RU2651335C1 - Магнитный редуктор - Google Patents

Магнитный редуктор Download PDF

Info

Publication number
RU2651335C1
RU2651335C1 RU2017109164A RU2017109164A RU2651335C1 RU 2651335 C1 RU2651335 C1 RU 2651335C1 RU 2017109164 A RU2017109164 A RU 2017109164A RU 2017109164 A RU2017109164 A RU 2017109164A RU 2651335 C1 RU2651335 C1 RU 2651335C1
Authority
RU
Russia
Prior art keywords
disk
magnetic
permanent magnets
ferromagnetic
ferromagnetic elements
Prior art date
Application number
RU2017109164A
Other languages
English (en)
Inventor
Андрей Александрович Ачитаев
Александр Георгиевич Приступ
Original Assignee
Общество С Ограниченной Ответственностью "Научно-Производственное Предприятие Электромеханические Технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Научно-Производственное Предприятие Электромеханические Технологии" filed Critical Общество С Ограниченной Ответственностью "Научно-Производственное Предприятие Электромеханические Технологии"
Priority to RU2017109164A priority Critical patent/RU2651335C1/ru
Application granted granted Critical
Publication of RU2651335C1 publication Critical patent/RU2651335C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts

Abstract

Изобретение относится к области машиностроения, а более конкретно к редукторам. Магнитный редуктор содержит расположенные соосно в корпусе быстроходный входной и тихоходный выходной валы. На быстроходном входном валу неподвижно закреплен первый диск, дополнительный диск, ферромагнитные элементы и дополнительные, расположенные по окружности, ферромагнитные элементы, неподвижно прикрепленные к корпусу. Последним расположен второй диск. Первый диск несет аксиально расположенные постоянные магниты. Напротив него расположены по окружности ферромагнитные элементы. Дополнительный диск расположен с другой стороны этих элементов. Дополнительный диск несет постоянные магниты и установлен с возможностью свободного вращения на подшипниковой опоре в корпусе. Второй диск несет постоянные магниты и жестко связан с тихоходным выходным валом. 3 ил.

Description

Изобретение относится к машиностроению, а конкретно к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках.
Известен магнитный редуктор, содержащий статор, роторы быстрого и медленного вращения, ротор медленного вращения и статор имеют чередующиеся диски, диски статора имеют чередующиеся ферромагнитные и немагнитные элементы, ротор быстрого вращения представляет собой индуктор с постоянными магнитами, имеющими вид секторов и намагниченными аксиально с чередующейся полярностью, между ротором быстрого вращения и диском ротора медленного вращения располагается диск статора, ферромагнитные элементы статора выполнены из электротехнической стали шихтованными, а магнитопровод статора выполнен в виде двух колец из ленты электротехнической стали путем навивки, расположенных по торцам редуктора, причем магнитопровод, дальний от ротора быстрого вращения, имеет зубцы на поверхности, обращенной к диску ротора медленного вращения, диски ротора медленного вращения выполнены из магнитотвердого материала с аксиально намагниченными секторами чередующихся полярностей, при этом клиновидные выступы зубцов и ферромагнитные элементы дисков статора, а также намагниченные сектора дисков ротора имеют свои одинаковые угловые размеры и положения, причем количества секторов на диске статора zc и намагниченных секторов на диске ротора zp связаны равенством zp=zc±p, где p - число пар полюсов ротора быстрого вращения (RU 2594018, H02K 51/00, F16D 27/01, опубл. 10.08.2016).
Его принцип работы основан на использовании многоступенчатого принципа преобразования момента через чередующие ферромагнитные сегменты. Однако следует выделить, что такой редуктор имеет высокие массогабаритные показатели при реализации многоступенчатой трансформации через последовательные ферромагнтитные модуляторы в силу отсутствия постоянных магнитов между модуляторами.
Настоящее изобретение направлено на достижение технического результата, заключающегося в снижении массогабаритных показателей за счет обеспечения модуляций магнитного поля, создаваемых быстроходным ротором с постоянными магнитами и ферромагнитными сегментами.
Указанный технический результат достигается тем, что в магнитном редукторе, содержащем расположенные соосно в корпусе быстроходный входной и тихоходный выходной валы, при этом на быстроходном входном валу неподвижно закреплен первый диск, несущий аксиально расположенные постоянные магниты, напротив которого расположен неподвижно смонтированные ферромагнитные элементы, с другой стороны которого расположен второй диск, несущий постоянные магниты и который, связан жестко с тихоходным выходным валом, между ферромагнитными элементами со стороны быстроходного входного вала и вторым диском, несущим постоянные магниты и связанным с тихоходным выходным валом, последовательно расположен дополнительный диск, несущий постоянные магниты и установленный с возможностью свободного вращения на подшипниковой опоре в корпусе, и дополнительные ферромагнитные элементы, неподвижно прикрепленные к корпусу, при этом все ферромагнитные элементы расположены по окружности на расстоянии друг от друга, а число постоянных магнитов кратно числу рядом расположенных ферромагнитных элементов.
Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.
Настоящее изобретение поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.
Сущность предложенного устройства поясняется чертежами, где
на фиг. 1 - продольный разрез редуктора магнитного;
фиг. 2 - аксонометрическая модель редуктора магнитного;
фиг. 3 - картина распределения плотности магнитного поля магнитного редуктора.
Согласно настоящему изобретению рассматривается конструкция устройства - магнитного редуктора с высоким передаточным отношением, а именно бесконтактного магнитного преобразователя, который может быть использован в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках.
В общем случае, магнитный редуктор с высоким передаточным отношением содержит корпус 1, в котором быстроходный входной 2 и тихоходный выходной 3 валы расположены соосно. При этом на быстроходном входном валу 2 неподвижно закреплен первый диск 4, несущий аксиально расположенные постоянные магниты. Напротив этого диска расположены по окружности на расстоянии друг от друга ферромагнитные элементы 5, с другой стороны которых расположен дополнительный диск 6, несущий постоянные магниты и установленный с возможностью свободного вращения на подшипниковой опоре 7 в корпусе. За этим диском 6 расположены по окружности на расстоянии друг от друга ферромагнитные элементы 8, неподвижно прикрепленные к корпусу. А за ферромагнитными элементами 8 расположен второй диск 9, несущий постоянные магниты, и который связан жестко с тихоходным выходным валом 3. Все элементы редуктора смонтированы вдоль оси валов 2 и 3, создавая компактную конструкцию. При этом число постоянных магнитов на каждом диске кратно числу рядом расположенных ферромагнитных элементов. Ферромагнитные элементы выполняют функцию ферромагнитных модуляторов, которые генерирует гармоники магнитного поля, которые кратны количеству пар полюсов постоянных магнитов на дисках, что создает условия для трансформации момента.
Суть конструктивного исполнения магнитного редуктора связана с возможностью использования магнитного взаимодействия рядом расположенных элементов. Технический результат достигается применением аксиальным расположением постоянных магнитов. Входной быстроходный вал 2 выполнен с аксиальным расположением постоянных магнитов на закрепленном на нем диске 2. Рядом смонтирован первый ферромагнитный модулятор (расположенные по окружности ферромагнитные элементы 5), который генерирует гармоники магнитного поля, которые взаимодействуют с полем постоянных магнитов не закрепленного промежуточного ротора, выполненного в виде свободно сидящего для вращения диска 6, которые равны разности количества ферромагнитных сегментов и числа пар полюсов постоянных магнитов на быстроходном валу 2. Общая механическая связь свободно вращающегося диска 6 интегрирована с магнитной системой второй ступени трансформации момента. И через второй ферромагнитный модулятор (расположенные по окружности ферромагнитные элементы 8) при взаимодействии с полем постоянных магнитов и тихоходного вала 3 и передает на этот вал низкую скорость. Отметим следующее, наличие подобного варианта расположения ступеней трансформации момента позволяет создавать многоступенчатого редуктора с высоким передаточным отношением.
Постоянные магниты выполнены из высококоэрцитивного магнитотвердого материала. Ферромагнитные элементы имеют наибольшую магнитную восприимчивость и используются в магнитном редукторе. В них атомные магнитные моменты спонтанно коллинеарно самоориентируются, образуя аномально большие магнитные моменты. У лучших современных магнитных материалов энергетическое произведение (В⋅Н)max достигает величины 320 Тл⋅кА/м (40 млн Гс⋅Э), например, у материала с высокой коэрцитивной силой SmCo3 (см., напр., Преображенский А.А., Биширд Е.Г. Магнитные материалы и элементы, 3 изд., М., 1986; Февралева И.Е. Магнитотвердые материалы и постоянные магниты. К., 1969; Постоянные магниты, Справочник, М., 1971).
Магнитный редуктор работает на использовании эффекта магнитной редукции. Суть эффекта магнитной редукции основана на модуляции магнитного поля, создаваемого быстроходным ротором с постоянными магнитами, ферромагнитными элементами (сегментами) тихоходного вала с генерацией гармоник, которые кратны количеству пар полюсов постоянных магнитов на внешнем статоре, что создает условия для трансформации момента. Фиксированное соотношение числа пар полюсов постоянных магнитов быстроходного вала и числа ферромагнитных элементов (сегментов) на тихоходном роторе определяет передаточное отношение. Ферромагнитные элементы (сегменты) тихоходного звена модулируют магнитное поле в воздушном зазоре между быстроходным валом с постоянными магнитами и внешним ротором управления с постоянными магнитами.
Магнитный редуктор работает следующим образом. При вращении быстроходного вала вместе с ним вращается диск с постоянными магнитами, создавая на ферромагнитных элементах 5 магнитную индукцию, приводящую к вращению диска 6. В результате диск 6 поворачиваются так, что места совпадения положений ферромагнитных элементов 5 и диска 6 соответствует полярности дисков и находятся в зоне максимума модуля магнитной индукции. Многократная деформация магнитного поля в зоне дисков позволяет увеличить развиваемый момент и позволяет улучшить массогабаритные показатели за счет соосной компоновки. Магнитный редуктор не имеет механических контактов между подвижными активными частями, бесшумен в работе, имеет большой срок службы, определяемый подшипниками, допускает ударные нагрузки, так как связь между валами осуществляется через магнитное поле.
Работоспособность данного магнитного редуктора и возможность трансформации момента (передаточного отношения) в системе "постоянный магнит-ферромагнитный элемент" подтверждена работами Меньших Олега Федоровича (RU 2309527) на примере модели так называемого ферромагнитовязкого ротатора, представляющего собой из связанных между собой постоянного магнита с однородным или неоднородным магнитным полем между его полюсами и ферромагнитного диска (кольца) с осью вращения, выполненного из ферромагнитного материала с магнитной вязкостью, постоянная релаксации т которой по отношению к периоду Т вращения ферромагнитного диска (кольца) выбрана, например, из условия т ~ТХ0/4,4π R, где Х0 - длина магнитного зазора между полюсами постоянного магнита, в который помещен край ферромагнитного диска (кольца) радиуса R, при этом напряженность магнитного поля в зазоре постоянного магнита выбрана насыщающей для материала ферромагнитного диска (кольца).
Согласно полученным аналитическим результатам, вращение достигается благодаря отставанию в динамике вращательного движения ферромагнитного диска (кольца) его магнитного "центра тяжести" размещенной в поле постоянного магнита части ферромагнитного диска (кольца) от центра притяжения постоянного магнита, что создает силу тяготения со стороны постоянного магнита, приложенную к краевой части ферромагнитного диска (кольца), в результате чего возникает вращающий момент, поддерживающий вращательное движение ферромагнитного диска (кольца) с угловой скоростью, определяемой постоянной релаксации магнитной вязкости ферромагнитного материала диска (кольца). В случае однородного магнитного поля в зазоре между полюсами постоянного магнита реализуется так называемый "жесткий режим" самовозбуждения вращательного движения, при котором необходимо принудительно (под действием внешних сил) привести ферромагнитный диск (кольцо) во вращательное движение с необходимой угловой скоростью. В случае неоднородного магнитного поля с заданным градиентом вдоль касательной к краевой части ферромагнитного диска (кольца), находящейся в магнитном зазоре, реализуется так называемый "мягкий режим" самовозбуждения, при котором ферромагнитный диск (кольцо) постоянно испытывает втягивающее усилие со стороны магнитного поля постоянного магнита в направлении градиента напряженности этого поля и поэтому приходит в ускоренное вращательное движение в переходном процессе, доводя угловую скорость вращения до определенной величины, определяемой постоянной релаксации магнитной вязкости выбранного ферромагнитного материала. По мере достижения указанной угловой скорости магнитный "центр тяжести" части ферромагнитного диска (кольца), связанной с магнитным полем постоянного магнита, смещен относительно центра тяготения поля постоянного магнита, и эта величина смещения между указанными центрами определяет постоянно действующий вращающий момент, уравновешиваемый величиной момента трения (нагрузочного момента) в ротаторе, пропорционально возрастающего с увеличением угловой скорости вращения ферромагнитного диска (кольца). Отставание магнитного "центра тяжести" вышеуказанной части ферромагнитного диска (кольца) от центра притяжения магнитного поля постоянного магнита определяется магнитной вязкостью, при которой дифференциальные объемы указанной части ферромагнитного диска (кольца), более длительное время находящиеся в насыщающем магнитном поле постоянного магнита, в большей степени уменьшают свою магнитную восприимчивость, чем дифференциальные объемы, магнитное насыщение в которых еще не наступило. Это создает перераспределение в указанной части ферромагнитного диска (кольца) величин магнитной восприимчивости, градиент которой направлен противоположно к вектору действующей на ферромагнитный диск (кольцо) силы со стороны магнитного поля постоянного магнита.
Настоящее изобретение промышленно применимо и может быть изготовлено с использованием современных технологий, применяемых в машиностроении.

Claims (1)

  1. Магнитный редуктор, содержащий расположенные соосно в корпусе быстроходный входной и тихоходный выходной валы, при этом на быстроходном входном валу неподвижно закреплен первый диск, несущий аксиально расположенные постоянные магниты, напротив которого расположен неподвижно смонтированные ферромагнитные элементы, с другой стороны которого расположен второй диск, несущий постоянные магниты, и который связан жестко с тихоходным выходным валом, отличающийся тем, что между ферромагнитными элементами со стороны быстроходного входного вала и вторым диском, несущим постоянные магниты и связанным с тихоходным выходным валом, последовательно расположен дополнительный диск, несущий постоянные магниты и установленный с возможностью свободного вращения на подшипниковой опоре в корпусе, и дополнительные ферромагнитные элементы, неподвижно прикрепленные к корпусу, при этом все ферромагнитные элементы расположены по окружности на расстоянии друг от друга, а число постоянных магнитов кратно числу рядом расположенных ферромагнитных элементов.
RU2017109164A 2017-03-20 2017-03-20 Магнитный редуктор RU2651335C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017109164A RU2651335C1 (ru) 2017-03-20 2017-03-20 Магнитный редуктор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017109164A RU2651335C1 (ru) 2017-03-20 2017-03-20 Магнитный редуктор

Publications (1)

Publication Number Publication Date
RU2651335C1 true RU2651335C1 (ru) 2018-04-19

Family

ID=61976818

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017109164A RU2651335C1 (ru) 2017-03-20 2017-03-20 Магнитный редуктор

Country Status (1)

Country Link
RU (1) RU2651335C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795663A (zh) * 2019-01-16 2019-05-24 浙江省海洋开发研究院 一种船舶螺旋桨尾轴传动结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU403003A1 (ru) * 1968-08-12 1973-10-19 Электрол1еханическая система для привода гребных
US8212442B1 (en) * 2010-01-07 2012-07-03 Wayne Paul Bishop Torque / energy transfer method and apparatus
RU2461947C1 (ru) * 2011-07-06 2012-09-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО КубГТУ) Управляемый каскадный электрический привод с жидкостным токосъемом
CN103944350A (zh) * 2013-01-21 2014-07-23 天津吉玄节能技术有限公司 一种调速减速器
RU2545166C1 (ru) * 2013-08-20 2015-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" Магнитный редуктор
RU2594018C1 (ru) * 2015-05-28 2016-08-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Магнитный редуктор

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU403003A1 (ru) * 1968-08-12 1973-10-19 Электрол1еханическая система для привода гребных
US8212442B1 (en) * 2010-01-07 2012-07-03 Wayne Paul Bishop Torque / energy transfer method and apparatus
RU2461947C1 (ru) * 2011-07-06 2012-09-20 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО КубГТУ) Управляемый каскадный электрический привод с жидкостным токосъемом
CN103944350A (zh) * 2013-01-21 2014-07-23 天津吉玄节能技术有限公司 一种调速减速器
RU2545166C1 (ru) * 2013-08-20 2015-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" Магнитный редуктор
RU2594018C1 (ru) * 2015-05-28 2016-08-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Магнитный редуктор

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795663A (zh) * 2019-01-16 2019-05-24 浙江省海洋开发研究院 一种船舶螺旋桨尾轴传动结构

Similar Documents

Publication Publication Date Title
US10476349B2 (en) Method and apparatus for compact axial flux magnetically geared machines
RU2651335C1 (ru) Магнитный редуктор
RU2369955C1 (ru) Магнитный редуктор
RU2594018C1 (ru) Магнитный редуктор
AU2016354870A1 (en) Electric generator with a rotational resistance avoidance feature
CN111211709A (zh) 一种无推力盘的五自由度磁悬浮电机
Abdel-Khalik et al. A bearingless coaxial magnetic gearbox
JP2009168101A (ja) 磁気歯車装置
EP3017529B1 (en) Reducing bearing forces in an electrical machine
Molokanov et al. Analyses and experimental validation of coaxial magnetic planetary gear
Man et al. A kind of magnetic gear with high speed ratio
RU111367U1 (ru) Магнитный редуктор
CN103915973A (zh) 盘式磁场调制型交流永磁减速电机
RU2579443C2 (ru) Соосный магнитный редуктор-мультипликатор узякова
RU2545166C1 (ru) Магнитный редуктор
EP2874293A1 (en) Contactless magnetic gear
CN211239723U (zh) 一种无推力盘的五自由度磁悬浮电机
EP3590182B1 (en) Magnetic coupling and method
Sapsalev et al. Structural model of a magnetic coupling
RU2483419C1 (ru) Магнитный редуктор
JP2019115236A (ja) 発電システム
Studer Magnetic bearings for spacecraft
KR101838014B1 (ko) 고속 전동기
RU2707731C1 (ru) Магнитный редуктор
RU2210849C1 (ru) Электромеханический рекуперативный преобразователь

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190321