RU2650799C2 - Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений - Google Patents
Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений Download PDFInfo
- Publication number
- RU2650799C2 RU2650799C2 RU2016112815A RU2016112815A RU2650799C2 RU 2650799 C2 RU2650799 C2 RU 2650799C2 RU 2016112815 A RU2016112815 A RU 2016112815A RU 2016112815 A RU2016112815 A RU 2016112815A RU 2650799 C2 RU2650799 C2 RU 2650799C2
- Authority
- RU
- Russia
- Prior art keywords
- signal
- glue
- brittle
- optical
- acoustic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000004033 plastic Substances 0.000 title claims abstract description 13
- 239000000835 fiber Substances 0.000 title abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 239000013307 optical fiber Substances 0.000 claims abstract description 9
- 238000005336 cracking Methods 0.000 claims abstract description 6
- 230000007547 defect Effects 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 11
- 239000003292 glue Substances 0.000 abstract description 6
- 230000006378 damage Effects 0.000 abstract description 5
- 238000001228 spectrum Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000011161 development Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 102220479482 Puromycin-sensitive aminopeptidase-like protein_C21D_mutation Human genes 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Изобретение относится к прогнозированию на ранней стадии возникновения дефектов в больших инженерных сооружениях и направлено на увеличение чувствительности при снижении аппаратурных затрат. Сигнал акустической эмиссии (АЭ) генерируется с помощью хрупкого затвердевающего клея, а регистрируется с применением многомодового волоконно-оптического распределенного датчика. Клей наносится на оптическое волокно, которое выполняет функцию распределенного чувствительного элемента (РЧЭ), при его монтаже на инженерное сооружение. После затвердевания клей становится хрупким и не только фиксирует оптическое волокно на объекте, но и генерирует сигнал АЭ при его растрескивании, в случае возникновения пластической деформации контролируемого объекта (инженерное сооружение). Такой способ обладает очень высокой чувствительностью, поскольку сигнал АЭ возникает в непосредственной близости от датчика (РЧЭ). Поэтому акустико-эмиссионная волна, практически не ослабленная, почти полностью преобразуется в оптический, а затем в электрический сигнал. Распределенный датчик (РЧЭ), приклеенный к инженерному сооружению, регистрирует малейшую пластическую деформацию, которая приводит к растрескиванию хрупкого слоя - затвердевшего клея, нанесенного непосредственно на оптоволокно, по всей его длине. Технический результат заключается в расширении частотного спектра регистрируемых сигналов, возможности обнаружения на ранней стадии участков, на которых может произойти разрушение контролируемого объекта, возможности проведения постоянного дистанционного мониторинга. 1 ил.
Description
Изобретение относится к прогнозированию на ранней стадии возникновения и развития дефектов с помощью волоконно-оптических методов регистрации сигнала акустической эмиссии (АЭ), и может использоваться для выявления наиболее вероятных зон разрушения металлических или бетонных конструкций инженерных сооружений, например газопроводов, мостов, плотин ГЭС и других крупных и протяженных объектов.
Известен акустико-эмиссионный способ зонного контроля, включающий установку локальных преобразователей акустической эмиссии (ПАЭ), на предварительно зачищенные контактные поверхности (Руководящий документ РД 03 131-97. Акустико-эмиссионный метод контроля. - С. 8-11, http://snipov.net/c_4653_snip_99823.html). Способы крепления локальных датчиков (ПАЭ) должны обеспечивать надежный акустический контакт с поверхностью. Соединительные кабели крепят с помощью магнитов, бандажей, прижимов таким образом, чтобы не было их натяжения в процессе испытания. После установки ПАЭ проводят проверку работоспособности АЭ аппаратуры и настройку ее каналов с помощью калибраторов и имитаторов сигналов АЭ, выбираемых в зависимости от конкретных условий испытаний. АЭ контроль проводят при ступенчатом увеличении нагрузки на контролируемый объект. Накопление, запись и оперативную обработку данных АЭ контроля проводят с помощью специального программного обеспечения, входящего в состав акустико-эмиссионных систем. Данный способ сложный и дорогой, имеет невысокую чувствительность, требует применения большого количества разнообразной аппаратуры.
Известен также способ определения упругопластических деформаций, включающий нанесение на поверхность контролируемой конструкции, специального покрытия, содержащего эпоксидную смолу, фталевый ангидрид и дибутилфталат для определения по образующимся трещинам зоны и направления пластических деформаций (SU 1669991 A1, МКИ5 С21D 7/02, G01B 11/20, опубл. 15.08.1991). Метод АЭ контроля обеспечивает обнаружение и регистрацию только развивающихся, а значит действительно опасных дефектов, и осуществляет их классификацию не по размерам, а по степени опасности.
Этот зонный метод тоже обладает низкой чувствительностью. Причиной низкой чувствительности является то, что сигналы АЭ малы по амплитуде и выделение полезного сигнала из помех представляет собой достаточно сложную задачу. Это объясняется тем, что локальные датчики АЭ (ПАЭ), часто оказываются на большом расстоянии от зон растрескивания, которые являются источниками АЭ, и поэтому сигнал АЭ доходит до датчиков с большим затуханием. Кроме того, большое количество преобразователей акустической эмиссии (ПАЭ), требует большого количества соединительных проводов, усилителей и измерительных каналов, что значительно усложняет и удорожает способы зонного контроля.
Известен также способ исследования деформаций и напряжений (патент №2345324 от 27.04.2007), в котором наряду с АЭ контролем дополнительно предусматривается дистанционное визуальное наблюдение за контролируемыми объектами. Нанесение хрупкого тензочувствительного покрытия повышает сверхчувствительность к пластической деформации, вследствие треска образующихся картин трещин. По наличию деформации хрупкого покрывного материала определяют наличие дефектов. Оценка напряженно-деформированного состояния опасных объектов проводится быстрее. Этот способ исследования деформаций и напряжений в опасных объектах предусматривает проведение следующих действий: нанесение хрупкого тензочувстительного покрытия на исследуемую поверхность детали, отверждение покрытия. Дополнительно осуществляют установку модуля с локальными датчиками преобразователей акустической эмиссии, а в качестве покрытия используют искусственные смолы.
Измерение деформаций и напряжений методом хрупких тензочувствительных покрытий с использованием АЭ измерительного комплекса обеспечивает:
- возможность обнаружения и регистрации локальных развивающихся дефектов на ранних стадиях их образования и развития;
- классифицирование дефектов по размеру и опасности;
- выявление дефектов и наблюдение за их образованием и развитием в рабочих условиях;
- контроль всего объекта в целом, используя один или несколько модулей с датчиками ПАЭ, неподвижно установленных на поверхности объекта;
- проведение постоянного дистанционного мониторинга;
- моделирование возможных повреждений рабочих поверхностей деталей (конструкций).
Хрупкое тензочувствительное покрытие позволяет повысить сверхчувствительность волн напряжения, и вследствие треска образующихся картин трещин, появляется возможность обнаружения дефектов на ранних стадиях образования и развития дефектов. Имеется возможность проводить постоянный дистанционный мониторинг за механизмом образования и развития дефектов в рабочих условиях.
Однако данный способ также обладает недостаточной чувствительностью, и имеет высокую стоимость. В этом способе предполагается использование локальных АЭ датчиков, количество которых для больших протяженных объектов может достигать сотен и даже тысяч штук. Например, акустико-измерительный комплекс «Лель/96», содержит до 96 датчиков (ПАЭ). Каждый из датчиков должен быть присоединен к измерительной аппаратуре, причем длина сигнального кабеля не должна превышать 2 м. Поэтому часто применяют встроенные в датчик (выносные) усилители. Аппаратурные и монтажные затраты при использовании этого способа, с учетом большого количества соединительных проводов и усилителей сигнала, очень большие. Дистанционное визуальное наблюдение за контролируемыми объектами также увеличивает стоимость данного метода. При этом необходимая чувствительность достигается только вблизи датчиков, а в удаленных от них зонах она существенно снижена из-за затухания АЭ сигнала с увеличением расстояния от зоны растрескивания до ближайшего датчика. Также растет затухание АЭ сигнала и уменьшается чувствительность, если увеличивается частота АЭ сигнала до сотен кГц, а значит регистрируется только низкочастотный спектр сигнала, следовательно, полученная информация не обладает достаточной достоверностью.
Известны также волоконно-оптические охранные устройства, например, на основе релеевского рассеяния (патент на полезную модель №128372, опубликовано 20.05.2013 г.), которые позволяют фиксировать механические вибрации по всей длине оптического кабеля (до сотен километров), с локализацией источника вибрации до 3-х метров. Оптический кабель является не локальным, а распределенным датчиком вибрации и одновременно выполняет функцию канала связи для передачи полезного сигнала. Однако данное устройство не применимо для АЭ неразрушающего контроля, поскольку также обладает недостаточной чувствительностью распределенного оптоволоконного датчика, требующего значительных механических вибраций для их регистрации. Такие вибрации могут возникать уже при разрушении объекта, а не в предшествующий разрушению период при пластической его деформации.
Техническим результатом заявляемого способа является повышение чувствительности при регистрации пластической деформации деталей инженерных сооружений на ранних стадиях образования и развития дефектов, по сравнению с обычным оптическим волокном без хрупкого покрытия. По сравнению с зонным контролем (например, с использованием локальных пьезоэлектрических датчиков), также повышается чувствительность, значительно расширяется частотный спектр регистрируемых АЭ сигналов, увеличивается зона мониторинга, снижаются аппаратурные затраты, и обеспечивается возможность контроля в широком температурном диапазоне. Улучшается раннее прогнозирование образования дефектов, что способствует предотвращению аварий и техногенных катастроф.
Сущность изобретения
На фиг. 1 изображена упрощенная структурная схема устройства, поясняющая способ волоконно-оптического акустико-эмиссионного контроля пластической деформации объекта. Схема содержит блок для формирования оптического зондирующего сигнала - оптический излучатель (2OИ), и устройство для непрерывного направленного ввода оптического сигнала (3УВ) в распределенный чувствительный элемент (4РЧЭ). В качестве оптического излучателя используется светодиод (для малых длин РЧЭ), а для длин РЧЭ более 30 метров, используется полупроводниковый лазер. РЧЭ закрепляется на объекте (инженерном сооружении), для чего при монтаже на него наносят с помощью экструдера специальный клей - полимеризирующийся материал, который также обеспечивает его фиксацию и механический контакт с контролируемым объектом. После затвердевания клей становится хрупким, и генерирует сигнал акустической эмиссии, растрескиваясь от механического воздействия, при деформации контролируемого объекта. Акустический эмиссионный сигнал зарождается в непосредственной близости от оптического волокна, и воздействует на него, меняя модовое поле, распространяемое по волокну. АЭ сигнал почти без затухания доходит до РЧЭ, т.к. хрупкий материал находится в непосредственной близости, на поверхности оптического волокна. Изменения модового поля, регистрируются на выходном торце волокна (по изменению статической спекл-структуры), и после пространственного фильтра (6ПФ), преобразуются блоком приема оптического излучения (7БПр) в электрические сигналы, которые поступают на блок обработки (8БО). Блок обработки сравнивает принимаемый сигнал с эталонным сигналом, который соответствует невозмущенному состоянию сенсора и детектирует опасные деформации контролируемого объекта. При определенном механическом воздействии на РЧЭ, превышающем установленный порог или обрыве РЧЭ, формируется сигнал тревоги размыканием электрической цепи. Для увеличения достоверности сигнал тревоги формируется при превышении заданного уровня у нескольких импульсов за короткий промежуток времени (время накопления импульсов). Полученная информация позволяет оценить величину и место деформации контролируемого объекта (5O). В качестве клея (хрупкого материала) используют эпоксидную смолу без добавления пластификатора, а в качестве датчика АЭ используется сенсорное оптическое волокно (распределенный чувствительный элемент - 4РЧЭ), работающее в многомодовом режиме. Источник и приемник оптического излучения запитаны от блоков питания (1БП). Конструктивно система мониторинга выполнена в виде двух функционально законченных герметичных блоков в модульном исполнении (блок излучателя, блок приема и регистрации), которые соединяются между собой распределенным чувствительным элементом (РЧЭ).
Были проведены многочисленные испытания заявляемого способа, с применением волоконно-оптической системы «СОВА» (http://www.hcbet.ru/index/volokonno_opticheskaja_sistema_tso_sova/0-14, http://www.pandia.ru/text/77/400/72984.php). Данная система позволяет контролировать пластическую деформацию протяженных объектов (до 1 км), по всей длине оптического волокна. Экспериментальные результаты показали высокую чувствительность заявляемого способа при определении пластической деформации крупных объектов, простоту реализации, технологичность, и экономическую эффективность, по сравнению с зонными методами акустической эмиссии.
Далее приведены некоторые результаты одного из экспериментов.
1. «Время накопления» импульсов, превышающих установленный «порог чувствительности»: 5, 10, 15, 20 с.
2. «Количество импульсов» за «время накопления»: 1, 2, 3, 4 шт.
3. После регистрации срабатывания формировалась пауза 200 мс (запрет считывания) для борьбы с колебательным процессом в оптическом кабеле.
4. Установка «времени накопления» импульсов и «количество импульсов» производилась двухпозиционным DIP переключателем.
Количество срабатываний | Время наблюдения с момента первого срабатывания (с) | ||
00 | 1 | 00 | 5 |
01 | 2 | 01 | 10 |
10 | 3 | 10 | 15 |
11 | 4 | 11 | 20 |
Краткое описание рисунка
На фигуре 1 изображена упрощенная структурная схема волоконно-оптического акустико-эмиссионного устройства для регистрации пластической деформации крупных инженерных сооружений, с применением охранной системы «Сова».
1 БП - блоки питания (2 шт.),
2 ОИ - оптический излучатель,
3 УВ - устройство ввода оптического сигнала,
4 РЧЭ - распределенный чувствительный элемент, покрытый хрупким затвердевшим клеем, обеспечивающим крепление датчика (РЧЭ) на объекте,
5 О - исследуемый объект (в эксперименте - бетонная балка на двух опорах),
6 ПФ - пространственный фильтр,
7 БПр - блок приема оптического излучения,
8 БО - блок обработки,
9 Н - нагрузка,
10 АЭ - наиболее вероятные зоны возникновения акустической эмиссии.
Claims (1)
- Оптоволоконный акустико-эмиссионный способ контроля пластических деформаций на ранних стадиях образования дефектов больших инженерных сооружений, включающий нанесение тензочувствительного материала, его отвердение и последующее определение зон опасных пластических деформаций по образующимся трещинам в хрупком материале, отличающийся тем, что генерируемые при растрескивании хрупкого материала сигналы акустической эмиссии фиксируются электронным блоком обработки сигналов, а для приема сигналов акустической эмиссии используют оптическую аппаратуру, включающую блок оптического излучения и блок приема и регистрации, которые соединяются между собой распределенным чувствительным элементом на базе оптического волокна, закрепленного на инженерном сооружении с помощью клейкого покрытия, нанесенного непосредственно на чувствительное оптическое волокно и обладающего большой хрупкостью после затвердевания.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016112815A RU2650799C2 (ru) | 2016-04-04 | 2016-04-04 | Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016112815A RU2650799C2 (ru) | 2016-04-04 | 2016-04-04 | Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016112815A RU2016112815A (ru) | 2017-10-05 |
RU2650799C2 true RU2650799C2 (ru) | 2018-04-17 |
Family
ID=60047506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016112815A RU2650799C2 (ru) | 2016-04-04 | 2016-04-04 | Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2650799C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712773C1 (ru) * | 2019-03-18 | 2020-01-31 | Сергей Яковлевич Самохвалов | Оптоволоконный акустико-эмиссионный способ с многослойным покрытием оптического волокна веществами с различной хрупкостью |
RU2752133C1 (ru) * | 2020-11-17 | 2021-07-23 | Общество с ограниченной ответственностью Научно-инновационный центр "Институт развития исследований", разработок и трансферта технологий" | Многоканальная волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712758C1 (ru) * | 2019-06-07 | 2020-01-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) | Способ исследования деформаций и напряжений методом технического зрения |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2271446C1 (ru) * | 2004-07-27 | 2006-03-10 | Общество с ограниченной ответственностью "ПетроЛайт" | Устройство для мониторинга виброакустической характеристики протяженного объекта |
RU2316757C1 (ru) * | 2006-04-11 | 2008-02-10 | ФГУП Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина | Способ определения мест предразрушения конструкций |
RU2008139435A (ru) * | 2008-09-25 | 2010-03-27 | Закрытое акционерное общество "ОРМА" (RU) | Система мониторинга технического состояния трубопровода и способ инсталляции сенсорного оптического волокна |
WO2013012849A1 (en) * | 2011-07-21 | 2013-01-24 | Fisher Controls International Llc | Control valve monitoring system |
RU2574218C2 (ru) * | 2014-05-29 | 2016-02-10 | Федеральное государственное бюджетное учреждение науки вычислительный центр Дальневосточного отделения Российской академии наук | Устройство для контроля характеристик сейсмоакустических датчиков |
-
2016
- 2016-04-04 RU RU2016112815A patent/RU2650799C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2271446C1 (ru) * | 2004-07-27 | 2006-03-10 | Общество с ограниченной ответственностью "ПетроЛайт" | Устройство для мониторинга виброакустической характеристики протяженного объекта |
RU2316757C1 (ru) * | 2006-04-11 | 2008-02-10 | ФГУП Сибирский научно-исследовательский институт авиации им. С.А. Чаплыгина | Способ определения мест предразрушения конструкций |
RU2008139435A (ru) * | 2008-09-25 | 2010-03-27 | Закрытое акционерное общество "ОРМА" (RU) | Система мониторинга технического состояния трубопровода и способ инсталляции сенсорного оптического волокна |
WO2013012849A1 (en) * | 2011-07-21 | 2013-01-24 | Fisher Controls International Llc | Control valve monitoring system |
RU2574218C2 (ru) * | 2014-05-29 | 2016-02-10 | Федеральное государственное бюджетное учреждение науки вычислительный центр Дальневосточного отделения Российской академии наук | Устройство для контроля характеристик сейсмоакустических датчиков |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712773C1 (ru) * | 2019-03-18 | 2020-01-31 | Сергей Яковлевич Самохвалов | Оптоволоконный акустико-эмиссионный способ с многослойным покрытием оптического волокна веществами с различной хрупкостью |
RU2752133C1 (ru) * | 2020-11-17 | 2021-07-23 | Общество с ограниченной ответственностью Научно-инновационный центр "Институт развития исследований", разработок и трансферта технологий" | Многоканальная волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии |
Also Published As
Publication number | Publication date |
---|---|
RU2016112815A (ru) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10345139B2 (en) | Non-isotropic acoustic cable | |
JP4471862B2 (ja) | 弾性波検出装置 | |
Schulz et al. | Long-gage fiber optic Bragg grating strain sensors to monitor civil structures | |
RU2650799C2 (ru) | Оптоволоконный акустико-эмиссионный способ определения пластических деформаций больших инженерных сооружений | |
US20150114121A1 (en) | Structure analyzing device and a structure analyzing method | |
JP4685129B2 (ja) | 非破壊探傷方法とその装置 | |
US11976962B2 (en) | Optical-fiber path searching method, optical-fiber path searching system, signal processing device, and program | |
Sabato | Pedestrian bridge vibration monitoring using a wireless MEMS accelerometer board | |
JP4471956B2 (ja) | 弾性波検出装置 | |
Elshafey et al. | Use of fiber Bragg grating array and random decrement for damage detection in steel beam | |
Sohn | Laser based structural health monitoring for civil, mechanical, and aerospace systems | |
Filograno et al. | Comparative Assessment and Experimental Validation of a Prototype Phase‐Optical Time‐Domain Reflectometer for Distributed Structural Health Monitoring | |
JP4214483B2 (ja) | Fbg超音波センサの被検体への取り付け構造及び取り付け方法 | |
RU2712773C1 (ru) | Оптоволоконный акустико-эмиссионный способ с многослойным покрытием оптического волокна веществами с различной хрупкостью | |
US6386037B1 (en) | Void detector for buried pipelines and conduits using acoustic resonance | |
JP4565093B2 (ja) | 可動式fbg超音波センサ | |
Mironovs et al. | Application case: Prototype of radar tower structural health monitoring system | |
JP3790815B2 (ja) | 光ファイバセンサを用いた材料の損傷評価方法及び装置 | |
JP2004117041A (ja) | 弾性波検出方法、その装置および検査方法 | |
Lin et al. | Piezo-Optical Active Sensing With PWAS And FBG Sensors For Structural Health Monitoring | |
RU2503879C1 (ru) | Устройство контроля движения объекта в трубопроводе | |
Mendoza et al. | Fully Integrated Hybrid “Piezoelectric/Fiber Optic” Acousto-Ultrasound Sensor Network (FAULSense™) SHM System | |
Fracarolli et al. | Study on optical detection of real partial discharges generated by different electrodes | |
Alamandala et al. | Damage Detection in Bridge-Weigh-In-Motion Structures using Fiber Bragg Grating Sensors | |
Liu et al. | Study on defects detection of a structure undergoing dynamic load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180405 |