RU2650977C1 - Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана - Google Patents

Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана Download PDF

Info

Publication number
RU2650977C1
RU2650977C1 RU2016148605A RU2016148605A RU2650977C1 RU 2650977 C1 RU2650977 C1 RU 2650977C1 RU 2016148605 A RU2016148605 A RU 2016148605A RU 2016148605 A RU2016148605 A RU 2016148605A RU 2650977 C1 RU2650977 C1 RU 2650977C1
Authority
RU
Russia
Prior art keywords
composition
glass
electrolyte
solid electrolyte
temperature
Prior art date
Application number
RU2016148605A
Other languages
English (en)
Inventor
Анна Сергеевна Толкачева
Сергей Николаевич Шкерин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2016148605A priority Critical patent/RU2650977C1/ru
Application granted granted Critical
Publication of RU2650977C1 publication Critical patent/RU2650977C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Изобретение относится к составам высокотемпературных герметиков. Описан состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, в котором в качестве корректирующих добавок используют оксиды галлия, магния и натрия при следующем соотношении компонентов, мас.%: SiO2 43÷60, Ga2O3 22÷38, Na2O 16÷17, MgO 2÷10. Технический результат: получен состав, позволяющий получить газоплотное соединение отдельных фрагментов из металла и твердого электролита на основе La(Sr)Ga(Mg)O3, являющихся частями электрохимического устройства, в единую систему, что обеспечивает долговременное функционирование данного электрохимического устройства. 10 ил.

Description

Изобретение относится к составам высокотемпературных герметиков и может быть использовано для соединения поверхностей элементов электрохимических устройств с твердым электролитом на основе галлата лантана.
Повышение эффективности и экологичности существующих энергоустановок невозможно без топливных элементов - устройств, реализующих прямое преобразование химической энергии в электрическую. Среди всех известных топливных элементов устройства на твердых оксидных электролитах (ТОТЭ) выделяются как минимум по следующим причинам. Во-первых, по сравнению с устройствами, работающими при комнатной температуре, они не щепетильны к топливу, поэтому в качестве топлива могут быть использованы любые углеводороды и даже торф и уголь. Во-вторых, они не содержат драгметаллов, без которых работа устройств при комнатной температуре невозможна. Кроме того, в отличие от устройств на расплавленных карбонатах, которые также не щепетильны к топливу, удельная мощность твердоэлектролитных систем не ограничена полутора - двумя сотнями милливатт на квадратный сантиметр. Кроме того, отсутствие жидкой фазы, как, например, в карбонатных топливных элементах, делает устройства на твердых электролитах более безопасными в эксплуатации и технологичными для мобильных применений.
Основная часть используемых сегодня твердоэлектролитных устройств построена на основе диоксида циркония. Электрохимические устройства с этим электролитом проявляют высокую стабильность и надежность работы в случае, когда в качестве матрицы обоих электродов и интерконнекта используется коммерчески неприемлемая платина. Замена платины на дешевые материалы привела к проблемам с долговременной стабильностью, единственным решением которых является понижение рабочей температуры ТОТЭ до 800°С и ниже, вместо 1000°С. При понижении температуры понижается как электропроводность электролита, так и скорость межфазных процессов. Для решения этих проблем был разработан принципиально новый материал твердого электролита на основе легированного галлата лантана. Первые публикации, касающиеся этого материала, относятся к 1994 году (Ishihara T., Matsuda H., Takita Y. // J. Am. Ceram. Soc. 1994. V 116. P. 3801.[1]; Feng M., Goodenought J.B. // Eur. J. Solid State Inorg. Chem. 1994. V. 31. P. 663[2]). Применение твердого электролита на основе галлата лантана в электрохимических устройствах потребовало разработки соответствующих высокотемпературных герметиков для соединения элементов электрохимических устройств.
К высокотемпературным герметикам для электрохимических устройств предъявляются следующие требования:
- растекание (частичное плавление) при температуре, безопасно низкой для других материалов электрохимического устройства;
- коэффициент температурного линейного расширения (КТЛР), совместимый с КТЛР твердого электролита;
- хорошая адгезия к электролиту и интерконнекту, т.е. электронному проводнику, обычно металлу, КТЛР которого совпадает с КТЛР электролита;
- химическая стабильность по отношению как минимум к электролиту и интерконнекту, компонентам газовых фаз окислителя (воздуху) и топлива (углеводороды, СО/СО2, водород и вода) в условиях температуры эксплуатации;
- отсутствие электронной проводимости при минимальной величине ионной.
Известны подходы к разработке составов высокотемпературных герметиков для соединения элементов устройств с твердым электролитом, удовлетворяющих этим требованиям. Так, например, известна высокотемпературная замазка на основе талька (SU 768145, опубл. 20.09.1999) [3], в состав которой входит 60-80 мас.% талька и 20-40 мас.% оксида бария. Этот герметик разработан для соединения элементов устройств с твердым электролитом на основе диоксида циркония. Применение этого герметика для ТОТЭ на основе галлата лантана невозможно по следующим причинам. Экспериментальная проверка показала, что происходит самопроизвольный перенос компонентов между фазами - как галлий, так и магний диффундируют из электролита в герметик.
Разработке составов высокотемпературных герметиков для соединения элементов устройств с твердым электролитом на основе диоксида циркония посвящен обзор (Tulyaganov D., Reddy A., Kharton V., Ferreira J. Aluminosilicate-based sealants for SOFC and other electrochemical applications – a brief review // J. Power Sources. (2013). V. 242. P. 486-502. [4]). Здесь в состав стекла, как основного, иногда единственного компонента герметика, рекомендуют вводить такие стеклообразователи как оксиды бора, кремния, алюминия. Вводят также оксиды, «корректирующие» значения КТЛР, температуру растекания и стеклования, вязкости. В качестве «корректирующих» добавок рекомендованы оксиды щелочных и щелочноземельных металлов, оксид цинка.
Экспериментальная проверка описанных составов стекла показала, что аналогично вышеописанному [3] герметику также происходит самопроизвольный перенос компонентов между фазами - как галлий, так и магний диффундируют из электролита в герметик, кроме того, алюминий переносится в электролит. Такие рекомендованные стеклообразователи, как оксид бора, а тем более оксид фосфора, не устойчивы в условиях эксплуатации ТОТЭ и оказывают отрицательное воздействие на компоненты системы.
Известны единичные попытки применить герметики, разработанные для устройств с электролитом на основе диоксида циркония, к устройствам с электролитом на основе галлата лантана, например (Kharton V., Tsipis E., Carvalho A., Kovalevsky A., Naumovich E., Margues F., frade J., Shaula A. Glass-ceramic sealants for SOFC based systems //N. Sammes et al.(eds.). Fuell Cell technologies: state and perspectives, 231-238. 2005, Springer [5]). Для этих целей были исследованы составы, содержащие оксиды кремния в качестве стеклообразователя, а также оксиды алюминия, кальция, бария – в качестве корректирующих добавок. Авторы этой работы пишут, что стекла, полученные из таких составов, применимы для электролита на основе диоксида циркония. Их применение к электролитам на основе галлата лантана невозможно из-за их взаимодействия, которое можно замедлить понижением как температур эксплуатации, так и температуры изготовления устройства. Детали химического взаимодействия между стеклом и электролитом на основе галлата лантана не изучались.
В основу настоящего изобретения положена задача создания высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана. Для решения этой задачи предложен состав высокотемпературного герметика, содержащий в качестве стеклообразователя оксиды кремния, а в качестве корректирующих добавок – оксиды галлия, магния и натрия при следующем соотношении компонентов, мас. %: SiO2 43÷60, Ga2O3 22÷38, Na2O 16÷17, MgO 2÷10.
Сущность изобретения заключается в следующем. Оксид кремния, входящий в состав заявляемого герметика в качестве стеклообразователя, не переносится из стекла в электролит, что видно на фиг.1. При этом в качестве корректирующих добавок состав герметика содержит оксиды галлия и магния, являющиеся компонентами самого электролита на основе галлата лантана и диффундирующие из электролита в стекло – фиг. 2. Наличие этих компонентов в расплаве (стекле) предотвращает деградацию электролита La(Sr)Ga(Mg)O3 за счет изменения его состава в результате переноса. В качестве корректирующей добавки состав заявленного герметика содержит также оксид натрия, который повышает ТКЛР до значения, близкого ТКЛР электролита. Согласно нашим представлениям более предпочтительным был бы оксид калия, так как он тяжелее, и обусловленная им ионная проводимость герметика была бы ниже. Однако он накапливается на границе стекло/электролит (см. фиг. 3), что приводит к образованию трещин в ходе термоциклирования и длительной эксплуатации. Введение лития привело бы к повышению катионной проводимости стекла. Применение тяжелых щелочных металлов, с одной стороны, было бы дорого, а с другой – существенно повышает анионную (ОН-) проводимость за счет их взаимодействия с парами воды, которые присутствуют как в воздухе, так и в топливе ТОТЭ. Количественный состав герметика определен с использованием программного продукта Sciglass software (Science Serve GmbH, Sciglass 7.0 software, Newton, MA demoversion [6]). Для трех (ограничение программы) основных выбранных компонентов: оксиды кремния – галлия - натрия рассчитаны ожидаемые значения ТКЛР. Эта зависимость взята за основу для экспериментальной проверки совокупности свойств.
Герметик заявленного состава, разработанный для соединения элементов электрохимических устройств с твердым электролитом на основе галлата лантана, удовлетворяет требованиям, предъявляемым к высокотемпературным герметикам. Учитывая, что для герметиков нет существенных проблем в контакте с металлическим интерконнектом, в том числе покрытым защитным шпинельным слоем (Smeacetto F., De Miranda A., Chrysanthou A., Bernado E., Secco M., Bindi M., Salvo M., Sabato A., Ferraris M. Novel glass-ceramic composition as sealant for SOFC // J. Am. Ceram. Soc. (2014) V.97(12) P. 3835-3842. [7]), можно сделать вывод, что использование высокотемпературного герметика заявленного состава позволяет получить газоплотное соединение отдельных фрагментов из металла и твердого электролита на основе La(Sr)Ga(Mg)O3, являющихся частями электрохимического устройства, в единую систему, позволяющую долговременное функционирование данного электрохимического устройства. Это есть новый технический результат, достигаемый заявленным изобретением.
Изобретение иллюстрируется чертежами, где
на фиг. 1 представлен шлиф контакта электролит La(Sr)Ga(Mg)O3/стекло для одного из стекол, соответствующих обзору [4], в виде карты ее элементного состава в излучении кремния, полученные с помощью электронного растрового микроскопа с приставкой элементного анализа;
на фиг. 2 представлен шлиф контакта электролит La(Sr)Ga(Mg)O3/стекло для одного из стекол, в виде карты ее элементного состава в излучении галлия, полученные с помощью электронного растрового микроскопа с приставкой элементного анализа;
на фиг. 3 проиллюстрировано выпадение обогащенной калием фазы на границе электролит La(Sr)Ga(Mg)O3/стекло на основании результатов электронного растрового микроскопа с приставкой элементного анализа;
на фиг. 4 представлен результат моделирования в программе [6] КТЛР для стекол системы оксиды кремния-натрия-галлия. Масштаб КТЛР 107, т.е. рассмотрены значения от 7 до 12 10-6 К-1;
на фиг. 5–7 представлены результаты аттестации стекла с центрами окраски. Фиг. 5 – исходное стекло 25°С, фиг. 6 – это же стекло после обработки при 800°С, фиг.7 – это же стекло после 1000°С;
на фиг. 8–10 представлены результаты аттестации стекла оптимизированного состава.
Фиг. 8 иллюстрирует неокрашенное стекло, которое не претерпевает изменений при отжиге, включая восстановительные условия;
фиг. 9 – дилатометрическую кривую оптимизированного стекла. ТКЛР равен 11.5 10-6 К-1;
фиг. 10 – шлиф контакта электролит La(Sr)Ga(Mg)O3/стекло, характеризующий адгезию между фазами.
При разработке состава заявляемого герметика исследователи руководствовались следующим. Характеристики отдельных компонентов изучены и формализованы в справочниках и программных продуктах, например Sciglass software (Science Serve GmbH, Sciglass 7.0 software, Newton, MA demoversion [6]). Исходя из заданных величин температуры растекания и ТКЛР, определен спектр составов, который их может обеспечить, при этом отдельно проведен анализ остальных свойств стекол: температуры стеклования и размягчения, а также химическая устойчивость.
Для исключения компонентов, не пригодных для заявленного герметика, экспериментально исследованы два стекла, изготовленные на основании рекомендаций обзора [4], удовлетворяющие требованиям по температуре растекания (температуре склеивания, 1070°С) и ТКЛР, совпадающему с ТКЛР электролита на основе галлата лантана La(Sr)Ga(Mg)O3. Состав одного из них содержит три основных компонента: оксиды кремния, бария и магния. В состав второго входят оксиды кремния, алюминия, кальция, натрия, магния, калия, бора и циркония. Во-первых, в стекле наблюдаются поры. Образование пор обусловлено выделением газа при распаде карбонатов, которые стабильны для бария, меньше - стронция и в еще меньшей степени - кальция. Кроме того, добавка этих компонентов увеличивает вязкость расплава, т.е. повышает время, необходимое для затягивания пор. Во-вторых, для обоих стекол видно отсутствие переноса лантана из электролита в расплав и кремния из расплава в электролит (фиг. 1). В-третьих, для обоих стекол виден перенос галлия из фазы твердого электролита в стекло (фиг. 2). Также наблюдается перенос алюминия и циркония из стекла в электролит.
В стекле вблизи границы раздела фаз образуются мелкие – от 1.5 мкм и мельче - кристаллики. Это обычное явление кристаллизации продуктов взаимодействия компонентов стекла и составляющих электролита, которые растворяются в стекле. ТКЛР, вязкость и критические температуры стекла можно в узких пределах варьировать изменением состава на основе формализованных знаний о свойствах этих стекол (фиг. 4). На фиг. 5-7 показаны результаты измерений для одного из стекол. Обратим внимание, что в ряде случаев стекла оказываются окрашенными. Окрашенные стекла проявляют более высокую электропроводность, причем ее повышение обусловлено переносом электронов. Это негативный фактор. Как правило, это связано с появлением катионов переменной валентности (например, из защитного покрытия на стали), для связывания которых применяют иттрий, но возможно использование и галлия. В ряде случаев цвет стекол обусловлен существованием нестационарных центров окраски, которые удается удалить при долговременном нагреве. Именно такой случай проиллюстрирован на фиг. 5-7. Результаты измерений оптимального состава стекла показаны на фиг. 8–10. Стекло не окрашено (фиг. 8), т.е. электронная проводимость минимальна; оно согласовано с электролитом по КТР (фиг. 9) и имеет с ним хорошую адгезию (фиг. 10).
Стекло из смеси оксидов указанного состава может быть получено любым доступным способом, например плавлением компонентов в инертном, невзаимодействующем тигле. Критерием готовности является отсутствие дальнего порядка кристаллической решетки у полученного продукта.
Продукт измельчается до размера частиц не более 3 мкм и помещается в спирт для образования суспензии. Данная суспензия, например, кисточкой наносится на предварительно обезжиренные соединяемые поверхности. Поверхности прижимаются малым усилием, и соединяемый узел нагревается до температуры плавления стекла, где выдерживается в течение десяти минут, после чего медленно охлаждается.
Исследуемое стекло удовлетворяет растеканию при температуре, безопасно низкой для других материалов электрохимического устройства. Коэффициент его температурного линейного расширения (ТКЛР) совместим с ТКЛР галлата лантана. Герметик имеет хорошую адгезию к электролиту и интерконнекту и обладает химической стабильностью по отношению к электролиту и интерконнекту, а также к воздуху и топливу (углеводороды, СО/СО2, водород и вода) в условиях температуры эксплуатации при температуре до 800°С. Для герметика заявленного состава характерно отсутствие электронной проводимости при минимальной величине ионной. При необходимости герметизации отверстий и щелей большего размера чем 5-8 мкм к стеклу могут быть давлены частицы твердого электролита на основе легированного галлата лантана с размером 0.4-0.7 от размера заклеиваемого дефекта.
Использование высокотемпературного герметика заявленного состава позволяет получить газоплотное соединение отдельных фрагментов из металла и твердого электролита на основе La(Sr)Ga(Mg)O3, являющихся частями электрохимического устройства, в единую систему, позволяющую долговременное функционирование данного электрохимического устройства.

Claims (2)

  1. Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана, содержащий оксид кремния в качестве стеклообразователя и корректирующие добавки, отличающийся тем, что в качестве корректирующих добавок содержит оксиды галлия, магния и натрия при следующем соотношении компонентов, мас.%:
  2. SiO2 43-60 Ga2O3 22-38 Na2O 16-17 MgO 2-10
RU2016148605A 2016-12-12 2016-12-12 Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана RU2650977C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148605A RU2650977C1 (ru) 2016-12-12 2016-12-12 Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148605A RU2650977C1 (ru) 2016-12-12 2016-12-12 Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Publications (1)

Publication Number Publication Date
RU2650977C1 true RU2650977C1 (ru) 2018-04-18

Family

ID=61976739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148605A RU2650977C1 (ru) 2016-12-12 2016-12-12 Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана

Country Status (1)

Country Link
RU (1) RU2650977C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004688A (en) * 1997-07-16 1999-12-21 The Board Of Regents Of The University Of Texas System Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
US20070054170A1 (en) * 2005-09-02 2007-03-08 Isenberg Arnold O Oxygen ion conductors for electrochemical cells
RU2367065C1 (ru) * 2008-05-30 2009-09-10 Институт электрофизики Уральского отделения РАН Модифицированный планарный элемент (варианты), батарея электрохимических устройств и способ его изготовления
RU2417488C1 (ru) * 2010-04-30 2011-04-27 Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) Планарный элемент электрохимических устройств, батарея и способ изготовления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004688A (en) * 1997-07-16 1999-12-21 The Board Of Regents Of The University Of Texas System Solid oxide fuel cell and doped perovskite lanthanum gallate electrolyte therefor
US20070054170A1 (en) * 2005-09-02 2007-03-08 Isenberg Arnold O Oxygen ion conductors for electrochemical cells
RU2367065C1 (ru) * 2008-05-30 2009-09-10 Институт электрофизики Уральского отделения РАН Модифицированный планарный элемент (варианты), батарея электрохимических устройств и способ его изготовления
RU2417488C1 (ru) * 2010-04-30 2011-04-27 Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) Планарный элемент электрохимических устройств, батарея и способ изготовления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Smeacetto F. et al, Novel glass-ceramic composition as sealant for SOFC, J. Am. Ceram. Soc., 2014, V.97(12) P. 3835-3842. *

Similar Documents

Publication Publication Date Title
Ohno et al. How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study
Subbarao Solid electrolytes and their applications
Adams et al. Structural requirements for fast lithium ion migration in Li 10 GeP 2 S 12
KR101946111B1 (ko) 유리질 또는 적어도 부분 결정화된 밀봉재, 이 밀봉재를 포함하는 접합 연결부, 배리어 층 및 층 시스템, 및 부품 내로의 그 밀봉재의 통합
DK178886B1 (en) Glass ceramic joint material and its use
Wan et al. A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries
Chou et al. Mid-term stability of novel mica-based compressive seals for solid oxide fuel cells
CN100524927C (zh) 用于全固态锂电池固体电解质材料体系及制备方法
US9530991B2 (en) Viscous sealing glass compositions for solid oxide fuel cells
CN105103352A (zh) 用于高温应用的硅钡石基玻璃-陶瓷密封件
Chou et al. Novel infiltrated Phlogopite mica compressive seals for solid oxide fuel cells
Reddy et al. Diopside–Mg orthosilicate and diopside–Ba disilicate glass–ceramics for sealing applications in SOFC: Sintering and chemical interactions studies
Hsu et al. An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells
Lee et al. SiO2–B2O3-BaO-WO3 glasses with varying Al2O3 content as a sealing material for reversible solid oxide fuel cells
Tong et al. Influence of Al2O3 addition on the properties of Bi2O3–BaO–SiO2–RxOy (R= K, Zn, etc.) glass sealant
Sabato et al. Crystallization behaviour of glass-ceramic sealant for solid oxide fuel cells
Kumar et al. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells
RU2650977C1 (ru) Состав высокотемпературного герметика для электрохимических устройств с твердым электролитом на основе галлата лантана
SE450438B (sv) Icke vattenhaltig elektrokemisk cell
Naylor et al. Galliosilicate glasses for viscous sealants in solid oxide fuel cell stacks: Part I: Compositional design
Loehman et al. Evaluation of sealing glasses for solid oxide fuel cells
JP6105938B2 (ja) ナトリウム電池
Chandrashekhar et al. Ionic Conductivity of Monocrystals of the Gallium Analogs of β‐and β ″‐Alumina
CN106785003A (zh) 一种添加锂硅合金和碘化银的硫化锂系固体电解质材料及其制备方法
Xiong et al. Electronic conductivity of ZrO2–CeO2–YO1. 5 solid solutions in a wide range of temperature and oxygen partial pressure

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191213