют к кондиционированной минеральной пульпе между стадиями b) и с) или во время проведения стадии с).
2. Способ по п. 1, в котором мелющими телами являются шары из высокохромистого легированного литейного чугуна, обладающего содержанием хрома, составляющим от 10 до 35 мас.%.
3. Способ по п. 1 или 2, в котором высокохромистым легированным литейным чугуном является высокохромистый легированный белый чугун, содержащий карбидную фазу.
4. Способ по п. 1 или 2, в котором высокохромистым легированным литейным чугуном является мартенситный твердый раствор, не содержащий перлит и содержащий менее 5 мас.% аустенита.
5. Способ по п. 1 или 2, в котором пероксид водорода добавляют менее чем за 15 мин до того, как загружают газ для пенной флотации.
6. Способ по п. 1 или 2, в котором пенную флотацию проводят в непрерывном режиме и пероксид водорода добавляют непрерывно в ходе проведения пенной флотации.
7. Способ по п. 1 или 2, в котором пероксид водорода добавляют в виде водного раствора, содержащего от 0,5 до 5 мас.% пероксида водорода.
8. Способ по п. 1 или 2, в котором в качестве собирателя используют алкилксантат щелочного металла.
9. Способ по п. 1 или 2, в котором пероксид водорода добавляют в количестве, в 0,5-10 раз превышающем целевое количество, целевое количество определяют путем проведения серий предварительных экспериментов, в которых меняют количество добавленного пероксида водорода, после добавления пероксида водорода определяют концентрацию растворенного кислорода в минеральной пульпе, строят зависимость концентрации растворенного кислорода от количества добавленного пероксида водорода и получают кривую, содержащую точку перегиба, и целевое количество пероксида водорода определяют, как количество пероксида водорода, соответствующее точке перегиба.
10. Способ по п. 1 или 2, в котором после добавления пероксида водорода определяют концентрацию растворенного кислорода в минеральной пульпе и количество добавленного пероксида водорода регулируют для поддержания минимальной концентрации растворенного кислорода.
RU2016105555A 2013-07-19 2014-07-11 Способ извлечения сульфида меди из руды, содержащей сульфид железа RU2651724C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361856375P 2013-07-19 2013-07-19
US61/856,375 2013-07-19
PCT/EP2014/064945 WO2015007649A1 (en) 2013-07-19 2014-07-11 Method for recovering a copper sulfide concentrate from an ore containing an iron sulfide

Publications (2)

Publication Number Publication Date
RU2016105555A RU2016105555A (ru) 2017-08-24
RU2651724C2 true RU2651724C2 (ru) 2018-04-23

Family

ID=51205375

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105555A RU2651724C2 (ru) 2013-07-19 2014-07-11 Способ извлечения сульфида меди из руды, содержащей сульфид железа

Country Status (19)

Country Link
US (1) US9839917B2 (ru)
EP (1) EP3021971B1 (ru)
CN (1) CN105745023B (ru)
AP (1) AP2016009050A0 (ru)
AR (1) AR096963A1 (ru)
AU (1) AU2014292216B2 (ru)
BR (1) BR112016000675B1 (ru)
CA (1) CA2918638C (ru)
CL (1) CL2016000114A1 (ru)
CY (1) CY1119821T1 (ru)
ES (1) ES2650547T3 (ru)
HU (1) HUE037693T2 (ru)
MX (1) MX360441B (ru)
NO (1) NO3044404T3 (ru)
PE (1) PE20160797A1 (ru)
PL (1) PL3021971T3 (ru)
PT (1) PT3021971T (ru)
RU (1) RU2651724C2 (ru)
WO (1) WO2015007649A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110420A1 (en) 2012-01-27 2013-08-01 Evonik Degussa Gmbh Enrichment of metal sulfide ores by oxidant assisted froth flotation
CN112985946B (zh) * 2021-03-10 2022-03-08 南京海关工业产品检测中心 一种判断含斑铜矿的铜精矿氧化程度的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137649A (en) * 1962-02-09 1964-06-16 Shell Oil Co Separation of sulfide ores
GB1218981A (en) * 1967-01-13 1971-01-13 Magotteaux Fond Grinding members and steels therefor
JPS56141856A (en) * 1980-04-03 1981-11-05 Dowa Mining Co Ltd Flotation method of zinc ore
GB2182587A (en) * 1985-11-05 1987-05-20 British Petroleum Co Plc Froth flotation of nickel sulphide minerals
US5110455A (en) * 1990-12-13 1992-05-05 Cyprus Minerals Company Method for achieving enhanced copper flotation concentrate grade by oxidation and flotation
SU1740450A1 (ru) * 1989-11-20 1992-06-15 Государственный Всесоюзный Научно-Исследовательский Институт Цементной Промышленности Способ изготовлени изделий из высокохромистого чугуна
RU2139147C1 (ru) * 1995-06-07 1999-10-10 Сайтек Текнолоджи Корп. Способ обогащения промышленно значимых сульфидных минералов
US6390303B1 (en) * 1998-07-24 2002-05-21 Boc Gases Austrailia Ltd. Method for optimizing flotation recovery
RU2318607C2 (ru) * 2002-10-15 2008-03-10 Сайтек Текнолоджи Корп. Способ обогащения сульфидных минералов

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB340598A (en) 1929-10-02 1931-01-02 Henry Lavers Improvements in or relating to the froth flotation concentration of minerals
US1893517A (en) 1930-08-19 1933-01-10 Gaudin Antoine Marc Separation of minerals by flotation
US2310240A (en) 1939-10-02 1943-02-09 Walter E Keck Flotation of ores
US2559104A (en) 1948-03-23 1951-07-03 Phelps Dodge Corp Flotation recovery of molybdenite
US3426896A (en) 1965-08-20 1969-02-11 Armour Ind Chem Co Flotation of bulk concentrates of molybdenum and copper sulfide minerals and separation thereof
US3539002A (en) 1967-12-11 1970-11-10 Kennecott Copper Corp Process for separating molybdenite from copper sulfide concentrates
US3811569A (en) 1971-06-07 1974-05-21 Fmc Corp Flotation recovery of molybdenite
US4098686A (en) 1976-03-19 1978-07-04 Vojislav Petrovich Froth flotation method for recovering of minerals
US4174274A (en) 1978-01-12 1979-11-13 Uop Inc. Separation of rutile from ilmenite
US4466886A (en) 1982-09-28 1984-08-21 Vojislav Petrovich Froth flotation method for recovering minerals
US4618461A (en) 1983-07-25 1986-10-21 The Dow Chemical Company O,O'-, O,S'- or S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamothioates) and S,S'-dithiodialkylene-bis(mono- or dihydrocarbyl carbamodithioates) and method of preparation thereof
US4549959A (en) 1984-10-01 1985-10-29 Atlantic Richfield Company Process for separating molybdenite from a molybdenite-containing copper sulfide concentrate
US4600505A (en) 1985-03-06 1986-07-15 Tennessee Valley Authority Single float step phosphate ore beneficiation
US4588498A (en) 1985-03-06 1986-05-13 Tennessee Valley Authority Single float step phosphate ore beneficiation
US4702824A (en) 1985-07-08 1987-10-27 Khodabandeh Abadi Ore and coal beneficiation method
WO1987000088A1 (en) 1985-07-09 1987-01-15 Phlotec Services, Inc. Process for the selective separation of a copper molybdenum ore
GB2195271B (en) 1986-09-23 1990-04-25 British Nuclear Fuels Plc Separation of matter by floatation
US4902765A (en) 1988-07-19 1990-02-20 American Cyanamid Company Allyl thiourea polymers
US5013359A (en) 1988-10-31 1991-05-07 Hydrochem Developments Ltd. Process for recovering gold from refractory sulfidic ores
US5037533A (en) 1990-02-15 1991-08-06 The Lubrizol Corporation Ore flotation process and use of phosphorus containing sulfo compounds
US5295585A (en) 1990-12-13 1994-03-22 Cyprus Mineral Company Method for achieving enhanced copper-containing mineral concentrate grade by oxidation and flotation
US5171428A (en) 1991-11-27 1992-12-15 Beattie Morris J V Flotation separation of arsenopyrite from pyrite
CA2108071C (en) 1992-10-23 1999-02-16 Hector C. Fernandez An activator-frother composition
CA2082831C (en) 1992-11-13 1996-05-28 Sadan Kelebek Selective flotation process for separation of sulphide minerals
RU2067030C1 (ru) 1994-04-18 1996-09-27 Институт химии и химико-металлургических процессов СО РАН Способ флотации сульфидных медно-никелевых руд
US5807479A (en) 1994-07-15 1998-09-15 Coproco Development Corporation Process for recovering copper from copper-containing material
US5837210A (en) 1995-04-18 1998-11-17 Newmont Gold Company Method for processing gold-bearing sulfide ores involving preparation of a sulfide concentrate
BR9505931A (pt) 1995-12-15 1997-12-23 De Mello Monte Marisa Bezerra Flotação de ouro com depressão de sulfetos
US6210648B1 (en) * 1996-10-23 2001-04-03 Newmont Mining Corporation Method for processing refractory auriferous sulfide ores involving preparation of a sulfide concentrate
US20040222164A1 (en) 1997-02-27 2004-11-11 Lawrence Conaway Method and apparatus for using peroxide and alkali to recover bitumen from tar sands
AUPP373498A0 (en) 1998-05-27 1998-06-18 Boc Gases Australia Limited Flotation separation of valuable minerals
US6679383B2 (en) 2001-11-21 2004-01-20 Newmont Usa Limited Flotation of platinum group metal ore materials
US7152741B2 (en) 2002-02-12 2006-12-26 Air Liquide Canada Use of ozone to increase the flotation efficiency of sulfide minerals
US7004326B1 (en) 2004-10-07 2006-02-28 Inco Limited Arsenide depression in flotation of multi-sulfide minerals
CN101176862A (zh) * 2007-11-27 2008-05-14 中南大学 一种用于复杂硫化矿中硫铁矿的高效组合抑制剂及其应用方法
AU2010236082A1 (en) 2009-10-29 2011-05-19 Bhp Billiton Olympic Dam Corporation Pty Ltd Flotation Process
PL2506979T3 (pl) 2009-12-04 2019-05-31 Barrick Gold Corp Rozdzielanie minerałów miedzi z pirytu z użyciem obróbki powietrzem i pirosiarczynem
RU2432999C2 (ru) 2009-12-18 2011-11-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ флотационного разделения коллективного свинцово-медного концентрата
RU2426598C1 (ru) 2010-03-25 2011-08-20 Государственное образовательное учреждение высшего профессионального образования Читинский государственный университет (ЧитГУ) Способ флотационного обогащения руд, содержащих сульфидные минералы и золото
WO2013110420A1 (en) 2012-01-27 2013-08-01 Evonik Degussa Gmbh Enrichment of metal sulfide ores by oxidant assisted froth flotation
CN103191833B (zh) * 2013-04-23 2013-12-11 昆明理工大学 混合铜矿浮选中赤铜矿硫化过程强化的方法
ES2686606T3 (es) 2013-07-19 2018-10-18 Evonik Degussa Gmbh Método de recuperación de un sulfuro de cobre de una mena que contiene un sulfuro de hierro
AP2016009049A0 (en) 2013-07-19 2016-02-29 Evonik Degussa Gmbh Method for recovering a copper sulfide from an ore containing an iron sulfide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137649A (en) * 1962-02-09 1964-06-16 Shell Oil Co Separation of sulfide ores
GB1218981A (en) * 1967-01-13 1971-01-13 Magotteaux Fond Grinding members and steels therefor
JPS56141856A (en) * 1980-04-03 1981-11-05 Dowa Mining Co Ltd Flotation method of zinc ore
GB2182587A (en) * 1985-11-05 1987-05-20 British Petroleum Co Plc Froth flotation of nickel sulphide minerals
SU1740450A1 (ru) * 1989-11-20 1992-06-15 Государственный Всесоюзный Научно-Исследовательский Институт Цементной Промышленности Способ изготовлени изделий из высокохромистого чугуна
US5110455A (en) * 1990-12-13 1992-05-05 Cyprus Minerals Company Method for achieving enhanced copper flotation concentrate grade by oxidation and flotation
RU2139147C1 (ru) * 1995-06-07 1999-10-10 Сайтек Текнолоджи Корп. Способ обогащения промышленно значимых сульфидных минералов
US6390303B1 (en) * 1998-07-24 2002-05-21 Boc Gases Austrailia Ltd. Method for optimizing flotation recovery
RU2318607C2 (ru) * 2002-10-15 2008-03-10 Сайтек Текнолоджи Корп. Способ обогащения сульфидных минералов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПОЛЬКИН С.И. и др., "Обогащение руд цветных металлов", Москва, "Недра", 1983, с. 177. *

Also Published As

Publication number Publication date
CA2918638C (en) 2018-03-13
PL3021971T3 (pl) 2018-05-30
EP3021971A1 (en) 2016-05-25
NO3044404T3 (ru) 2018-03-17
AP2016009050A0 (en) 2016-02-29
RU2016105555A (ru) 2017-08-24
CN105745023B (zh) 2018-07-27
ES2650547T3 (es) 2018-01-19
HUE037693T2 (hu) 2018-09-28
CA2918638A1 (en) 2015-01-22
PT3021971T (pt) 2017-12-12
AU2014292216A1 (en) 2016-02-11
MX360441B (es) 2018-10-31
CY1119821T1 (el) 2018-06-27
CL2016000114A1 (es) 2016-06-24
CN105745023A (zh) 2016-07-06
US20160144381A1 (en) 2016-05-26
AU2014292216B2 (en) 2016-07-07
MX2016000512A (es) 2016-06-21
EP3021971B1 (en) 2017-09-13
WO2015007649A1 (en) 2015-01-22
PE20160797A1 (es) 2016-09-17
US9839917B2 (en) 2017-12-12
AR096963A1 (es) 2016-02-10
BR112016000675B1 (pt) 2020-12-01

Similar Documents

Publication Publication Date Title
RU2631743C2 (ru) Обогащение сульфидных руд металлов с помощью пенной флотации с использованием окислителя
RU2655865C2 (ru) Способ извлечения сульфида меди из руды, содержащей сульфид железа
RU2655864C2 (ru) Способ извлечения сульфида меди из руды, содержащей сульфид железа
AU2011211739B2 (en) Method for separating arsenic mineral from copper material with high arsenic content
RU2651724C2 (ru) Способ извлечения сульфида меди из руды, содержащей сульфид железа
JP2018162509A (ja) モリブデン精鉱の分離方法
JP5774374B2 (ja) 砒素鉱物を含む含銅物からの砒素鉱物の分離方法
CN109082537A (zh) 一种焙烧金精矿综合利用方法
OA17669A (en) Method for recovering a copper sulfide concentrate from an ore containing an iron sulfide.
AU2016338894B2 (en) Differential flotation of sulfide ores for recovering refractory gold
OA17668A (en) Method for recovering a copper sulfide from an ore containing an iron sulfide.
OA17667A (en) Method for recovering a copper sulfide from an ore containing an iron sulfide.
Filip et al. IMPROVEMENT OF MINERAL FLOTATION RESULTS BY MODIFYING THE IONIC COMPOSITION OF THE LIQUID PHASE
Lima et al. Behavior of different iron ore types from the deposits of Fabrica Nova and Alegria with respect to desliming and flotation.

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner