RU2650611C1 - Бесконтактный радиоволновый способ измерения уровня жидкости в емкости - Google Patents

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости Download PDF

Info

Publication number
RU2650611C1
RU2650611C1 RU2017107059A RU2017107059A RU2650611C1 RU 2650611 C1 RU2650611 C1 RU 2650611C1 RU 2017107059 A RU2017107059 A RU 2017107059A RU 2017107059 A RU2017107059 A RU 2017107059A RU 2650611 C1 RU2650611 C1 RU 2650611C1
Authority
RU
Russia
Prior art keywords
electromagnetic waves
frequency
liquid
level
reservoir
Prior art date
Application number
RU2017107059A
Other languages
English (en)
Inventor
Дмитрий Владиленович Хаблов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2017107059A priority Critical patent/RU2650611C1/ru
Application granted granted Critical
Publication of RU2650611C1 publication Critical patent/RU2650611C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, дополнительно к этому выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости. 3 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.
Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,3 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.
Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала СРЧ: fp = 2ΔfML/cTM, где L - расстояние до поверхности контролируемой среды, ΔfM - максимальный диапазон перестройки частоты, TM - период линейной модуляции, с - скорость света. Из этой формулы следует
Figure 00000001
Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности δ, обусловленная конечным числом периодов сигнала разностной частоты за время периода модуляции, которое может отличаться от целого:
Figure 00000002
Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника, 1981, №12. С. 68-69).
Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала разностной частоты в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970, 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по частоте этого сигнала, определяемой по максимальному значению его частотного спектра.
Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую ΔfM, чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что ΔfM в этом случае равна 500 МГц, а ошибка δ равна 0.15 м при диапазоне измерения свыше 0.3 м. Поэтому, чтобы обеспечить приемлемую точность приходится увеличивать ΔfM. Обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005, №2. С. 21-25).
Вместе с тем, использование больших значений ΔfM приводит к увеличению дополнительных погрешностей из-за паразитной частотной модуляции от влияния дополнительных элементов в емкостях и стенок, от неравномерности амплитудно-частотной характеристики трактов, нелинейности модуляции задающего генератора и т.п. Все это вместе с увеличением стоимости широкополосного устройства приводит к снижению функциональных характеристик уровнемера.
Техническим результатом настоящего изобретения является повышение точности измерения.
Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, дополнительно к этому выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости.
На Фиг. 1 представлена структурная схема устройства, реализующего способ.
На Фиг. 2 изображены временные диаграммы сигналов на выходах первого и второго смесителя.
На Фиг. 3 изображена взаимно корреляционная функция между сигналами с выходов первого и второго смесителя в нормированном виде.
На фиг. 1 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, первый смеситель 6, второй смеситель 7, фазовращатель на угол π/4 8, вычислительное устройство 9.
Способ реализуется следующим образом.
Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону контролируемой поверхности 10. Отраженная электромагнитная волна принимается антенной 5 и передается на первый вход смесителя 6 напрямую, а на первый вход смесителя 7 через фазовращатель на угол π/4 8. На вторые входы смесителей поступает часть мощности падающей волны от направленного ответвителя 3. С выходов смесителей 6 и 7 сигналы разностных частот поступают в вычислительное устройство 9, куда также поступает синхронизирующий сигнал от модулятора 1.
Поскольку частоты принимаемых отраженных сигналов сдвинуты по фазе относительно друг друга на угол π/4, то и сигналы разностной частоты на выходах смесителей также будут сдвинуты на эту фазу. В результате на выходе первого и второго смесителей образуются СРЧ, сдвинутые между собой по фазе на π/4 (см. кривые S1(t) и S2(t) на фиг. 2). Если при этом использовать временную выборку N = 2000 значений (как на фиг. 2), с длительностью каждой выборки - Δt, то функция r12(t3) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки t3 за время TM = NΔt будет выглядеть следующим образом:
Figure 00000003
В нормированном дискретном виде коэффициента взаимной корреляции r12(j) от дискретного сдвига j функция (5) она примет вид:
Figure 00000004
График этой функции представлен на Фиг. 3. В процессе измерения оба сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода частоты сигнала разностной частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (4) tmax = jmaxΔt, как показано на Фиг. 3. Далее можно определить разностную частоту fp = 1/4tmax, а затем по формуле (1) вычислить расстояние от датчика до поверхности жидкости, соответствующее уровню L:
Figure 00000005
Таким образом, ошибка, связанная с неточным определением разностной частоты из-за стохастического характера спектра СРЧ и его дискретной природой при измерении уровня, устраняется, а точность измерения по сравнению с прототипом увеличивается. Особенно это преимущество достигается при узкополосных датчиках с небольшим диапазоном ΔfM, когда ошибка δ особенно велика в соответствии с формулой (2). А поскольку стоимость устройства в целом сильно возрастает при увеличении ширины полосы пропускания всех компонентов, то данный способ позволяет конструировать датчики с меньшей себестоимостью, чем построенные с применением способа-прототипа.

Claims (1)

  1. Бесконтактный радиоволновый способ измерения уровня жидкости в емкости, заключающийся в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, отличающийся тем, что выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости.
RU2017107059A 2017-03-03 2017-03-03 Бесконтактный радиоволновый способ измерения уровня жидкости в емкости RU2650611C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017107059A RU2650611C1 (ru) 2017-03-03 2017-03-03 Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017107059A RU2650611C1 (ru) 2017-03-03 2017-03-03 Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Publications (1)

Publication Number Publication Date
RU2650611C1 true RU2650611C1 (ru) 2018-04-16

Family

ID=61977037

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017107059A RU2650611C1 (ru) 2017-03-03 2017-03-03 Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Country Status (1)

Country Link
RU (1) RU2650611C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200363521A1 (en) * 2018-02-02 2020-11-19 Endress+Hauser SE+Co. KG Method for detecting potential faulty states on an fmcw-based filling level measuring apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7823446B2 (en) * 2006-11-06 2010-11-02 Rosemount Tank Radar Ab Pulsed radar level gauging with relative phase detection
RU2521729C1 (ru) * 2012-12-07 2014-07-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновой способ измерения уровня жидкости в емкости
RU2551260C1 (ru) * 2014-05-23 2015-05-20 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновый способ определения уровня жидкости в емкости
US20160315628A1 (en) * 2015-04-22 2016-10-27 Endress + Hauser Gmbh + Co. Kg Frequency Generator with Two Voltage Controlled Oscillators
US9494676B2 (en) * 2006-02-13 2016-11-15 Vega Grieshaber Kg Paired ZF sampling for pulse running time filling level sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494676B2 (en) * 2006-02-13 2016-11-15 Vega Grieshaber Kg Paired ZF sampling for pulse running time filling level sensor
US7823446B2 (en) * 2006-11-06 2010-11-02 Rosemount Tank Radar Ab Pulsed radar level gauging with relative phase detection
RU2521729C1 (ru) * 2012-12-07 2014-07-10 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновой способ измерения уровня жидкости в емкости
RU2551260C1 (ru) * 2014-05-23 2015-05-20 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Бесконтактный радиоволновый способ определения уровня жидкости в емкости
US20160315628A1 (en) * 2015-04-22 2016-10-27 Endress + Hauser Gmbh + Co. Kg Frequency Generator with Two Voltage Controlled Oscillators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200363521A1 (en) * 2018-02-02 2020-11-19 Endress+Hauser SE+Co. KG Method for detecting potential faulty states on an fmcw-based filling level measuring apparatus
US11650302B2 (en) * 2018-02-02 2023-05-16 Endress+Hauser SE+Co. KG Method for detecting potential faulty states on an FMCW-based filling level measuring apparatus

Similar Documents

Publication Publication Date Title
US8098193B2 (en) Digitally controlled UWB millimeter wave radar
EP3077777B1 (en) Multi-mode pulsed radar providing automatic transmit pulse signal control
US8730093B2 (en) MFPW radar level gauging with distance approximation
US9746366B2 (en) Radar level gauging
CN107407587B (zh) 使用辅助参考信号对之间的相关的液位测量
US9134406B2 (en) Method and device for measuring a change in distance
RU2504739C1 (ru) Устройство для определения уровня жидкости в емкости
JP5932746B2 (ja) 媒質境界の位置計測システム
RU2650611C1 (ru) Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
RU2504740C1 (ru) Способ измерения уровня жидкости в емкости
RU2551260C1 (ru) Бесконтактный радиоволновый способ определения уровня жидкости в емкости
RU2649665C1 (ru) Бесконтактный радиоволновый уровнемер
RU2521729C1 (ru) Бесконтактный радиоволновой способ измерения уровня жидкости в емкости
RU2611333C1 (ru) Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
RU2626386C1 (ru) Способ измерения уровня жидкости и сыпучих сред в емкости
Dahl et al. Evaluation of Range Doppler Processing Algorithms for Tank Level Probing Radar
RU2528131C1 (ru) Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов
RU2601283C2 (ru) Бесконтактный радиоволновый способ измерения уровня жидкости в емкости
RU2431155C1 (ru) Способ измерения расстояния радиодальномером с частотной модуляцией зондирующих радиоволн
RU2423723C1 (ru) Способ измерения расстояния радиодальномером с частотной модуляцией зондирующих радиоволн (варианты)
RU2558631C1 (ru) Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости
RU2658558C1 (ru) Способ измерения расстояния до контролируемой среды с помощью волноводного лчм локатора
RU2575767C1 (ru) Способ измерения диэлектрической проницаемости жидкости в емкости
RU2534451C2 (ru) Радиоволновое фазовое устройство для определения уровня жидкости в емкости
RU2446407C1 (ru) Способ определения места повреждения линий электропередачи и связи и устройство для его осуществления