RU2647439C1 - Method of glucosamine sulfate in sodium alginate nano-capsules producing - Google Patents
Method of glucosamine sulfate in sodium alginate nano-capsules producing Download PDFInfo
- Publication number
- RU2647439C1 RU2647439C1 RU2016134391A RU2016134391A RU2647439C1 RU 2647439 C1 RU2647439 C1 RU 2647439C1 RU 2016134391 A RU2016134391 A RU 2016134391A RU 2016134391 A RU2016134391 A RU 2016134391A RU 2647439 C1 RU2647439 C1 RU 2647439C1
- Authority
- RU
- Russia
- Prior art keywords
- microcapsules
- producing
- nano
- glucosamine sulfate
- sodium alginate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000002088 nanocapsule Substances 0.000 title claims abstract description 24
- MTDHILKWIRSIHB-UHFFFAOYSA-N (5-azaniumyl-3,4,6-trihydroxyoxan-2-yl)methyl sulfate Chemical compound NC1C(O)OC(COS(O)(=O)=O)C(O)C1O MTDHILKWIRSIHB-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 229960002849 glucosamine sulfate Drugs 0.000 title claims abstract description 15
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 235000010413 sodium alginate Nutrition 0.000 title claims abstract description 11
- 239000000661 sodium alginate Substances 0.000 title claims abstract description 11
- 229940005550 sodium alginate Drugs 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000000725 suspension Substances 0.000 claims abstract description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000004094 surface-active agent Substances 0.000 claims abstract description 7
- 239000001793 Citric acid esters of mono and diglycerides of fatty acids Substances 0.000 claims abstract description 6
- 239000003208 petroleum Substances 0.000 claims abstract description 5
- 239000002904 solvent Substances 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 27
- 238000000576 coating method Methods 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 7
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 abstract description 5
- 235000013305 food Nutrition 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000001133 acceleration Effects 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 abstract 1
- 239000003094 microcapsule Substances 0.000 description 48
- 239000002245 particle Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 13
- 239000011257 shell material Substances 0.000 description 10
- 239000011162 core material Substances 0.000 description 9
- 239000004005 microsphere Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 108010046377 Whey Proteins Proteins 0.000 description 5
- 102000007544 Whey Proteins Human genes 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 235000021119 whey protein Nutrition 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 102220547770 Inducible T-cell costimulator_A23L_mutation Human genes 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000012685 gas phase polymerization Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229920001586 anionic polysaccharide Polymers 0.000 description 2
- 150000004836 anionic polysaccharides Chemical class 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 230000001055 chewing effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000011197 physicochemical method Methods 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101100160821 Bacillus subtilis (strain 168) yxdJ gene Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001166 anti-perspirative effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003213 antiperspirant Substances 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229940088623 biologically active substance Drugs 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011363 dried mixture Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002728 pyrethroid Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002145 thermally induced phase separation Methods 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 229960001947 tripalmitin Drugs 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7008—Compounds having an amino group directly attached to a carbon atom of the saccharide radical, e.g. D-galactosamine, ranimustine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J3/00—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
- A61J3/07—Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Изобретение относится к области нанотехнологии, в частности получения нанокапсул сульфата глюкозамина в каррагинане физико-химическим методом осаждения нерастворителем.The invention relates to the field of nanotechnology, in particular the production of glucosamine sulfate nanocapsules in carrageenan by the physicochemical method of precipitation with a non-solvent.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.Previously known methods for producing microcapsules of drugs. So, in US Pat. 2092155, IPC A61K 047/02, A61K 009/16, published October 10, 1997, Russian Federation, a method for microencapsulation of drugs based on the use of special equipment using ultraviolet radiation is proposed.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can affect the process of formation of microcapsules.
В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.In US Pat. 2095055, IPC A61K 9/52, A61K 9/16, A61K 9/10, Russian Federation, published November 10, 1997, a method for producing solid non-porous microspheres includes melting a pharmaceutically inactive carrier substance, dispersing the pharmaceutically active substance in a melt in an inert atmosphere, spraying the resulting dispersion in the form of fog in a freezing chamber under pressure in an inert atmosphere at a temperature of from -15 to -50 ° C, and separating the resulting microspheres into fractions by size. A suspension intended for administration by parenteral injection contains an effective amount of said microspheres distributed in a pharmaceutically acceptable liquid vector, the pharmaceutically active substance of the microsphere being insoluble in said liquid medium.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.The disadvantages of the proposed method: the complexity and duration of the process, the use of special equipment.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.In US Pat. 2091071, IPC A61K 35/10, Russian Federation, published 09/27/1997, a method for producing the preparation by dispersion in a ball mill to obtain microcapsules is proposed.
Недостатком способа является применение шаровой мельницы и длительность процесса.The disadvantage of this method is the use of a ball mill and the duration of the process.
В пат. 2076765, МПК B01D 9/02, Российская Федерация опубликован, 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.In US Pat. 2076765, IPC B01D 9/02, Russian Federation published, 04/10/1997, a method for producing dispersed particles of soluble compounds in microcapsules by crystallization from a solution is proposed, characterized in that the solution is dispersed in an inert matrix, cooled, and dispersed particles are obtained by changing the temperature.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.The disadvantage of this method is the difficulty of execution: obtaining microcapsules by dispersion with subsequent change in temperature, which slows down the process.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация опубликован, 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.In US Pat. 2101010, IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Russian Federation published, 01/10/1998, a chewing form of the drug with a taste masking having the properties of a controlled release of the drug is proposed The preparation contains microcapsules with a size of 100-800 microns in diameter and consists of a pharmaceutical core with crystalline ibuprofen and a polymer coating, including a plasticizer, flexible enough to withstand chewing. The polymer coating is a methacrylic acid based copolymer.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.The disadvantages of the invention: the use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancerous tumors; obtaining microcapsules by suspension polymerization; complexity of execution; the duration of the process.
В пат. 2139046, МПК A61K 9/50, A61K 49/00, A61K 51/00. Российская Федерация опубликован 10.10.1999, предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.In US Pat. 2139046, IPC A61K 9/50, A61K 49/00, A61K 51/00. The Russian Federation was published on 10/10/1999, a method for producing microcapsules as follows. An oil-in-water emulsion is prepared from an organic solution containing dissolved mono-, di-, triglyceride, preferably tripalmitin or tristearin and, optionally, a therapeutically active substance, and an aqueous solution containing a surfactant, possibly a portion of the solvent is evaporated, a redispersing agent is added the agent and the mixture are freeze dried. The freeze-dried mixture is then redispersed in an aqueous carrier to separate the microcapsules from organic residues, and the hemispherical or spherical microcapsules are dried.
Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.The disadvantages of the proposed method are the complexity and duration of the process, the use of freeze-drying, which takes a lot of time and slows down the process of obtaining microcapsules.
В пат. 2159037, МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000, предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.In US Pat. 2159037, IPC A01N 25/28, A01N 25/30, Russian Federation, published November 20, 2000, a method for producing microcapsules by a polymerization reaction at the phase boundary, containing solid agrochemical material 0.1-55 wt. % suspended in a water-miscible organic liquid, 0.01-10 wt. % non-ionic dispersant active at the phase boundary and not acting as an emulsifier.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя, получение микрокапсул химическим методом полимеризации.The disadvantages of the proposed method: complexity, duration, the use of high shear mixer, obtaining microcapsules by the chemical polymerization method.
В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°C), термическое разложение его в пиролизной печи (650°C при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°C, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.In the article “Development of microencapsulated and gel-like products and materials for various industries”, Russian Chemical Journal, 2001, vol. XLV, No. 5-6, p. 125-135, a method for producing microcapsules of drugs by gas-phase polymerization is described, since the authors of the article consider the method of chemical coacervation from aqueous media to be microencapsulated as unsuitable because most of them are water-soluble. The microencapsulation process using the gas-phase polymerization method using n-xylylene includes the following main stages: evaporation of the n-xylylene dimer (170 ° C), its thermal decomposition in a pyrolysis furnace (650 ° C at a residual pressure of 0.5 mm Hg), transfer of reaction products to the “cold” polymerization chamber (20 ° C, residual pressure 0.1 mm Hg), deposition and polymerization on the surface of the protected object. The polymerization chamber is made in the form of a rotating drum, the optimum speed for coating the powder is 30 rpm. The thickness of the shell is regulated by the time of coating. This method is suitable for encapsulation of any solids (with the exception of prone to intense sublimation). The resulting poly-n-xylylene highly crystalline polymer, characterized by high orientation and tight packaging, provides a conformal coating.
Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.The disadvantages of the proposed method are the complexity and duration of the process, the use of gas phase polymerization, which makes the method inapplicable for producing microcapsules of drugs in polymers of protein nature due to denaturation of proteins at high temperatures.
В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, t. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.In the article “Development of Micro- and Nanosystems for the Delivery of Medicines”, Russian Chemical Journal, 2008, t. LII, No. 1, p. 48-57, a method for producing microcapsules with incorporated proteins is presented, which does not significantly reduce their biological activity, carried out by the process of interfacial crosslinking of soluble starch or hydroxyethyl starch and bovine serum albumin (BSA) using terephthaloyl chloride. The proteinase inhibitor aprotinin, either native or with a protected active center, was microencapsulated when it was introduced into the aqueous phase. The flattened form of lyophilized particles indicates the preparation of microcapsules or particles of a reservoir type. Thus prepared microcapsules were not damaged after lyophilization and easily restored their spherical shape after rehydration in a buffer medium. The pH value of the aqueous phase was decisive in obtaining durable microcapsules with high yield.
Недостатком предложенного способа получения микрокапсул является сложность процесса.The disadvantage of the proposed method for producing microcapsules is the complexity of the process.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.In US Pat. 2173140, IPC A61K 009/50, A61K 009/127, Russian Federation, published September 10, 2001. A method for producing silicon organolipid microcapsules using a rotary-cavitation unit with high shear forces and powerful sonar acoustic and ultrasonic dispersion ranges is proposed.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.The disadvantage of this method is the use of special equipment - a rotary cavitation unit, which has an ultrasonic effect, which affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructively affects polymers of a protein nature, therefore, the proposed method is applicable when work with polymers of synthetic origin.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. 2359662, IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009, Russian Federation, a method for producing microcapsules using spray cooling in a Niro spray cooling tower under the following conditions: air temperature inlet 10 ° C; outlet air temperature 28 ° C; spray drum rotation speed 10,000 rpm. The microcapsules of the invention have improved stability and provide controlled and / or prolonged release of the active ingredient.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the inlet 10 ° C, air temperature at the outlet 28 ° C, rotation speed of the spray drum 10,000 rpm).
В пат. WO/2009/148058, JP МПК B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08, A61K 47/26, A61K 47/32, A61K 47/34, A61K 47/36, A61K 9/50, B01J 2/04, B01J 2/06, опубликован 10.12.2009, описан процесс получения микрокапсул, применимый для промышленного производства, в которых высокое содержание гидрофильного биологически активного вещества, заключенного в оболочку. Предлагаемые микрокапсулы могут быть использованы в пищевой, фармацевтической и в других областях промышленности. В процесс производства применяются диспергирующие композиции, состоящие из гидрофильных биологически активных веществ и ПАВ в твердом жире. Температура не ниже, чем температура плавления твердого жира.In US Pat. WO / 2009/148058, JP IPC B01J 13/04, A23L 1/00, A61K 35/20, A61K 45/00, A61K 47/08, A61K 47/26, A61K 47/32, A61K 47/34, A61K 47 / 36, A61K 9/50, B01J 2/04, B01J 2/06, published December 10, 2009, describes a process for producing microcapsules applicable for industrial production in which a high content of hydrophilic biologically active substance is encapsulated. The proposed microcapsules can be used in food, pharmaceutical and other industries. Dispersing compositions consisting of hydrophilic biologically active substances and surfactants in solid fat are used in the manufacturing process. The temperature is not lower than the melting point of solid fat.
Недостатками данного способа являются сложность и длительность процесса получения микрокапсул.The disadvantages of this method are the complexity and duration of the process of obtaining microcapsules.
В пат. WO/2010/076360, ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.In US Pat. WO / 2010/076360, ES, IPC B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, published July 8, 2010, proposes a new method for producing solid micro- and nanoparticles with a homogeneous structure with a particle size of less than 10 μm, where the treated solid compounds have a natural crystalline, amorphous, polymorphic and other states associated with the starting compound. The method allows to obtain solid micro- and nanoparticles with substantially spheroidal morphologists.
Недостатком предложенного способа является сложность процесса, а отсюда и невысокий выход конечного продукта.The disadvantage of the proposed method is the complexity of the process, and hence the low yield of the final product.
В пат. WO/2010/014011 NL МПК A61K 9/50; B01J 13/02; A61K 9/50; B01J 13/02 опубликован 4.02.2010 описан способ получения микрокапсул диаметром от 0,1 мкм до 25 мкм, включающих: ядро частицы диаметром 90 нм до 23 мкм, содержащее не менее 3% активного компонента по весу частицы; покрытие, которое полностью охватывает основные частицы, содержащие не менее 20% от веса гидрофобного полимера, выбранного из целлюлозных эфиров, сложных эфиров целлюлозы, шеллака, клейковины, полилактида, гидрофобных производных крахмала, поливинилацетата, полимеров или сополимеров на основе эфира акриловой кислоты и/или метакриловой кислоты эфир и их комбинации. Активный компонент не высвобождается при введении в водосодержащие продукты питания, напитки, пищевые или фармацевтические композиции. После приема внутрь, однако, активный компонент выделяется быстро.In US Pat. WO / 2010/014011 NL IPC A61K 9/50; B01J 13/02; A61K 9/50; B01J 13/02 published February 4, 2010 describes a method for producing microcapsules with a diameter of 0.1 μm to 25 μm, including: a core of a particle with a diameter of 90 nm to 23 μm containing at least 3% of the active component by weight of the particle; a coating that completely covers the main particles containing at least 20% by weight of a hydrophobic polymer selected from cellulose ethers, cellulose esters, shellac, gluten, polylactide, hydrophobic starch derivatives, polyvinyl acetate, acrylic ester polymers or copolymers and / or methacrylic acid ester and combinations thereof. The active component is not released when introduced into aqueous foods, drinks, food or pharmaceutical compositions. After oral administration, however, the active component is released rapidly.
Недостатками данного способа являются сложность, длительность процесса, а также применение ультразвука и специального оборудования, использование в качестве оболочек микрокапсул сополимеров акриловой или метакриловой кислоты, которые способны вызывать раковые опухоли.The disadvantages of this method are the complexity, duration of the process, as well as the use of ultrasound and special equipment, the use of acrylic or methacrylic acid copolymers as microcapsule shells that can cause cancerous tumors.
В пат. WO/2010/119041, ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, сожержащих активный компонен,т инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионного полисахарида с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°C до 80°C надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, процесс выделения микрокапсул осуществляется через каскад фильтров с размерами пор от 0,9 до 0,1 мкм.In US Pat. WO / 2010/119041, EP, IPC A23L 1/00, published October 21, 2010, a method for producing microspheres containing the active component encapsulated in a gel matrix of whey protein including denatured protein, serum and active components is proposed. The invention relates to a method for producing beads that contain components such as probiotic bacteria. The method of producing microspheres includes the stage of production of microspheres in accordance with the method of the invention, and subsequent curing of the microspheres in a solution of anionic polysaccharide with a pH of 4.6 or lower for at least 10, 30, 60, 90, 120, 180 minutes. Examples of suitable anionic polysaccharides: pectins, alginates, carrageenans. Ideally, whey protein is heat-denaturing, although other denaturation methods are also applicable, such as pressure-induced denaturation. In a preferred embodiment, whey protein is denatured at a temperature of from 75 ° C to 80 ° C appropriately for from 30 minutes to 50 minutes. As a rule, whey protein is mixed with heat denaturation. Accordingly, the concentration of whey protein is from 5 to 15%, preferably from 7 to 12%, and ideally from 9 to 11% (weight / volume). As a rule, the process of isolating microcapsules is carried out through a cascade of filters with pore sizes from 0.9 to 0.1 μm.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), пролучение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.The disadvantage of this method is the use of special equipment (vibration encapsulators (Inotech, Switzerland)), the preparation of microcapsules by protein denaturation, the difficulty of isolating microcapsules obtained by this method - filtering using many filters, which makes the process long.
В пат. WO/2011/003805, ЕР МПК B01J 13/18; B65D 83/14; C08G 18/00, опубликован 13.01.2011, описан способ получения микрокапсул, которые подходят для использования в композициях образующих герметики, пены, покрытия или клеи.In US Pat. WO / 2011/003805, EP IPC B01J 13/18; B65D 83/14; C08G 18/00, published January 13, 2011, describes a method for producing microcapsules that are suitable for use in formulations of sealants, foams, coatings or adhesives.
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.The disadvantage of the proposed method is the use of centrifugation to separate from the process fluid, the duration of the process, as well as the use of this method not in the pharmaceutical industry.
В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.In US Pat. 20110223314 IPC B05D 7/00 20060101 B05D 007/00, B05C 3/02 20060101 B05C 003/02; B05C 11/00 20060101 B05C 011/00; B05D 1/18 20060101 B05 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 dated 03/10/2011 US describes a method for producing microcapsules by suspension polymerization, which belongs to the group of chemical methods using a new device and ultraviolet radiation.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.The disadvantage of this method is the complexity and duration of the process, the use of special equipment, the use of ultraviolet radiation.
В пат. WO/2011/150138, US, МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011 описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.In US Pat. WO / 2011/150138, US, IPC C11D 3/37; B01J 13/08; C11D 17/00, published December 1, 2011 describes a method for producing microcapsules of solid water-soluble agents by polymerization.
Недостатками данного способа являются сложность исполнения и длительность процесса.The disadvantages of this method are the complexity of execution and the duration of the process.
В пат. WO/2011/127030, US, МПК A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др.In US Pat. WO / 2011/127030, US, IPC A61K 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, published October 13, 2011, several methods for producing microcapsules are proposed: interfacial polymerization, thermally induced phase separation, spray drying, evaporation of the solvent, etc.
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).The disadvantages of the proposed methods are the complexity, duration of the processes, as well as the use of special equipment (filter (Albet, Dassel, Germany), a spray dryer for collecting particles (Spray-4M8 Dryer from ProCepT, Belgium)).
В пат. WO/2011/104526, GB, МПК B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц, которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.In US Pat. WO / 2011/104526, GB, IPC B01J 13/00; B01J 13/14; С09В 67/00; C09D 11/02, published 01.09.2011, a method for producing a dispersion of encapsulated solid particles in a liquid medium is proposed, comprising: a) grinding a composition comprising solid, liquid media and polyurethane dispersants with an acid number from 0.55 to 3.5 mmol per gram dispersant, the composition includes from 5 to 40 parts of a polyurethane dispersant per 100 parts of solid, products, by weight; and b) crosslinking the polyurethane dispersant in the presence of a solid and liquid medium, as for the encapsulation of solid particles, which polyurethane dispersant contains less than 10% by weight of repeating elements from polymer alcohols.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.The disadvantages of the proposed method are the complexity and duration of the process for producing microcapsules, as well as the fact that the encapsulated particles of the proposed method are useful as dyes in ink, especially inkjet inks, for the pharmaceutical industry this technique is not applicable.
В пат. WO/2011/056935, US, МПК C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50 опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.In US Pat. WO / 2011/056935, US, IPC C11D 17/00; A61K 8/11; B01J 13/02; C11D 3/50 published May 12, 2011, describes a method for producing microcapsules with a size of 15 microns or more. Polymers of the group consisting of polyethylene, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, polyureas, polyurethanes, polyolefins, polysaccharides, epoxies, vinyl polymers and mixtures thereof are proposed as a shell material. The proposed polymer shells are sufficiently impervious to core material and materials in an environment in which an agent encapsulated benefit will be used to provide benefits to be obtained. The core of encapsulated agents may include perfumes, silicone oils, waxes, hydrocarbons, higher fatty acids, essential oils, lipids, skin cooling fluids, vitamins, sunscreens, antioxidants, glycerin, catalysts, bleaching particles, particles of silicon dioxide, etc.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.
В пат. WO/2011/160733 ЕР МПК B01J 13/16 опубликован 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°C до формирования микрокапсул.In US Pat. WO / 2011/160733 EP IPC B01J 13/16 published December 29, 2011 describes a method for producing microcapsules that contain shells and cores of water-insoluble materials. An aqueous solution of a protective colloid and a solution of a mixture of at least two structurally different bifunctional diisocyanates (A) and (B) insoluble in water are collected together until an emulsion is formed, then added to a mixture of bifunctional amines and heated to a temperature of at least 60 ° C until microcapsules are formed.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.
В пат. WO/2011/161229 ЕР МПК A61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50 опубликован 29.12.2011 описан способ получения микрокапсул, содержащих оболочку из полимочевины и духов в масле, где оболочка получается в результате реакции двух структурно различных диизоцианатов в виде эмульсии. В процессе получения микрокапсул используются защитные коллоиды. Во время реакции изоцианатов и аминов, должен присутствовать защитный коллоид. Это предпочтительно поливинилпирролидон (ПВП). Защитный коллоид - полимерная система, которая в суспензии или дисперсии, предотвращает слипание (агломерация, коагуляции, флокуляции). При данном способе может быть использован для духов и всевозможных потребительских товаров. Исчерпывающий перечень потребительских товаров не может быть перечислен. Наглядные примеры потребительских товаров включают в себя все приложения, включая жидкие моющие средства, и порошковых моющих средств; все личной гигиены и ухода за волосами, включая шампуни, кондиционеры, крема для расчесывания, стайлинг-крема, мыла, крема для тела и т.п.; дезодоранты и антиперспиранты.In US Pat. WO / 2011/161229 EP IPC A61K 8/11; B01J 13/14; B01J 13/16; C11D 3/50 published December 29, 2011 describes a method for producing microcapsules containing a polyurea and perfume shell in oil, where the shell is obtained by the reaction of two structurally different diisocyanates in the form of an emulsion. In the process of obtaining microcapsules, protective colloids are used. During the reaction of isocyanates and amines, a protective colloid must be present. This is preferably polyvinylpyrrolidone (PVP). Protective colloid - a polymer system that, in suspension or dispersion, prevents adhesion (agglomeration, coagulation, flocculation). With this method, it can be used for perfumes and all kinds of consumer goods. An exhaustive list of consumer goods cannot be listed. Illustrative examples of consumer products include all applications, including liquid detergents, and powder detergents; all personal hygiene and hair care products, including shampoos, conditioners, comb creams, styling creams, soaps, body creams, etc .; deodorants and antiperspirants.
Недостатками данного способа получения микрокапсул являются сложность и длительность процесса, использование в качестве оболочки микрокапсул диизоцианатов, которые получают в результате реакции двух изоцианатов.The disadvantages of this method of obtaining microcapsules are the complexity and duration of the process, the use as a shell of microcapsules of diisocyanates, which are obtained as a result of the reaction of two isocyanates.
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. 2134967 IPC A01N 53/00, A01N 25/28 published on 08.27.1999 Russian Federation (1999). A solution of a mixture of natural lipids and a pyrethroid insecticide in a weight ratio of 2-4: 1 in an organic solvent is dispersed in water, which simplifies the microencapsulation method.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.
Техническая задача - упрощение и ускорение процесса получения нанокапсул сульфата глюкозамина в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and speed up the process of producing nanocapsules of glucosamine sulfate in sodium alginate, reduce losses in the production of nanocapsules (increase in yield by mass).
Решение технической задачи достигается способом получения нанокапсул сульфата глюкозамина, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бутилхлорида, процесс получения осуществляется без специального оборудования.The solution of the technical problem is achieved by the method of producing glucosamine sulfate nanocapsules, characterized in that sodium alginate is used as the nanocapsule shell, as well as the preparation of nanocapsules by the physicochemical precipitation method with a non-solvent using a precipitant - butyl chloride, the production process is carried out without special equipment.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул сульфата глюкозамина альгината натрия, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бутилхлорида.A distinctive feature of the proposed method is the use as a shell of nanocapsules of glucosamine sodium alginate sulfate, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitator, butyl chloride.
Результатом предлагаемого метода являются получение нанокапсул сульфата глюкозамина в альгинате натрия при 25°C в течение 15 минут. Выход микрокапсул составляет 100%.The result of the proposed method is the preparation of nanocapsules of glucosamine sulfate in sodium alginate at 25 ° C for 15 minutes. The output of microcapsules is 100%.
ПРИМЕР 1. Получение нанокапсул сульфата глюкозамина, соотношение ядро:оболочка 1:3 (Рис. 1)EXAMPLE 1. Obtaining nanocapsules of glucosamine sulfate, the ratio of core: shell 1: 3 (Fig. 1)
К 1 г сульфата глюкозамина небольшими порциями добавляют в суспензию 3 г альгината натрия в 10 мл петролейного эфира, содержащего 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Затем добавляют 6 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат.To 1 g of glucosamine sulfate, in small portions, 3 g of sodium alginate in a suspension of 10 ml of petroleum ether containing 0.01 g of the preparation E472c as a surfactant with stirring at 1300 rpm are added in a suspension. Then add 6 ml of butyl chloride. The resulting suspension of nanocapsules is filtered and dried.
Получено 4 г белого порошка. Выход составил 100%.Received 4 g of a white powder. The yield was 100%.
ПРИМЕР 2. Получение нанокапсул сульфата глюкозамина, соотношение ядро:оболочка 5:1EXAMPLE 2. Obtaining nanocapsules of glucosamine sulfate, the ratio of the core: shell 5: 1
К 5 г сульфата глюкозамина небольшими порциями добавляют в суспензию 1 г альгината натрия в 10 мл петролейного эфира, содержащего 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Затем добавляют 6 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат.To 5 g of glucosamine sulfate, in small portions, 1 g of sodium alginate in a suspension of 10 ml of petroleum ether containing 0.01 g of the preparation E472c as a surfactant with stirring at 1300 rpm is added to a suspension. Then add 6 ml of butyl chloride. The resulting suspension of nanocapsules is filtered and dried.
Получено 6 г белого порошка. Выход составил 100%.Received 6 g of a white powder. The yield was 100%.
ПРИМЕР 3. Получение нанокапсул сульфата глюкозамина, соотношение ядро:оболочка 1:1 (Рис 2)EXAMPLE 3. Obtaining nanocapsules of glucosamine sulfate, the ratio of core: shell 1: 1 (Figure 2)
К 1 г сульфата глюкозамина небольшими порциями добавляют в суспензию 1 г альгината натрия в 10 мл петролейного эфира, содержащего 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Затем добавляют 6 мл бутилхлорида. Полученную суспензию нанокапсул отфильтровывают и сушат.1 g of glucosamine sulfate is added in small portions to a suspension of 1 g of sodium alginate in 10 ml of petroleum ether containing 0.01 g of the preparation E472c as a surfactant with stirring at 1300 rpm. Then add 6 ml of butyl chloride. The resulting suspension of nanocapsules is filtered and dried.
Получено 6 г белого порошка. Выход составил 100%.Received 6 g of a white powder. The yield was 100%.
Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.E472c is a glycerol ester with one or two molecules of edible fatty acids and one or two molecules of citric acid, moreover, citric acid as a tribasic acid can be esterified with other glycerides and as an acid with other fatty acids. Free acid groups can be neutralized with sodium.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA.EXAMPLE 4. Determination of the size of nanocapsules by the NTA method.
Измерения проводили на мультипараметрическом анализаторе на-ночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.The measurements were carried out on a Nanosight LM0 nanoparticle multiparameter analyzer manufactured by Nanosight Ltd (Great Britain) in the HS-BF configuration (a high-sensitivity Andor Luca video camera, a semiconductor laser with a wavelength of 405 nm and a power of 45 mW). The device is based on the Nanoparticle Tracking Analysis (NTA) method described in ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.The optimal dilution for dilution was 1: 100. For the measurement, the device parameters were selected: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. duration of a single measurement of 215s, the use of a syringe pump.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016134391A RU2647439C1 (en) | 2016-08-22 | 2016-08-22 | Method of glucosamine sulfate in sodium alginate nano-capsules producing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016134391A RU2647439C1 (en) | 2016-08-22 | 2016-08-22 | Method of glucosamine sulfate in sodium alginate nano-capsules producing |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2647439C1 true RU2647439C1 (en) | 2018-03-15 |
Family
ID=61627667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016134391A RU2647439C1 (en) | 2016-08-22 | 2016-08-22 | Method of glucosamine sulfate in sodium alginate nano-capsules producing |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2647439C1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064544A1 (en) * | 2003-01-22 | 2004-08-05 | Durafizz, Llc | Microencapsulation for sustained delivery of carbon dioxide |
RU2555055C1 (en) * | 2014-03-18 | 2015-07-10 | Александр Александрович Кролевец | Method of obtaining nanocapsules of glucoamine sulphate in xanthan gum |
RU2555782C1 (en) * | 2014-03-03 | 2015-07-10 | Александр Александрович Кролевец | Method of producing glucosamine sulphate nanocapsules in konjac gum in hexane |
RU2557975C1 (en) * | 2014-03-26 | 2015-07-27 | Александр Александрович Кролевец | Method for producing glucosamine sulphate nanocapsules in carrageenan |
-
2016
- 2016-08-22 RU RU2016134391A patent/RU2647439C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064544A1 (en) * | 2003-01-22 | 2004-08-05 | Durafizz, Llc | Microencapsulation for sustained delivery of carbon dioxide |
RU2555782C1 (en) * | 2014-03-03 | 2015-07-10 | Александр Александрович Кролевец | Method of producing glucosamine sulphate nanocapsules in konjac gum in hexane |
RU2555055C1 (en) * | 2014-03-18 | 2015-07-10 | Александр Александрович Кролевец | Method of obtaining nanocapsules of glucoamine sulphate in xanthan gum |
RU2557975C1 (en) * | 2014-03-26 | 2015-07-27 | Александр Александрович Кролевец | Method for producing glucosamine sulphate nanocapsules in carrageenan |
Non-Patent Citations (2)
Title |
---|
NAGAVARMA B. V. N. Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. * |
ЧУЕШОВ В.И., Промышленная технология лекарств в 2-х томах, том 2, 2002, стр. 383. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491939C1 (en) | Method for preparing drug microcapsules of cephalosporin in konjac gum in chloroform | |
RU2550918C1 (en) | Method of production of nanocapsules of antibiotics in gellan gum | |
RU2561586C1 (en) | Method of producing microcapsules of biopag-d in pectin | |
RU2555824C1 (en) | Method for production of microcapsules of dry girasol extract in pectin | |
RU2554763C1 (en) | Method of obtaining nanocapsules of chondroitin sulphate in konjac gum | |
RU2619331C2 (en) | Method of producing nanocapsules of umifenovir (arbidol) in sodium alginate | |
RU2502510C1 (en) | Method for preparing drug microcapsules of cephalosporin in konjak gum in carbon tetrachloride | |
RU2631883C2 (en) | Method for production of nanocapules of penicillin group medicine preparations in konjac gum | |
RU2550919C1 (en) | Method of production of nanocapsules of antibiotics in carrageenan | |
RU2550932C1 (en) | Method for producing cephalosporin nanocapsules in xanthum gum | |
RU2578403C2 (en) | Method of producing nanocapsules of cytokinins | |
RU2599841C1 (en) | Method of aminoglycoside antibiotics in sodium alginate nano-capsules producing | |
RU2599007C1 (en) | Method of producing nanocapsules of ciprofloxacin hydrochloride in sodium alginate | |
RU2605614C1 (en) | Method of producing nanocapsules of dry girasol extract | |
RU2517214C2 (en) | Method for preparing drug microcapsules of cephalosporins in konjak gum in butyl alcohol | |
RU2555782C1 (en) | Method of producing glucosamine sulphate nanocapsules in konjac gum in hexane | |
RU2554738C1 (en) | Method of producing chondroitin sulphate nanocapsules in carrageenan | |
RU2555055C1 (en) | Method of obtaining nanocapsules of glucoamine sulphate in xanthan gum | |
RU2557975C1 (en) | Method for producing glucosamine sulphate nanocapsules in carrageenan | |
RU2547560C2 (en) | Method for producing drug preparations of penicillin in sodium alginate possessing supramolecular properties | |
RU2555785C1 (en) | Method for producing chondroitin sulphate nanocapsules in xanthane gum in hexane | |
RU2647439C1 (en) | Method of glucosamine sulfate in sodium alginate nano-capsules producing | |
RU2573979C1 (en) | Method of production of nanocapsules of antibiotics in agar-agar | |
RU2580613C1 (en) | Method of producing antibiotic nanocapsules in agar-agar | |
RU2564898C1 (en) | Method of obtaining nanocapsules of antibiotics |