RU2649148C1 - Способ получения ацетиленидов олова - Google Patents

Способ получения ацетиленидов олова Download PDF

Info

Publication number
RU2649148C1
RU2649148C1 RU2017121723A RU2017121723A RU2649148C1 RU 2649148 C1 RU2649148 C1 RU 2649148C1 RU 2017121723 A RU2017121723 A RU 2017121723A RU 2017121723 A RU2017121723 A RU 2017121723A RU 2649148 C1 RU2649148 C1 RU 2649148C1
Authority
RU
Russia
Prior art keywords
tin
iodine
phenylethynyl
interaction
temperature
Prior art date
Application number
RU2017121723A
Other languages
English (en)
Inventor
Андрей Сергеевич Левашов
Дмитрий Сергеевич Бурый
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ")
Priority to RU2017121723A priority Critical patent/RU2649148C1/ru
Application granted granted Critical
Publication of RU2649148C1 publication Critical patent/RU2649148C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

Изобретение относится к способу получения ацетиленидов олова общей формулы (PhC≡C)nSnI4-n, где n=1-4. Способ включает взаимодействие сплава олова с йодпроизводным в среде органического растворителя при нагревании, при этом используют сплав олова с 1,5% цинка. В качестве йодпроизводного используют 2-йод-1-фенилацетилен. Взаимодействие проводят в среде ароматического или эфирного растворителя в течение 5-8 часов при температуре 130-145°C. Изобретение позволяет снизить температуру взаимодействия, сократить время получения конечного продукта и повысить его выход. 5 пр.

Description

Изобретение относится к способу получения ацетиленидов олова общей формулы
Figure 00000001
где n=1-4.
Ацетилениды олова находят широкое применение в органическом синтезе. В частности, тетраацелинелиды олова и йодацетилениды олова могут быть использованы для синтеза диарилацетиленов [Levashov A.S. et al. Tetraalkynylstannanes in the Stille cross coupling reaction: a new effective approach to arylalkynes // New J. Chem. 2017. Vol. 41. P. 2910-2918].
Известны способы получения ацетиленидов олова взаимодействием галогенидов олова с ацетиленидами активных металлов (лития, натрия или магния) [Pant B.C., Reiff H.F. Organometallic acetylenes of group iva elements. Synthesis and spectral data of tetrakis(tert-Butylethynyl) derivatives // J. Organomet. Chem. 1968. Vol. 15, №LP. 65-68; Hartbaum C, Roth G., Fischer H. Polynuclear Complexes with Propynylidene C3 -Bridges: General Synthetic Route to Bis-, Tris-, and Tetrakis (ethynylcarbene) Complexes // Eur. J. Inorg. Chem. 1998. Vol. 1998, №2. P. 191-202; Hartmann H., Ahrens J.U. Uber Germanium-acetylen-Verbindungen // Angew. Chemie. WILEY-VCH Verlag GmbH, 1958. Vol. 70, №3. P. 75-75]. Недостатком данных способов является сложность получения исходных ацетиленидов металлов, а также их высокая активность, что затрудняет работу с ними.
Известен способ получения ацетиленидов олова взаимодействием галогенидов олова с 1-алкинами в присутствии хлорида цинка и амина [патент РФ №2317993, МПК C07F 7/22, Левашов А.С., Андреев А.А., Комаров Н.В. Способ получения три- и тетраорганилалкинилолова, заявка №2006126447/04 заявл. 20.07.2006 Россия. Опубликовано 27.02.2008, Бюл. №6]. Недостатком данного способа является использование легкогидролизуемого тетрахлорида олова.
В промышленности оловоорганические соединения наиболее часто получают взаимодействием алкилгалогенидов с металлическим оловом или его сплавами. Например, известен способ получения оловоалкилгалоидных соединений взаимодействиtv оловянно-магниевого сплава (71% Sn и 29% Mg) с парами галоидного алкила, в присутствии инертного разбавителя (пары циклогексана или ксилола) и каталитических количеств уксуснокислой ртути при температуре 170-300°С. При этом, разбавление паров галоидного алкила парами инертного растворителя дает возможность повысить выход оловоалкилгалоидных соединений до 47% и снизить количество диалкилоловодигалогенида (тетраалкилолово в этом случае не образуется), который представляет меньший интерес, чем триалкилоловогалогенид [а.с. №137519, Способ получения оловоалкилгалоидных соединений. Лайне Л.В, Шостаковский М.Ф., Котрелев В.Н., Калинина С.П., Кузнецова Г.И, Борисова А.И. - заявл. 24.08.1960. - БИ №8 за 1961 г.].
Известен способ получения тетраалкилолова взаимодействием порошков олова и магния с алкилхлоридами в присутствии йодида тетрабутиламмония при температуре 160-170°С [Nicholson J.W., Douek J.A. A new route to tetraorganotin compounds // J. Organomet. Chem. 1982. Vol. 233. P. 169-172].
Известен способ получения тетраалкилолова и триалкилхлоролова взаимодействием сплава олова с натрием, содержащим 2% цинка, с алкилхлоридом при температуре 160-170°C с общим выходом 25-30% [Zietz J.R. et al. Synthesis of Higher Alkyltin Compounds from Sodium-Tin Alloys // J. Org. Chem. 1957. Vol. 22. P. 60-62].
Наиболее близким аналогом к предлагаемому техническому решению является способ получения оловоорганических соединений взаимодействием алкилгалогенидов со сплавом олова, содержащим 4-5% меди в органическом растворителе при температуре 160°С в течение 12 часов с выходами до 72% [Zakharkin L.I., Okhlobystin O.Y. The synthesis of organotin compounds from alkyl halies and metallic tin in solvating solvents // Russ. Chem. Bull. 1963. Vol. 12, №12. P. 2027-2029]. В качестве органического растворителя используют диметиловой эфир диэтиленгликоля. Использование других растворителей приводит к резкому снижению выхода или полному отсутствию взаимодействия. Недостатком данного метода является использование высококипящего растворителя, что вызывает сложности при очистке полученных веществ.
Следует отметить, что несмотря на большое количество способов получения оловоорганических соединений прямым синтезом (т.е. взаимодействием металлического олова или его сплавов) и их промышленное применение, до настоящего времени не известны способы получения ацетиленидов олова прямым синтезом.
Техническим результатом предлагаемого способа является получение ацетиленидов олова, снижение температуры взаимодействия, сокращение времени получения конечного продукта и повышение его выхода.
Для достижения технического результата предлагается проводить взаимодействие сплава олова, содержащего 1,5% цинка с 2-йод-1-фенилацетиленом при температуре 130-145°С в среде ароматического или эфирного растворителя в течение 5-8 часов. Взаимодействие протекает по схеме:
Figure 00000002
При этом происходит образование тетра(фенилэтинил)олова, трис(фенилэтинил)йодолова, ди(фенилэтинил)дийодолова, фенилэтинилтрийодолова и тетрайодида олова. Тетрайодид олова отделяют фильтрованием, растворитель упаривают в вакууме. Выход ацетиленидов олова составляет 45-85%.
Пример 1. Взаимодействие 2-йод-1-фенилацетилена со сплавом олова, содержащим 1,5% цинка
В ампулу помещают навеску порошка сплава олова с цинком массой 0,1360 г (1,14 моль) и 2-йод-1-фенилацетилен массой 0,5235 г (2,3 ммоль) в 5 мл ксилола. Ампулу запаивают. Реакционную смесь нагревают в ампуле при температуре 145°С в течение 8 часов. Тетрайодид олова отфильтровывают. По результатам анализа методом спектроскопии 119Sn ЯМР в растворе присутствует тетра(фенилэтинил)олово (-332,0 м.д.), трис(фенилэтинил)йодолово (-472,9 м.д.), ди(фенилэтинил)дийодолово (-743,5 м.д.), фенилэтинилтрийодолово (-1177,5 м.д.). Полученный раствор упаривают, суммарный выход оловоацетиленов составил 85%.
Пример 2. Взаимодействие 2-йод-1-фенилацетилена со сплавом олова, содержащим 1,5% цинка
В ампулу помещают навеску порошка сплава олова с цинком массой 0,1360 г (1,14 моль) и 2-йод-1-фенилацетилен массой 0,5235 г (2,3 ммоль) в 5 мл диоксана. Ампулу запаивают. Реакционную смесь нагревают в ампуле при температуре 130°С в течение 8 часов. Тетрайодид олова отфильтровывают. По результатам анализа методом спектроскопии 119Sn ЯМР в растворе присутствует тетра(фенилэтинил)олово (-332,0 м.д.), трис(фенилэтинил)йодолово (-472,9 м.д.), ди(фенилэтинил)дийодолово (-743,5 м.д.), фенилэтинилтрийодолово (-1177,5 м.д.). Полученный раствор упаривают, суммарный выход оловоацетиленов составил 45%.
Пример. 3 Взаимодействие 2-йод-1-фенилацетилена со сплавом олова, содержащим 1,5% цинка
В ампулу помещают навеску порошка сплава олова с цинком массой 0,1360 г (1,14 моль) и 2-йод-1-фенилацетилен массой 0,5235 г (2,3 ммоль) в 5 мл толуола. Ампулу запаивают. Реакционную смесь нагревают в ампуле при температуре 130°С в течение 5 часов. Тетрайодид олова отфильтровывают. По результатам анализа методом спектроскопии 119Sn ЯМР в растворе присутствует тетра(фенилэтинил)олово (-332,0 м.д.), трис(фенилэтинил)йодолово (-472,9 м.д.), ди(фенилэтинил)дийодолово (-743,5 м.д.), фенилэтинилтрийодолово (-1177,5 м.д.). Полученный раствор упаривают, суммарный выход оловоацетиленов составил 66%.
Пример 4. Взаимодействие 2-йод-1-фенилацетилена со сплавом олова, содержащим 1,5% цинка
В ампулу помещают навеску порошка сплава олова с цинком массой 0,1360 г (1,14 моль) и 2-йод-1-фенилацетилен массой 0,5235 г (2,3 ммоль) в 5 мл ксилола. Ампулу запаивают. Реакционную смесь нагревают в ампуле при температуре 140°С в течение 8 часов. Тетрайодид олова отфильтровывают. По результатам анализа методом спектроскопии 119Sn ЯМР в растворе присутствует тетра(фенилэтинил)олово (-332,0 м.д.), трис(фенилэтинил)йодолово (-472,9 м.д.), ди(фенилэтинил)дийодолово (-743,5 м.д.), фенилэтинилтрийодолово (-1177,5 м.д.). Полученный раствор упаривают, суммарный выход оловоацетиленов составил 78%.
Пример 5. Взаимодействие 2-йод-1-фенилацетилена с оловом, не содержащим цинк
В ампулу помещают навеску порошка олова массой 0,1360 г (1,14 моль) и 2-йод-1-фенилацетилен массой 0,5235 г (2,3 ммоль) в 5 мл толуола. Ампулу запаивают. Реакционную смесь нагревают в ампуле при температуре 130°С в течение 150 часов. Тетрайодид олова отфильтровывают. По результатам анализа методом спектроскопии 119Sn ЯМР в растворе присутствует тетра(фенилэтинил)олово (-332,0 м.д.), трис(фенилэтинил)йодолово (-472,9 м.д.), ди(фенилэтинил)дийодолово (-743,5 м.д.), фенилэтинилтрийодолово (-1177,5 м.д.). Полученный раствор упаривают, суммарный выход оловоацетиленов составил 23%.
Как видно из приведенных примеров, реакция протекает в ароматических и эфирных растворителях при температуре 130-145°С. При использовании металлического олова без добавки цинка реакция протекает гораздо медленнее и выход продуктов значительно снижается (пример 5).
Предлагаемый способ является новым, условия протекания реакции обеспечивают снижение температуры взаимодействия, сокращение времени получения конечного продукта и повышение его выхода. Таким образом, заявляемый способ удовлетворяет критерию изобретательский уровень, т.е. заявляемый способ является охраноспособным.

Claims (4)

  1. Способ получения ацетиленидов олова общей формулы
  2. (PhC≡C)nSnI4-n
  3. где n=1-4,
  4. включающий взаимодействие сплава олова с йодпроизводным в среде органического растворителя при нагревании, отличающийся тем, что используют сплав олова с 1,5% цинка, в качестве йодпроизводного используют 2-йод-1-фенилацетилен, взаимодействие проводят в среде ароматического или эфирного растворителя в течение 5-8 часов при температуре 130-145°C.
RU2017121723A 2017-06-20 2017-06-20 Способ получения ацетиленидов олова RU2649148C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121723A RU2649148C1 (ru) 2017-06-20 2017-06-20 Способ получения ацетиленидов олова

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121723A RU2649148C1 (ru) 2017-06-20 2017-06-20 Способ получения ацетиленидов олова

Publications (1)

Publication Number Publication Date
RU2649148C1 true RU2649148C1 (ru) 2018-03-30

Family

ID=61867222

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121723A RU2649148C1 (ru) 2017-06-20 2017-06-20 Способ получения ацетиленидов олова

Country Status (1)

Country Link
RU (1) RU2649148C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2317993C1 (ru) * 2006-07-20 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (КубГУ) Способ получения три- и тетраорганилалкинилолова

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2317993C1 (ru) * 2006-07-20 2008-02-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (КубГУ) Способ получения три- и тетраорганилалкинилолова

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WRACKMEYER B. et al., Exchange Reaktions between 1-Alkynyltin Compounds, Studied by 13 C, 29 Si and 119 Sn NMR Multinuclear NMR of Tetrakis(trimethylsilylethynyl)lead and the Crystal Structures of two Tetra-1-alkynyltin Compounds, Main Group Met. Chem., 1993, v. 16, p. 445-461.. *
ZAKHARKIN L.I. et al., The synthesis of organotin compounds from alkyl halies and metallic tin in solvating solvents, Russ. Chem. Bull., 1963, v. 12, no. 12, p. 2027-2029. *

Similar Documents

Publication Publication Date Title
JP6349246B2 (ja) 環状シラン中性錯体の製造方法および環状水素化シランもしくは環状有機シランの製造方法
US9682866B2 (en) Neutral complex of cyclic silane, manufacturing method therefor, and method for manufacturing cyclic hydrogenated silane or cyclic organic silane
JP5999596B2 (ja) カルボジイミド化合物の製造方法
RU2649148C1 (ru) Способ получения ацетиленидов олова
Ujam et al. Further studies on the dialkylation chemistry of [Pt2 (μ-S) 2 (PPh3) 4] with activated alkyl halides RC (O) CH2X (X= Cl, Br)
Sau et al. Synthesis of novel spirocyclic penta-and hexacoordinated germanium (IV) complexes
US4174346A (en) Process for preparing organotin compounds
US2675397A (en) Process of preparing alkyl or aryl tin compounds
Petrar et al. Novel stable phosphastannapropene derivatives. Synthesis and characterization
EP3184532B1 (en) Process for making alkyltin trihalides and their use
RU2317993C1 (ru) Способ получения три- и тетраорганилалкинилолова
Beckmann et al. A novel route for the preparation of dimeric tetraorganodistannoxanes
US2971017A (en) Process for the preparation of cyclopentadienyl indium compounds
US3422129A (en) Preparation of lithioferrocenes
Misra et al. Electrophilic substitution of acetyltrimethylsilane with tellurium (IV) halides: A synthetic route to 3-methyl-5-(trimethylsilyl)-1, 2-oxatellurol-1-ium halides
US3211769A (en) Process for producing alkyltin compounds
US2935536A (en) Production of organo-halides
US3564033A (en) Tricyclohexyltin halide process
US20060247457A1 (en) Method for the synthesis of methyl-tri-oxo-rhenium
SU441261A1 (ru) Способ получени диорганодигалогенгерманов
JPS5921875B2 (ja) ジアルキル錫ジハライドの製造法
US3647833A (en) Tricyclohexyltin halide process
EP3230271B1 (en) Process for the preparation of 4-phenyldibenzothiophene
US3089886A (en) Cyclopentadienyl and di-ethyl malonyl titanium compounds
US3412120A (en) Cyanoalkylenetin sulfides and the preparation thereof