RU2648125C1 - Soundproofing enclosure - Google Patents
Soundproofing enclosure Download PDFInfo
- Publication number
- RU2648125C1 RU2648125C1 RU2017111969A RU2017111969A RU2648125C1 RU 2648125 C1 RU2648125 C1 RU 2648125C1 RU 2017111969 A RU2017111969 A RU 2017111969A RU 2017111969 A RU2017111969 A RU 2017111969A RU 2648125 C1 RU2648125 C1 RU 2648125C1
- Authority
- RU
- Russia
- Prior art keywords
- sound
- layer
- absorbing
- perforated
- smooth
- Prior art date
Links
- 239000011358 absorbing material Substances 0.000 claims abstract description 29
- 239000007787 solid Substances 0.000 claims abstract description 22
- -1 for example Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000009423 ventilation Methods 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 239000006260 foam Substances 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 7
- 239000012780 transparent material Substances 0.000 claims abstract description 7
- 238000010276 construction Methods 0.000 claims abstract description 6
- 238000013021 overheating Methods 0.000 claims abstract description 5
- 239000011490 mineral wool Substances 0.000 claims description 9
- 239000006096 absorbing agent Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 239000011491 glass wool Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000011152 fibreglass Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 3
- 210000002268 wool Anatomy 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 5
- 238000009434 installation Methods 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 abstract description 2
- 239000004744 fabric Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000009413 insulation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/8218—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only soundproof enclosures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B1/8409—Sound-absorbing elements sheet-shaped
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16P—SAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
- F16P1/00—Safety devices independent of the control and operation of any machine
- F16P1/02—Fixed screens or hoods
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8423—Tray or frame type panels or blocks, with or without acoustical filling
- E04B2001/8433—Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
- E04B2001/8457—Solid slabs or blocks
- E04B2001/8476—Solid slabs or blocks with acoustical cavities, with or without acoustical filling
- E04B2001/848—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
- E04B2001/8485—Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the opening being restricted, e.g. forming Helmoltz resonators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Building Environments (AREA)
Abstract
Description
Изобретение относится к звукоизоляции оборудования со средствами широкополосного шумоглушения и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.The invention relates to sound insulation of equipment with means of broadband sound attenuation and can be used in all sectors of the economy as a means of protection against noise.
Наиболее близким техническим решением к заявляемому объекту является акустический кожух для оборудования по патенту РФ №2311286 (прототип), содержащий корпус и расположенные внутри его демпфирующие элементы, а также шумопоглощающая вставка со звукопоглощающим материалом.The closest technical solution to the claimed object is an acoustic casing for equipment according to the patent of the Russian Federation No. 2311286 (prototype), containing a housing and damping elements located inside it, as well as a sound-absorbing insert with sound-absorbing material.
Недостатком известных устройств является сравнительно невысокая эффективность шумоглушения за счет отсутствия глушителей шума в отверстиях кожуха, предназначенных для соблюдения теплового баланса.A disadvantage of the known devices is the relatively low efficiency of sound attenuation due to the absence of silencers in the holes of the casing, designed to maintain thermal balance.
Технический результат - повышение эффективности глушения шума.The technical result is an increase in the efficiency of noise suppression.
Это достигается тем, что в звукоизолирующем ограждении, выполненном в форме прямоугольного параллелепипеда, охватывающего технологическое оборудование, технологическое оборудование установлено на по крайней мере четыре виброизолирующие опоры, которые базируются на перекрытии здания, при этом между основанием технологического оборудования и вырезом в нижней грани прямоугольного параллелепипеда выполнен зазор, предназначенный для исключения передачи вибраций от технологического оборудования к звукоизолирующему ограждению, причем в звукоизолирующем ограждении выполнены вентиляционные каналы для устранения перегрева оборудования, при этом внутренние стенки вентиляционных каналов обработаны звукопоглощающим материалом и акустически прозрачным материалом типа «Повиден», при этом на внутренней поверхности звукоизолирующего ограждения закреплен звукопоглощающий элемент в виде гладкой и перфорированной поверхностей, между которыми размещена многослойная звукопоглощающая конструкция, которая выполнена сложной формы и представляет собой чередование сплошных участков и пустотелых участков, при этом сплошные участки образованы гладкими призматическими поверхностями, расположенными перпендикулярно гладкой и перфорированной поверхностям и закрепленными к гладкой поверхности, а также двумя связанными с ними и наклонными относительно гладких призматических поверхностей поверхностями сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, а к гладкой поверхности прикреплены рельефные звукопоглощающие элементы, например в виде тетраэдров, причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», а пустотелые участки заполнены звукопоглощающим материалом, например строительно-монтажной пеной, причем звукопоглощающий элемент, закрепленный на внутренней поверхности звукоизолирующего ограждения, выполнен в виде сплошной, жесткой и перфорированной стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде четырех слоев: первый слой, звукоотражающий, выполнен сплошным и профилированным, сложного многогранного профиля, состоящий из наклонных граней, соединенных в нижней части горизонтальными гранями, а между гранями и жесткой стенкой расположен второй слой из звукопоглощающего материала, при этом между перфорированной стенкой и звукоотражающим слоем, с воздушным промежутком, относительно звукоотражающего слоя, расположен третий прерывистый слой из мягкого звукопоглощающего материала, который закреплен на перфорированной стенке, и выполнен в виде многогранников, с эквидистантными и конгруэнтными поверхностями, расположенными под соответствующими гранями звукоотражающего слоя, при этом сплошной звукоотражающий профилированный слой выполнен из материала, у которого коэффициент отражения звука больше, чем коэффициент звукопоглощения, причем коэффициент перфорации перфорированной стенки принимается равным или более 0,25.This is achieved by the fact that in a soundproof enclosure made in the form of a rectangular parallelepiped covering technological equipment, the technological equipment is installed on at least four vibration-isolating supports based on the building floor, while between the base of the technological equipment and the cutout in the lower face of the rectangular parallelepiped made a gap designed to exclude the transmission of vibrations from process equipment to a soundproof fence, and ventilation ducts are made in the soundproof fence to eliminate overheating of the equipment, while the inner walls of the ventilation ducts are treated with sound-absorbing material and acoustically transparent material of the “Poviden” type, while the sound-absorbing element is fixed on the inner surface of the soundproof fence in the form of smooth and perforated surfaces, between which there is a multilayer sound-absorbing design, which is made of complex shape and is an alternation of solid sections and hollow sections, while the solid sections are formed by smooth prismatic surfaces located perpendicular to the smooth and perforated surfaces and fixed to the smooth surface, as well as two surfaces of complex shape associated with them and inclined relatively smooth prismatic surfaces having a smooth surface on one side, and on the other hand, serrated or wavy, and embossed sound-absorbing elements, for example in the form of tetrahedrons, are attached to a smooth surface The inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or polymer like Poviden, and the hollow sections are filled with sound-absorbing material, such as construction foam, with a sound-absorbing element fixed to the inside the surface of the soundproof fence, made in the form of a solid, rigid and perforated walls, between which is located a sound-absorbing element, made in the form of four layers: the first layer, sound-reflecting, is made continuous and profiled, of a complex multifaceted profile, consisting of inclined faces connected at the bottom by horizontal faces, and between the faces and the rigid wall there is a second layer of sound-absorbing material, while between the perforated wall and a sound-reflecting layer, with an air gap relative to the sound-reflecting layer, there is a third intermittent layer of soft sound-absorbing material, which is mounted on a perforated steel It was made in the form of polyhedra, with equidistant and congruent surfaces located under the corresponding faces of the sound-reflecting layer, the continuous sound-reflecting profiled layer is made of a material whose sound reflection coefficient is greater than the sound absorption coefficient, and the perforation coefficient of the perforated wall is taken to be equal to or more than 0.25.
На фиг. 1 представлена схема звукоизолирующего ограждения, на фиг. 2 - схема звукопоглощающего элемента 7, закрепленного на внутренней поверхности звукоизолирующего ограждения 6, на фиг. 3 - вариант выполнения звукопоглощающего элемента 7.In FIG. 1 is a diagram of a soundproof fence, FIG. 2 is a diagram of a sound-absorbing
Звукоизолирующее ограждение (фиг. 1) предназначено для его установки на виброакустически активное технологическое оборудование 1 путем укрытия. Охватывающее технологическое оборудование 1, звукоизолирующее ограждение 6 установлено на перекрытии 5 здания посредством по крайней мере четырех виброизолирующих опор 12 и 13, выполненных из упругого материала, например мягкой резины, полиуретана. Звукоизолирующее ограждение 6 облицовано с внутренней стороны звукопоглощающим элементом 7 (фиг. 2) и имеет форму прямоугольного параллелепипеда с вырезом в его нижней грани под основание 2 технологического оборудования 1. Основание 2 технологического оборудования 1 установлено на по крайней мере четыре виброизолирующие опоры 3 и 4, которые базируются на перекрытии 5 производственного здания, при этом между основанием 2 технологического оборудования 1 и вырезом в нижней грани прямоугольного параллелепипеда выполнен зазор, предназначенный для исключения передачи вибраций от технологического оборудования 1 к звукоизолирующему ограждению 6. В звукоизолирующем ограждении 6 выполнены вентиляционные каналы 8 и 9 для устранения перегрева оборудования, при этом внутренние стенки 10 вентиляционных каналов 8 и 9 обработаны звукопоглощающим материалом 11 и акустически прозрачным материалом типа «повиден». Расчет требуемой звукоизоляции кожуха, как негерметичного ограждения, дБ, проводят по следующей зависимости:Sound insulation fence (Fig. 1) is intended for its installation on vibro-acoustically active
, ,
где Rкож.тр - требуемая звукоизоляция кожуха, дБ, R si - средняя звукоизоляция сплошной части ограждений i-гo кожуха, дБ; - реверберационный коэффициент звукопоглощения внутри i-гo кожуха; где αо - реверберационный коэффициент звукопоглощения для ограждений без звукопоглощающего материала; αм - реверберационный коэффициент звукопоглощения звукопоглощающего материала; Σ Sм - площадь нанесения звукопоглощающего материала, м2, τi - энергетический коэффициент прохождения звука через глушитель технологического отверстия (для простого отверстия τi=1, причем простым отверстием считается отверстие без глушителя шума, как в нашем случае); ΣSoi - суммарная площадь технологических отверстий для i-гo кожуха машины, м2; ΣSi - суммарная площадь сплошной части ограждения, м2.where R leather.tr is the required sound insulation of the casing, dB, R si is the average sound insulation of the solid part of the fencing of the i-th casing, dB; - reverberation coefficient of sound absorption inside the i-th casing; where α about - the reverberation coefficient of sound absorption for fences without sound-absorbing material; α m - reverberation coefficient of sound absorption of sound-absorbing material; Σ S m is the area of application of sound-absorbing material, m 2 , τ i is the energy coefficient of sound transmission through the silencer of the technological hole (for a simple hole, τ i = 1, and a simple hole is considered to be a hole without a silencer, as in our case); ΣS oi is the total area of technological holes for the i-th machine casing, m 2 ; ΣS i - total area of the solid part of the fence, m 2 .
На фиг. 2 изображена схема звукопоглощающего элемента 7, закрепленного на внутренней поверхности звукоизолирующего ограждения 6.In FIG. 2 shows a diagram of a sound-absorbing
Звукопоглощающий элемент содержит гладкую 14 и перфорированную 15 поверхности, между которыми размещена многослойная звукопоглощающая конструкция.The sound-absorbing element contains a smooth 14 and perforated 15 surface, between which is placed a multilayer sound-absorbing structure.
Звукопоглощающая конструкция выполнена сложной формы и представляет собой чередование сплошных участков 16 и пустотелых участков 17. Сплошные участки 16, в свою очередь, образованы гладкими призматическими поверхностями 18, расположенными перпендикулярно гладкой 14 и перфорированной 15 поверхностям и закрепленными к гладкой 14 поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей 18, поверхностями 19 сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, или образованную сферическими участками форму (на чертеже не показано) поверхность, причем вершины зубьев или выступов обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной 15 поверхности. К гладкой 14 поверхности прикреплены рельефные звукопоглощающие элементы 20, например в виде тетраэдров.The sound-absorbing structure is made of complex shape and is an alternation of
В качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена.A material based on aluminum-containing alloys was used as a sound-absorbing material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, for example foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene.
Материал перфорированной поверхности выполнен из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден». Пустотелые участки 17 заполнены звукопоглощающим материалом, например строительно-монтажной пеной.The material of the perforated surface is made of solid, decorative vibration-damping materials, for example, agate, antivibrate, and shvim plastic compounds, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or "Poviden" type polymer.
Звукопоглощающий элемент 7 работает следующим образом.Sound-absorbing
Звуковая энергия от технологического оборудования 1, пройдя через слой перфорированной поверхности 15 и слой 17 звукопоглощающего элемента, выполненный из вспененного звукопоглощающего материала (строительно-монтажной пены), падает на звукопоглощающие слои 16, 19, 20, где происходит рассеивание звуковой энергии за счет перехода ее в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Коэффициент перфорации перфорированной поверхности принимается равным или более 0,25.Sound energy from
Звукоизолирующее ограждение работает следующим образом.Sound insulation fence works as follows.
Звукоизолирующее ограждение 6 (фиг. 1) устанавливают на перекрытии 5 здания посредством по крайней мере четырех виброизолирующих опор 12 и 13, выполненных из упругого материала, например мягкой резины, полиуретана. Звукоизолирующее ограждение 6 облицовывают (закрепляют на нем) с внутренней стороны звукопоглощающим элементом 7 (фиг. 2). Звукоизолирующее ограждение 6 выполняют по форме в виде прямоугольного параллелепипеда с вырезом в его нижней грани под основание 2 технологического оборудования 1. Основание 2 технологического оборудования 1 устанавливают на по крайней мере четыре виброизолирующие опоры 3 и 4, которые базируют на перекрытии 5 производственного здания, при этом между основанием 2 технологического оборудования 1 и вырезом в нижней грани прямоугольного параллелепипеда выполняют зазор, предназначенный для исключения передачи вибраций от технологического оборудования 1 к звукоизолирующему ограждению 6. В звукоизолирующем ограждении 6 выполняют вентиляционные каналы 8 и 9 для устранения перегрева оборудования, при этом внутренние стенки 10 вентиляционных каналов 8 и 9 обрабатывают звукопоглощающим материалом 11 и акустически прозрачным материалом типа «Повиден».Soundproofing fence 6 (Fig. 1) is installed on the
Звукопоглощающий элемент 7 закрепляют на внутренней поверхности звукоизолирующего ограждения 6 и выполняют в виде гладкой 14 и перфорированной 15 поверхностей, между которыми размещают многослойную звукопоглощающую конструкцию.The sound-absorbing
Звукопоглощающую конструкцию выполняют сложной формы в виде чередующихся сплошных участков 16 и пустотелых участков 17. Сплошные участки 16, в свою очередь, образованы гладкими призматическими поверхностями 18, расположенными перпендикулярно гладкой 14 и перфорированной 15 поверхностям и закрепленными к гладкой 14 поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей 18, поверхностями 19 сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, или образованную сферическими участками форму (на чертеже не показано) поверхность, причем вершины зубьев или выступов обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной 15 поверхности. К гладкой 14 поверхности прикреплены рельефные звукопоглощающие элементы 20, например в виде тетраэдров.The sound-absorbing structure is made of complex shape in the form of alternating
В качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена.A material based on aluminum-containing alloys was used as a sound-absorbing material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, for example foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene.
Возможен вариант выполнения звукопоглощающего элемента 7 (фиг. 3).A possible embodiment of the sound-absorbing element 7 (Fig. 3).
Звукопоглощающий элемент 7, закрепленный на внутренней поверхности звукоизолирующего ограждения 6, выполнен в виде сплошной жесткой 21 и перфорированной 22 стенок, между которыми расположен звукопоглощающий элемент, выполненный в виде четырех слоев, первый слой, звукоотражающий, выполнен сплошным и профилированным, сложного многогранного профиля, состоящий из наклонных граней 23 и 25, соединенных в нижней части горизонтальными гранями 26. Между гранями 23, 25, 26 и жесткой стенкой 21 расположен второй слой из звукопоглощающего материала 27, а между перфорированной 22 стенкой и звукоотражающим слоем, с воздушным промежутком, относительно звукоотражающего слоя, расположен третий прерывистый слой 24 из мягкого звукопоглощающего материала, который закреплен на перфорированной 22 стенке, и выполнен в виде многогранников, с эквидистантными и конгруэнтными поверхностями, расположенными под соответствующими гранями звукоотражающего слоя.The sound-absorbing
Сплошной, звукоотражающий профилированный слой выполнен из материала, у которого коэффициент отражения звука больше, чем коэффициент звукопоглощения. Коэффициент перфорации перфорированной 22 стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрен четвертый акустически прозрачный слой (на чертеже не показан), например из стеклоткани типа ЭЗ-100, расположенный между слоем 24 из мягкого звукопоглощающего материала и перфорированной 22 стенкой.The continuous, sound-reflecting profiled layer is made of a material whose sound reflection coefficient is greater than the sound absorption coefficient. The perforation coefficient of the perforated wall 22 is taken to be equal to or more than 0.25. To prevent the soft sound absorber from spilling out, a fourth acoustically transparent layer is provided (not shown in the drawing), for example of fiberglass type EZ-100, located between the
Звукопоглощающий элемент 7 работает следующим образом.Sound-absorbing
Звуковая энергия от излучающего шум оборудования, находящегося в помещении, пройдя через перфорированную стенку 22 акустического ограждения, попадает на слой 24 из мягкого звукопоглощающего материала (например, выполненного из базальтового или стеклянного волокна), где осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии) в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Часть звуковой энергии отражается от более жесткой профилированной поверхности звукоотражающего слоя и снова попадает, фокусируясь, на слои мягкого слоя 24 из звукопоглощающего материала, выполненного прерывистым.Sound energy from noise-emitting equipment located in the room, passing through the perforated wall 22 of the acoustic fence, enters the
Возможен вариант, когда отношения параметров акустического ограждения находятся в следующих оптимальных интервалах величин: Н1/Н2=1,2…1,35; d/Н2=0,6…1,25; t/d=2,5…4,5; где Н1 - толщина акустического ограждения, Н2 - расстояние от сплошной жесткой стенки до горизонтальных граней многогранного профиля звукоотражающего слоя, d - максимальный диаметр многогранников, с эквидистантными и конгруэнтными поверхностями, расположенными под соответствующими гранями звукоотражающего слоя, и расположенных в фокусе многогранного профиля звукоотражающего слоя, t - шаг расположения многогранников многогранного профиля.A variant is possible when the ratios of the parameters of the acoustic fence are in the following optimal ranges of values: H 1 / H 2 = 1.2 ... 1.35; d / H 2 = 0.6 ... 1.25; t / d = 2.5 ... 4.5; where H 1 is the thickness of the acoustic fence, H 2 is the distance from the solid rigid wall to the horizontal faces of the polyhedral profile of the sound-reflecting layer, d is the maximum diameter of the polyhedra, with equidistant and congruent surfaces located under the corresponding faces of the sound-reflecting layer, and located at the focus of the multifaceted sound-reflecting profile layer, t is the step of the arrangement of polyhedra of a polyhedral profile.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017111969A RU2648125C1 (en) | 2017-04-10 | 2017-04-10 | Soundproofing enclosure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017111969A RU2648125C1 (en) | 2017-04-10 | 2017-04-10 | Soundproofing enclosure |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2648125C1 true RU2648125C1 (en) | 2018-03-22 |
Family
ID=61707954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017111969A RU2648125C1 (en) | 2017-04-10 | 2017-04-10 | Soundproofing enclosure |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2648125C1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3881569A (en) * | 1973-09-06 | 1975-05-06 | Jr William O Evans | Soundproofing panel construction |
FR2834738A1 (en) * | 2002-01-15 | 2003-07-18 | Euramax Ind Sa | Soundproofing panel for roofs or partitions has core of polymer foam or extruded plastic material and thin elastomer layer |
RU2288456C2 (en) * | 2004-11-05 | 2006-11-27 | Открытое акционерное общество "АВТОВАЗ" | Acoustic motor stand for researching and finishing operations aiming to muffle noise of intake system of internal combustion engine |
RU2011119938A (en) * | 2011-05-19 | 2012-11-27 | Олег Савельевич Кочетов | METHOD OF SOUND INSULATION OF EQUIPMENT AND SOUND INSULATION FENCE |
RU2532513C1 (en) * | 2013-07-22 | 2014-11-10 | Олег Савельевич Кочетов | Sound absorbing element (versions) |
RU2542607C2 (en) * | 2012-12-28 | 2015-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" | Universal membrane-type noise-absorbing module |
RU2554044C1 (en) * | 2014-06-25 | 2015-06-20 | Олег Савельевич Кочетов | Kochetov's soundproofing enclosure |
RU2579104C2 (en) * | 2014-06-10 | 2016-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" | Soundproofing cladding of technical room |
-
2017
- 2017-04-10 RU RU2017111969A patent/RU2648125C1/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3881569A (en) * | 1973-09-06 | 1975-05-06 | Jr William O Evans | Soundproofing panel construction |
FR2834738A1 (en) * | 2002-01-15 | 2003-07-18 | Euramax Ind Sa | Soundproofing panel for roofs or partitions has core of polymer foam or extruded plastic material and thin elastomer layer |
RU2288456C2 (en) * | 2004-11-05 | 2006-11-27 | Открытое акционерное общество "АВТОВАЗ" | Acoustic motor stand for researching and finishing operations aiming to muffle noise of intake system of internal combustion engine |
RU2011119938A (en) * | 2011-05-19 | 2012-11-27 | Олег Савельевич Кочетов | METHOD OF SOUND INSULATION OF EQUIPMENT AND SOUND INSULATION FENCE |
RU2542607C2 (en) * | 2012-12-28 | 2015-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" | Universal membrane-type noise-absorbing module |
RU2532513C1 (en) * | 2013-07-22 | 2014-11-10 | Олег Савельевич Кочетов | Sound absorbing element (versions) |
RU2579104C2 (en) * | 2014-06-10 | 2016-03-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" | Soundproofing cladding of technical room |
RU2554044C1 (en) * | 2014-06-25 | 2015-06-20 | Олег Савельевич Кочетов | Kochetov's soundproofing enclosure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2538858C1 (en) | Kochetov's sound-absorbing barrier | |
RU2511858C1 (en) | Element of noise muffler by kochetov | |
RU2646879C1 (en) | Soundproofing casing | |
RU2616856C1 (en) | Method of sound insulation of kochetov's equipment and sound-insulating fencing | |
RU2659925C1 (en) | Method of sound insulation | |
RU2659923C1 (en) | Soundproofing enclosure with sound attenuating system | |
RU2656440C1 (en) | Method of sound insulation of equipment and sound-insulating fencing | |
RU2652020C1 (en) | Method for acoustic isolation of equipment | |
RU2646872C1 (en) | Soundproofing enclosure | |
RU2648125C1 (en) | Soundproofing enclosure | |
RU2651993C1 (en) | Soundproofing enclosure with vibration isolation system | |
RU2639217C1 (en) | Soundproofing method | |
RU2659922C1 (en) | Soundproofing enclosure | |
RU2642039C1 (en) | Method for soundproofing equipment | |
RU2646255C1 (en) | Method for acoustic isolation of equipment | |
RU2659926C1 (en) | Method of sound insulation | |
RU2651982C1 (en) | Soundproofing enclosure for technological equipment | |
RU2639049C1 (en) | Sound-insulating enclosure of process equipment | |
RU2639207C1 (en) | Sound-insulating enclosure | |
RU2609482C1 (en) | Kochetov multilayer combined structure | |
RU2651988C1 (en) | Soundproofing enclosure with sound attenuating system | |
RU2659340C1 (en) | Soundproofing enclosure | |
RU2665721C1 (en) | Soundproofing enclosure | |
RU2622936C1 (en) | Acoustic construction for industrial facilities | |
RU2623741C1 (en) | Acoustically comfortable room with noise protective equipment |