RU2647540C1 - Способ получения композиционных керамических изделий на основе нитрида кремния - Google Patents

Способ получения композиционных керамических изделий на основе нитрида кремния Download PDF

Info

Publication number
RU2647540C1
RU2647540C1 RU2017108155A RU2017108155A RU2647540C1 RU 2647540 C1 RU2647540 C1 RU 2647540C1 RU 2017108155 A RU2017108155 A RU 2017108155A RU 2017108155 A RU2017108155 A RU 2017108155A RU 2647540 C1 RU2647540 C1 RU 2647540C1
Authority
RU
Russia
Prior art keywords
layer
matrix
silicon nitride
fiber
paraffin
Prior art date
Application number
RU2017108155A
Other languages
English (en)
Inventor
Григорий Викторович Маркин
Сергей Анатольевич Ситников
Original Assignee
Общество с ограниченной ответственностью "МИРКОН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "МИРКОН" filed Critical Общество с ограниченной ответственностью "МИРКОН"
Priority to RU2017108155A priority Critical patent/RU2647540C1/ru
Application granted granted Critical
Publication of RU2647540C1 publication Critical patent/RU2647540C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides

Abstract

Изобретение относится к области получения композиционных керамических изделий и может быть использовано в строительстве или промышленности, в частности в термонагруженных местах энергетических установок. В соответствии с заявленным способом получения изделий на основе нитрида кремния готовят матричную дисперсию на основе парафина и нитрида кремния, нагревая её до жидкой фазы, проводят вощение длинного волокна из кремниевых соединений, затем формуют заготовки заданной формы и с заданными прочностными свойствами с помощью универсальной печатающей установки, обеспечивающей необходимое геометрическое соединение матрицы и волокон с помощью пултрузионно-инжекционной фильеры. В процессе получения заготовки с помощью установки изменяют угол наклона волокна в соответствии с заданием как от слоя к слою, так и внутри одного слоя, обеспечивая контролируемое послойное моделирование заготовки. После полного остывания заготовки освобождаются от парафина путем двухэтапной прокалки вначале в адсорбенте с нагревом до 200оС, а затем на воздухе с нагревом до 600оС, после чего их помещают в герметизированную печь и осуществляют реакционное спекание нитрида кремния при температуре до 1400оС и давлении азота до 0,5 атм. Технический результат изобретения – обеспечение возможности производительного моделирования при получении композитных изделий с требуемыми физико-техническими свойствами. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области изготовления композиционных заготовок и изделий и может быть использовано в строительстве, промышленности, художественном промысле и т.п.
Известен «Способ получения керамического изделия на основе нитрида бора» (патент на одноименное изобретение №94 032 296 от 07.09.1994 г. по МПК С04 В 35/583 за 1994 г.), характеризующийся подготовкой смеси на основе нитрида бора, формовкой смеси и ее термообработкой.
Известный способ не использует в смеси композита нитрида кремния и волокна, позволяющих получить более прочный композит.
Все более широко применяемые композиционные материалы (композиты) на основе однонаправленных волокон и тканей обладают более высокими механическими прочностными свойствами в направлении армирования по сравнению с композитами, армированными хаотично направленными частицами и дискретными волокнами. Однако однонаправленные композиты являются сильно анизотропными, прочность и жесткость их в поперечном направлении и при сдвиге невелика. Эффективность применения таких материалов зависит от правильного выбора схемы армирования на основе анализа напряженно-деформируемого состояния (НДС) проектируемой конструкции при различных условиях нагружения, соответствующих всем эксплуатационным факторам. При этом даже сравнительно небольшие усилия, вызывающие кручение, изгиб, сложное нагружение конструкции, приведут в многослойной структуре анизотропного композиционного материала к поперечным и сдвиговым напряжениям, которые в процессе эксплуатации конструкции могут являться причиной возникновения и развития трещин и расслоений. Последние появляются, как правило, в местах изменения структурных параметров слоев, например в зазорах, нахлестах, надрезах, местах перегибов, контакта с закладными сотовыми, дополнительными армирующими элементами, а также в окрестности различных технологических дефектов: микротрещин, пустот, матричных карманов, продольных и поперечных складок слоев, участков с повышенным или пониженным содержанием матричного материала. Следует отметить, что технологические дефекты часто появляются именно в зонах изменения структурных параметров, что повышает вероятность возникновения расслоений даже при небольших значениях напряжений конструкции. Кроме того, следует учесть, что даже небольшие макроскопические (осредненные по всем слоям) напряжения в конструкции могут привести к значительным напряжениям в структуре материала на уровне слоя, жгута или отдельного волокна. Именно поэтому в композиционных материалах имеет такое важное значение управление ориентацией ввода армирующих волокон.
Наиболее близким к заявляемому изобретению является «Способ получения композиционных керамических изделий на основе нитрида кремния» (см. US 5376599, кл. С04В 35/52, опубл. 27.12.1, столб. 7-8, пример 1), характеризующийся приготовлением матричной дисперсии на основе нитрида кремния, армированием матрицы волокном из кремниевых соединений, формовкой заготовки из волокон и матрицы, изменяя угол наклона волокна в соответствии с заданием как от слоя к слою, так и внутри одного слоя, обеспечивая контролируемое послойное моделирование заготовки, а также прокаливанием и спеканием заготовки.
Недостатком известного способа является то, что он не обладает возможностью производительного моделирования или получения композитных заготовок и изделий с требуемыми физико-техническими свойствами.
Техническим результатом и целью заявляемого способа является расширение функциональных возможностей прототипа путем обеспечения возможности производительного моделирования при получения композитных заготовок или изделий с требуемыми физико-техническими свойствами по различным их направлениям для конкретных практических задач, а также для испытаний и исследований.
1. Указанный технический результат достигается тем, что способ получения композиционных керамических изделий на основе нитрида кремния, характеризующийся приготовлением матричной дисперсии на основе нитрида кремния, армированием матрицы волокном из кремниевых соединений, формовкой заготовки из волокон и матрицы, изменяя угол наклона волокна в соответствии с заданием как от слоя к слою, так и внутри одного слоя, обеспечивая контролируемое послойное моделирование заготовки, а также прокаливанием и спеканием заготовки, отличающийся тем, что для производительной формовки указанных заготовок заданной формы и с заданными прочностными свойствами используют универсальную печатающую установку, обеспечивающую необходимое геометрическое соединение матрицы и волокон с помощью пултрузионно-инжекционной фильеры, причем предварительно перед процессом получения заготовки с помощью установки осуществляют вощение длинного волокна и нагревают до жидкой фазы смесь матрицы из нитрида кремния и парафина, которую непрерывно размешивают и вакуумируют ее поверхность в соответственном бачке установки, в процессе получения заготовки с помощью установки осуществляют армирование матрицы волокном, после полного остывания заготовки освобождаются от парафина путем двухэтапной прокалки вначале в адсорбенте с нагревом до 200 градусов Цельсия, а затем на воздухе с нагревом до 600 градусов Цельсия, после чего заготовку помещают в герметизированную печь и осуществляют реакционное спекание нитрида кремния при температуре до 1400 градусов Цельсия и давлении азота до 0,5 ATM.
На чертеже представлена блок-схема возможной, универсальной, печатающей установки для получения композитных заготовок и изделий на основе нитрида кремния.
На чертеже показаны пултрузионно-инжекционная головка (фильера) 1, парафиновая смесь (дисперсия) 2 нитрида кремния, бачок 3, пропеллерная мешалка 4, электрический мотор 5, электрический нагреватель 6, силиконовое масло 7, шпуля 8 с вощенным волокном, пневмоклапан 9, штуцер 10, композит 11 и платформа 12.
Способ получения композиционных керамических изделий на основе нитрида кремния, характеризующийся армированием волокном из шпули 8 из кремниевых соединений матрицы 2 также на основе соединений кремния, формовкой заготовки из волокон из шпули 8 и матрицы 2, а также тем, что для производительной формовки указанных заготовок заданной формы и с заданными прочностными свойствами используют универсальную печатающую установку, обеспечивающую необходимое геометрическое соединение матрицы 2 и волокон из шпули 8 с помощью пултрузионно-инжекционной фильеры 1, причем предварительно перед процессом получения заготовки с помощью установки осуществляют вощение длинного волокна из шпули 8 и нагревают до жидкой фазы смесь матрицы 2 из нитрида кремния и парафина, которую непрерывно размешивают (мешалка 4 и мотор 5) и вакуумируют ее поверхность в соответственном бачке 3 установки, в процессе получения заготовки с помощью установки изменяют угол наклона волокна 8 в соответствии с заданием как от слоя к слою, так и внутри одного слоя, обеспечивая контролируемое послойное моделирование заготовки, после полного остывания заготовки освобождаются от парафина путем двухэтапной прокалки вначале в адсорбенте с нагревом до 200 градусов Цельсия, а затем на воздухе с нагревом до 600 градусов Цельсия, после чего заготовку помещают в герметизированную печь и осуществляют реакционное спекание нитрида кремния при температуре до 1400 градусов Цельсия и давлении азота до 0,5 ATM.
Способ осуществляется следующим образом.
Для послойного моделирования композита из нитрида кремния была разработана пултрузионно-инжекционная технология формирования изделия. Главная особенность технологии заключается в разработанной коллективом авторов работы пултрузионно-инжекционной головки-фильеры 1.
Пултрузия - непрерывный процесс изготовления длинномерных профильных изделий путем протягивания композиции матричного полимера с непрерывными волокнами 8 через формообразующее и консолидирующее устройство (пултрузионную головку) 1.
Пултрузия получила свое название от английских слов «pull» - тянуть и «through» - сквозь.
Принцип работы фильеры 1 заключается в одновременной подаче парафиновой дисперсии кремния матричного порошка 2 и армирующего непрерывного волокна из шпули 8 к месту роста изделия на платформе 12 через обогреваемую нагревателем 6 фильеру 1.
При этом волокно подматывается механизмом подачи с подающей шпули 8. Парафиновая дисперсия 2, в свою очередь, поступает в фильеру 1 из бачка 3. Регулированием давления воздуха над поверхностью парафиновой дисперсией 2 кремния и ее температуры в бачке 3, а также включением/выключением пневмоклапана 9 и регулировкой скорости работы подающего механизма, одновременно со скоростью перемещения выращиваемого образца керамического композита на платформе 12 можно менять скорость моделирования и расстояния между соседними волокнами при трехмерном послойном синтезе.
Пултрузионно-инжекционная фильера 1 находится в нижней части бачка 3, обогреваемого при помощи электрического нагревателя 6 посредством силиконового масла 7. Во внутренней полости бачка 3 находится пропеллерная мешалка 4, которая постоянно перемешивает парафиновую дисперсию кремния 2, во избежание седиментации последней. Вращение на мешалку 4 передается посредством приводного ремня через сальниковый узел от электромотора 5. Перед началом моделирования полость над поверхностью парафиновой дисперсии кремния вакуумируют для дегазации через штуцер 10. Через этот же штуцер в полость над поверхностью дисперсии кремния 2 во время моделирования подают сжатый воздух с регулируемым давлением.
В результате управления давлением воздуха во внутренней полости бачка 3, температурой парафиновой дисперсии кремния 2, а также положением пневмоклапана 9 и регулировкой скорости работы подающего механизма волокна можно менять скорость процесса моделирования.
Расстояния между соседними волокнами, а также механизм армирования моделируемой заготовки керамического композита 11 определяется требуемым перемещением платформы 12 по осям x, y, z. Печатающая установка может легко перенастраиваться на послойное трехмерное моделирование заготовок керамических изделий из неармированного нитрида кремния или послойное моделирование заготовок керамических композитов, армированных дисперсной армирующей фазой. Перенастройка заключается в смене парафиновой дисперсии в бачке 3, в замене пултрузионно-инжекционной фильеры 1 на фильеру с соответствующим армирующей фазе диаметром дюзы, выключением подачи непрерывного волокна и смене параметров движения и подачи заготовки.
Для гарантированной дегазации непрерывного волокна, применяемого в печатающей установке при послойном трехмерном моделировании, а также - обеспечения надежной адгезии этого волокна с парафиновой дисперсией кремния, волокно перед его использованием необходимо подвергнуть вощению. Изделия, полученные этим способом с применением в качестве технологической связки парафина, а в качестве армирующей фазы непрерывное волокно из карбида кремния 50 вес. %, показало прочность на изгиб 300 МПА, что значительно выше прочности на изгиб изделий из «чистого» нитрида кремния (100…130 МПА), полученного в результате реакционного спекания.
Изделия, полученные по этой технологии с применением в качестве технологической связки парафина, а в качестве армирующей фазы непрерывных волокон из корунда и углерода (50 вес. %), показали прочность на изгиб 160 МПА и 150 МПА соответственно, что почти сопоставимо с прочностью на изгиб изделий из «чистого» нитрида кремния (100…130 МПА), полученных в результате реакционного спекания.
Предполагается применение изделий, полученных по данной технологии, в термонагруженных (рабочая температура композита с армированием волокном карбида кремния 1500 градусов Цельсия, кратковременная до 1900 градусов Цельсия) местах энергетических установок с многоцикловым нагружением и предсказуемым напряжённо-деформированным состоянием.

Claims (2)

1. Способ получения композиционных керамических изделий на основе нитрида кремния, характеризующийся приготовлением матричной дисперсии на основе нитрида кремния, армированием матрицы волокном из кремниевых соединений, формовкой заготовки из волокон и матрицы, изменяя угол наклона волокна в соответствии с заданием как от слоя к слою, так и внутри одного слоя, обеспечивая контролируемое послойное моделирование заготовки, а также прокаливанием и спеканием заготовки, отличающийся тем, что для производительной формовки указанных заготовок заданной формы и с заданными прочностными свойствами используют универсальную печатающую установку, обеспечивающую необходимое геометрическое соединение матрицы и волокон с помощью пултрузионно-инжекционной фильеры, причем предварительно перед процессом получения заготовки с помощью установки осуществляют вощение длинного волокна и нагревают до жидкой фазы смесь матрицы из нитрида кремния и парафина, которую непрерывно размешивают и вакуумируют ее поверхность в соответственном бачке установки, в процессе получения заготовки с помощью установки осуществляют армирование матрицы волокном, после полного остывания заготовки освобождаются от парафина путем двухэтапной прокалки вначале в адсорбенте с нагревом до 200 градусов Цельсия, а затем на воздухе с нагревом до 600 градусов Цельсия, после чего заготовку помещают в герметизированную печь и осуществляют реакционное спекание нитрида кремния при температуре до 1400 градусов Цельсия и давлении азота до 0,5 ATM.
2. Способ по п. 1, отличающийся тем, что непрерывное волокно имеет вид нити, ленты или ровинга.
RU2017108155A 2017-03-13 2017-03-13 Способ получения композиционных керамических изделий на основе нитрида кремния RU2647540C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017108155A RU2647540C1 (ru) 2017-03-13 2017-03-13 Способ получения композиционных керамических изделий на основе нитрида кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017108155A RU2647540C1 (ru) 2017-03-13 2017-03-13 Способ получения композиционных керамических изделий на основе нитрида кремния

Publications (1)

Publication Number Publication Date
RU2647540C1 true RU2647540C1 (ru) 2018-03-16

Family

ID=61629421

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017108155A RU2647540C1 (ru) 2017-03-13 2017-03-13 Способ получения композиционных керамических изделий на основе нитрида кремния

Country Status (1)

Country Link
RU (1) RU2647540C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760843C1 (ru) * 2018-03-23 2021-11-30 Абб Пауэр Гридс Свитцерланд Аг Способ изготовления электросилового устройства, электросиловое устройство и использование электросилового устройства
US11984711B2 (en) 2018-03-23 2024-05-14 Hitachi Energy Ltd Method for producing an electrical power device by additive manufacturing techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU373258A1 (ru) * 1970-07-24 1973-03-12 Способ
US5077242A (en) * 1988-03-02 1991-12-31 Honda Giken Kogyo Kabushiki Kaisha Fiber-reinforced ceramic green body and method of producing same
US5376599A (en) * 1991-10-11 1994-12-27 Noritake Co., Limited Carbon fiber reinforced silicon nitride based nanocomposite material and method for preparing same
RU2458023C1 (ru) * 2011-03-11 2012-08-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения спеченных изделий на основе нитрида кремния
EP2832447A1 (en) * 2012-03-29 2015-02-04 Kubota Corporation Ceramic filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU373258A1 (ru) * 1970-07-24 1973-03-12 Способ
US5077242A (en) * 1988-03-02 1991-12-31 Honda Giken Kogyo Kabushiki Kaisha Fiber-reinforced ceramic green body and method of producing same
US5376599A (en) * 1991-10-11 1994-12-27 Noritake Co., Limited Carbon fiber reinforced silicon nitride based nanocomposite material and method for preparing same
RU2458023C1 (ru) * 2011-03-11 2012-08-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Способ получения спеченных изделий на основе нитрида кремния
EP2832447A1 (en) * 2012-03-29 2015-02-04 Kubota Corporation Ceramic filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760843C1 (ru) * 2018-03-23 2021-11-30 Абб Пауэр Гридс Свитцерланд Аг Способ изготовления электросилового устройства, электросиловое устройство и использование электросилового устройства
US11984711B2 (en) 2018-03-23 2024-05-14 Hitachi Energy Ltd Method for producing an electrical power device by additive manufacturing techniques

Similar Documents

Publication Publication Date Title
Ghazanfari et al. A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying
Blok et al. An investigation into 3D printing of fibre reinforced thermoplastic composites
Pelz et al. Additive manufacturing of structural ceramics: a historical perspective
Frketic et al. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing
CN104108131B (zh) 一种陶瓷材料的3d打印成型方法
CN101687682B (zh) 制备烟炱玻璃板和烧结玻璃板的方法及设备
US5900207A (en) Solid freeform fabrication methods
Ghazanfari et al. A novel extrusion-based additive manufacturing process for ceramic parts
US20230278284A1 (en) 3d printing system nozzle assembly for printing of fiber reinforced parts
JP2016204244A (ja) 反応焼結炭化ケイ素部材の製造方法
US10259158B2 (en) Method and apparatus for fabricating ceramic and metal components via additive manufacturing with uniform layered radiation drying
US20160031117A1 (en) Geopolymer brick fabrication system
RU2647540C1 (ru) Способ получения композиционных керамических изделий на основе нитрида кремния
CN107216154A (zh) 一种用于陶瓷制品3d打印成型的混合物料及其制备方法
CN107030853A (zh) 一种桌面级陶瓷制品3d打印成型方法
Pappas et al. A parametric study and characterization of additively manufactured continuous carbon fiber reinforced composites for high-speed 3D printing
EP3817920A1 (en) In situ synthesis, densification and shaping of non-oxide ceramics by vacuum additive manufacturing technologies
Shen et al. Fused deposition fabrication of high-quality zirconia ceramics using granular feedstock
Hensen et al. Additive manufacturing of ceramic nanopowder by direct coagulation printing
Dhanunjayarao et al. 3D Printing of Fiber-Reinforced Polymer Nanocomposites: Additive Manufacturing
US10994472B2 (en) High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
Huang et al. Material extrusion and sintering of binder-coated zirconia: comprehensive characterizations
Li et al. Material extrusion based ceramic additive manufacturing
Vaidyanathan Additive manufacturing technologies for polymers and composites
RU2689833C1 (ru) Способ получения керамических изделий на основе порошков оксидов металлов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190314