RU2647366C1 - Антиагрегантное средство - Google Patents

Антиагрегантное средство Download PDF

Info

Publication number
RU2647366C1
RU2647366C1 RU2017112549A RU2017112549A RU2647366C1 RU 2647366 C1 RU2647366 C1 RU 2647366C1 RU 2017112549 A RU2017112549 A RU 2017112549A RU 2017112549 A RU2017112549 A RU 2017112549A RU 2647366 C1 RU2647366 C1 RU 2647366C1
Authority
RU
Russia
Prior art keywords
kda
adp
platelet
chitosan
plasma
Prior art date
Application number
RU2017112549A
Other languages
English (en)
Inventor
Валерий Петрович Варламов
Наталья Николаевна Дрозд
Алла Викторовна Ильина
Бальжима Цырендоржиевна Шагдарова
Юлия Сергеевна Логвинова
Лейсан Маратовна Хантимирова
Original Assignee
Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН)
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр гематологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ гематологии" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН), Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр гематологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ гематологии" Минздрава России) filed Critical Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН)
Priority to RU2017112549A priority Critical patent/RU2647366C1/ru
Application granted granted Critical
Publication of RU2647366C1 publication Critical patent/RU2647366C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/612Crustaceans, e.g. crabs, lobsters, shrimps, krill or crayfish; Barnacles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Изобретение относится к фармацевтической промышленности, а именно к антиагрегантному средству. Антиагрегантное средство на основе полисахарида представляет собой олигохитозан с молекулярной массой 5 кДа или 10 кДа и степенью дезацетилирования 85%, полученный из хитозана краба путем его гидролиза сухим ферментным препаратом культуральной жидкости штамма мицелиального гриба Myceliophthora fergusii ВКМ F_3932D. Вышеописанное средство обладает высокой антиагрегантной активностью. 2 табл., 2 пр.

Description

Изобретение относится к области химико-фармацевтической промышленности, точнее, к веществам (на основе химически модифицированных природных источников) с антиагрегантной активностью.
Предшествующий уровень техники.
Для профилактики и лечения тромбозов, наряду с антикоагулянтными и фибринолитическими средствами используют и препараты, ингибирующие агрегацию тромбоцитов (антиагреганты или антитромбоцитарные средства). При развитии патологического процесса, активация тромбоцитов является основным фактором риска нарушений функционирования сердечно-сосудистой системы, что в результате приводит к тромбозам [Palur Ramkrishnan A.V. et al. Cardiovasc. Ther. 2017; 35(1):64-70.]. Антитромбоцитарная терапия входит в арсенал лекарственных средств для лечения заболеваний коронарных артерий или так называемой ишемической болезни сердца [Laine М. et al. World J Cardiol. 2016; 8(5):327-32].
Тромбоциты (небольшие, 2-4 мкм, безъядерные сферические кровяные пластины) играют центральную роль в остановке кровотечения в результате повреждения кровеносного сосуда и в развитии тромбоза [Heijnen Н., Van Der Sluijs P.J. Thromb. Haemost. 2015; 13:2141-2151]. В тромбоцитах есть несколько типов гранул: альфа (α) - гранулы, плотные гранулы и лизосомы. В результате взаимодействия с субэндотелиальными структурами в месте повреждения сосуда из гранул тромбоцитов высвобождается ряд активных соединений с проагрегантной активностью {тромбоксан А2, серотонин, аденозиндифос-фат (АДФ), тромбин}. Проагрегантный эффект этих соединений возрастает при некоторых патологических состояниях (диабет, гиперлипидемия, тромбоз коронарных артерий и т.д.), характеризующихся эндотелиальной дисфункцией, приводящей к снижению синтеза в сосудистой стенке вазодилятаторов и антиагрегантов [Osende J.I. et al. J. Thromb. Haemost. 2004. V2:492-498].
В α-гранулах хранятся адгезивные молекулы, такие как фактор фон Виллебранда и фибриноген, а также факторы роста, воспалительные и ангиогенные медиаторы, участвующие в воспалительных ответах и в появлении опухолей. АДФ хранится в плотных гранулах тромбоцитов, высвобождается после активации пластинок и ингибирует формирование циклического аденозинмонофосфата, активируя GPCRs (G protein coupled receptors) рецепторы тромбоцитов - P2Y1 и P2Y12. Активность других агонистов тромбоцитов в некоторой степени зависит от высвобождения АДФ [Offermanns S. et al. Nature. 1997; 389:183-186]. Конечный этап активации тромбоцитов - агрегация пластинок, вызванная перекрестным связыванием фибриногена с тромбоцитарным рецептором интегрином αIIbβ3 [Jackson S.P. Blood 2007; 109(12):5087-95].
Используемые в современной клинической практике антиагреганты в основном представлены синтетическими соединениями с разным механизмом действия (ингибиторы циклооксигеназы, антагонисты тромбоксановых рецепторов, антагонисты рецепторов P2Y12, ингибиторы фосфодиэстеразы, блокаторы рецепторов GP IIb/IIIа к фибриногену, антагонисты PAR рецепторов, агонист GLP1R (глюкагон подобный пептидный рецептор) [Eisen A. et al. JAMA Cardiol. 2016; 1(6):718-30; Tsoumani M.E. et al. Platelets. 2016; 27(8):812-820].
Ингибиторы АДФ-индуцированной агрегации тромбоцитов представлены тиено-пиридинами (ticlopidine, clopidogrel, prasugrel) и аналогами АДФ (ticagrelor и кангрелор [Keating G.M. Drugs. 2015; 75(12):1425-34]. Эти соединения являются антагонистами рецепторов тромбоцитов P2Y12 (ингибируют их активацию), а некоторые из них блокируют АДФ-индуцированное связывание фибриногена с мембранным гликопротеином IIb/IIIа.
Однако современные антитромбоцитарные лекарственные средства для профилактики и лечения инфаркта миокарда, ишемического инсульта и для лечения острого коронарного синдрома обладают рядом побочных эффектов: диспепсические расстройства, желудочно-кишечные кровотечения, поражение периферической нервной системы, аллергические реакции [Saeed О. Et al. Circ. Heart. Fail. 2016; 9(1):e002296; Liping Z. et al. Heart. Lung. Circ. 2015; 24(11):e180-3; Karkowski L. et al. Rev. Med. Interne. 2011.32(12):762-5]. A к аспирину и клопидогрелю наблюдаются случаи резистентности [Le Quellec S. et al. Thromb. Haemost. 2016; 116(4):638-50]. Эти обстоятельства ставят перед исследователями актуальную задачу поиска новых и безопасных средств, предназначенных для лечения и предупреждения тромботических поражений сосудов.
Некоторые полисахариды характеризуется широким спектром фармакологических эффектов и низкой токсичностью: пектины, альгинаты, фукоиданы, каррагинаны, ульваны, хитозаны [Barahonaa Т. et al. Bioactive Carbohydr. Diet. Fibre., 2014, 4, 125-138]. Ряд представленных соединений самостоятельно или опосредованно ингибируют активность ключевых факторов свертывающей системы крови [Tang L. et al. Int. J. Biol. Macromol. 2017; 94(Pt A):642-652; Xie J. et al. Crit. Rev. Food Sci. Nutr. 2016; 56 Suppl 1:S60-84]. Однако информация в отношении эффектов полисахаридов на процессы агрегации тромбоцитов противоречива. В одних случаях полисахариды показали проагрегантную активность [Gracher A. Et al. Carbohyd. Polym. 2016; 136:177-86.], в других, наоборот, демонстрировали антиагрегантные свойства [Souza R. et al. Carbohydr. Polym. 2015; 124:208-15; Sokolova E. et al. J. Biomed. Mater. Res. A. 2014; 102(5):1431-8; Wijesinghe W. et al. Carbohydr. Polym. 2012, 88, 13-20; Li B. et al. Molecules 2008, 13, 1671-1695; Prajapati V.D. et al. Carbohydr. Polym. 2014, 105, 97-112].
Zhu Z. и др. [Zhu Z. et al. Thromb Res 2010; 125:419-126.] показали, что фукоидан, выделенный из съедобной разновидности японской айвы (L. japonica), демонстрировал антитромбоцитарный эффект без антикоагулянтного; фукоиданы с большей молекулярной массой (Мм) 50 и 120 кДа ингибировали и агрегацию тромбоцитов, и коагуляцию плазмы.
Каррагинаны обладают антитромботическим действием, снижая скорость коллаген-индуцированной агрегации тромбоцитов и ингибируя адгезию пластинок, опосредованную коллагеновым рецептором тромбоцитов - гликопротеином VI. Антикоагулянтный эффект каррагинанов зависит от молекулярной массы и степени сульфатирования полисахарида [Соколова Е.В. "Взаимосвязь структуры и биологической активности каррагинанов красных водорослей Японского моря", автореф. канд. дис. май 2012, ФГБУН Тихоокеанский институт биоорганической химии им. Г.Б. Елякова ДВО РАН]. В отличие от каппа-формы, лямбда- и йота-формы каррагенаны снижали индуцированную агрегацию тромбоцитов [Шокур О.А. и др. Тохоок. Мед. Ж. 2013, №2. С. 25-28].
Lassila R. и др. предполагают использовать для профилактики и лечения артериальных тромбозов композиции на основе подобных гепарину соединений; описанные композиции ингибируют индуцированную коллагеном агрегацию тромбоцитов в токе цельной крови [Patent US 8415324 В2, 2013; Inventors: Lassila R. et al.].
Композиции, содержащие мукополисахариды (состоящие из фрагментов сульфата дерматана, в которых остатки несульфатированной уроновой кислоты в процессе получения подвергались окислению периодной кислотой с разрывом углеродных связей при С2 и С3 атомах) и олигосахариды (получали деполимеризацией гепарина; Мм олигосахари-дов 3.5-1.0 кДа), показали антитромботическую и антитромбоцитарную активности. Одна из композиций ингибировала агрегацию тромбоцитов индуцированную коллагеном, ристоцетином и АДФ; гепарин в таких же условиях увеличивал АДФ-индуцированную агрегацию тромбоцитов [Patent WO 1990004607 А2, 1990; Inventors: G. Mascellani and P. Bianchini].
Олигосахарид [(M9G)2] из 20 моносахаридных единиц - сополимер, состоящий из маннопиранозных звеньев, соединенных β-D-(1→4) связью, и α-L-(1→4) глюкуроновых звеньев в соотношении 9:1 (40-60% карбоксильных функциональных групп при С2 атоме углерода эстерифицированы пропанолом, 2-пропанолом или метанолом и при С3 атоме углерода около 50% сульфатированы, таким образом общее количество органической серы в соединении составляло 7-13%) обладает антитромбоцитарной активностью. АДФ-индуцированная агрегация тромбоцитов после введения олигосахарида через рот крысам в дозах 250 и 500 мг/кг составила 36 и 43% [Patent US 5646130 А, 1997; Inventors: Guan Hua Shi].
S. Colliec-Jouault и др. выделяли фукан из Pheophyceae, а затем получали низкомолекулярный фукан с молекулярной массой (Мм) не >10 кДа. Внутривенное введение крысам низкомолекулярного фукана (в дозах 2,5 и 5 мг/кг) приводило к 35-40% ингибированию АДФ - индуцированной агрегации тромбоцитов [Patent US 6828307 B1l, 2004; Inventors: S. Colliec-Jouault et al.].
Полисахарид хитозан получают дезацетилированием глюкозаминогликана хитина. Хитин находят в экзоскелете ракообразных, кутикуле насекомых и клеточной стенке грибов. Хитозан - общий термин, используемый для описания линейных полисахаридов, состоящих из остатков глюкозамина и N-ацетил глюкозамина, связанных β (1→4) гликозидной связью и дезацетилированных больше чем на 50% [Хитозан. Под ред.: К.Г. Скрябина, С.Н. Михайлова, В.П. Варламова. М.: Центр Биоинженерия РАН, 2013. 593 С.ISBN 978-5-4253-0596-1].
Рядом авторов показано, что в зависимости от структурных параметров и источника сырья хитозан может обладать как проагрегантной активностью [Periayah М. et al. Int. J. Biol. Macromol. 2013, 52, 244-249; Lord M. et al. Biomaterials. 2011; 32(28):6655-62; Patent US 20130004474 A1, 2013; Inventors: W. Ouyang et al.; Chou TC et al. Biochem. Bio-phys. Res. Com. 2003; 302(3):480-3], так и антиагрегантной активностью. Полякова A.M. и др. показали, что инкубация тромбоцитов с хитозаном (структурные параметры не приведены) достоверно снижала степень их АДФ индуцированной агрегации всего на 11-18% [Полякова A.M. и др. Инфекц. болезни. 2005. Т. 3, №1. С. 44-47].
Наиболее близким по сущности и назначению к предлагаемому изобретению является сульфатированный олигосахарид (маннопентаозофосфат - SO4) с антитромботиче-ской активностью. Этот сахарид Cowden W. и Parish С. выделяли из дрожжей Pichia holstii [Patent US 6271215 B1 Aug.7 2001; Int. Cl. A61K 31/715; Sulfated oligosaccharides having anticoagulant/antithrombotic activity [Text]// Inventor W.B. Cowden, C.R. Parish // Appl. No.: US 09/380,899 Mar 11 1997; Assignee The Australian National University]. С помощью описанного в патенте метода авторы получили сульфатированный олигосахарид (общая формула олигосахарида может быть представлена как: R1-(Rx)n-R2, где R1, R2 и каждая Rx единица может быть представлена одним и тем же моносахаридным звеном либо различными, а соседние моносахаридные звенья связанными 1→2, 1→3, 1→4 и/или 1→6 гликозидными связями и число «n» может составлять от 1 до 6). В концентрациях 21, 210, 2100 мкг/мл маннопентаозофосфат - SO4 снижал АДФ-индуцированную агрегацию тромбоцитов человека до 74, 72 и 56%, соответственно.
Недостаток данного изобретения обусловлен невысокой величиной ингибиторной активности в отношении АДФ индуцированной агрегации тромбоцитов (снижалась на 30%). Кроме этого структура олигосахарида, отвечающая общей формуле, может быть представлена огромным набором олигосахаридов и разобраться какая из них ответственна за проявляемый биологический эффект является сложной задачей.
От прототипа заявляемое соединение отличается тем, что предлагаемое в нашей заявке соединение на основе олигохитозана в несколько раз эффективнее. Для достижения одинакового с сульфатом маннопентаозофосфата эффекта предлагаемого олигохитозана требуется в 3-6 раз меньше (таблица 1).
Целью изобретения является получение нового антиагрегантного средства на основе олигохитозана с Мм 5 кДа и 10 кДа и степенью дезацетилирования (СД) 85%, которое может быть использовано для профилактики и лечения сердечно-сосудистых заболеваний.
Поставленная цель достигается получением соединения со свойствами ингибитора АДФ индуцированной агрегации тромбоцитов человека. Выявлена высокая способность олигохитозана (Мм 5 и 10 кДа, СД 85%) ингибировать АДФ индуцированную агрегацию тромбоцитов человека в диапазоне плазменных концентраций от 0,34 мг/мл до 1,37 мг/мл.
Техническим результатом предлагаемого изобретения является расширение ассортимента антитромбоцитарных средств на основе полисахаридов с увеличенной активностью и повышение ингибиторной активности в отношении агрегации тромбоцитов человека, индуцированной АДФ.
Указанный технический результат достигается тем, что согласно изобретению предложено антитромбоцитарное средство на основе олигохитозана с Мм 5 и 10 кДа, и СД 85%, полученного из хитозана краба с Мм 1000 кДа и СД 85% (производство ЗАО "Биопрогресс", Щелково, Россия) путем ферментативного гидролиза. Гидролиз хитозана краба для получения антитромбоцитарного средства осуществляли по методике, описанной в работе Хасановой Л.М. и др. [Хасанова Л.М. и др. Прикл. Биох. Микробиол. 2014. Т. 50, №4. С. 422-428]. В результате получали водорастворимые олигохитозаны с ММ 5 кДа (Х5) и 10 кДа (X10), СД 85%.
Для проведения процесса гидролиза с целью получения различающихся по молекулярной массе образцов хитозана использовали сухой ферментный препарат (ФП), полученный лиофильным высушиванием культуральной жидкости штамма мицелиального гриба Myceliophthora fergusii BKM F_3932D (Всероссийская коллекция микроорганизмов при ИБФМ им. Г.К. Скрябина РАН) [Патент РФ №2361915 2008, Синицын А.П. и др].
Степень дезацетилирования образцов хитозана определяли двумя методами - кондуктометрическим титрованием согласно методике, представленной в работе [Lim S. et al. Advan. Chitin Sci. / Eds. M.G. Peter, A. Domard, R.A.A. Muzzarelli. Potsdam: University Potsdam, 2000. 454 p], и спектральным методом. Протонные спектры хитозана регистрировали на спектрометре Bruker АМХ 400 (Германия) с рабочей частотой по протону 400 МГц, при температуре 32°С. Образцы приготовлены в DC1. В качестве стандарта использовали 4,4-диметил-4-силапентансульфоновую кислоту.
Молекулярно массовые характеристики образцов хитозана определяли методом ВЭЖХ на приборе "Sykam", (Германия) с использованием колонки (7.8×300 мм) Ultrahydrogel 500 "Waters", (США) и предколонки GFC_4000 (5×2 мм) "Phenomenex", (США). В качестве элюента использовали 0.05 М уксусную кислоту с 0.15 М ацетатом аммония, рН5.1 [Лопатин С.А. Рыбная промышленность. 2010. №2. С. 82-85]. В качестве детектора использовали рефрактометр RI Detector К_2301. Данные обрабатывали с помощью программы "Мультихром" (Россия) версия 1.6 (© 1993-2001 Ampersand Ltd.).
Эксперименты по исследованию антиагрегационной способности соединений были выполнены с использованием венозной крови здоровых доноров, которую получали путем пункции кубитальной вены и стабилизировали 3,8%-ным раствором цитрата натрия в соотношении 9:1. Для приготовления богатой тромбоцитами плазмы кровь центрифугировали в течение 10 минут при 1000 об/мин, после чего верхний слой плазмы переносили в другую пробирку, а остаток повторно центрифугировали в течение 20 минут при 3000 об/мин для получения плазмы, бедной тромбоцитами. Агрегацию тромбоцитов исследовали на агрегометре фирмы Chrono-Log (Pensilvania, USA, Model 500) по методу G.Born [Born G.V. Nature. 1962. V. 194. №5. P. 927-929]. С этой целью в кювету прибора помещали 300 мкл богатой тромбоцитами плазмы. В качестве индуктора агрегации использовали раствор динатриевой соли аденозин-5'-дифосфата (АДФ; «Sigma-Aldrich»). Богатую тромбоцитами плазму человека инкубировали с исследуемыми соединениями или с буфером (0.05 М трис-HCl буфером, рН 7.4, содержащим 0.175 М NaCl), затем вносили АДФ (конечная концентрация 2⋅10-5 М). Агрегацию тромбоцитов определяли в течение 5 мин. Оптическим контролем служил такой же объем плазмы, не содержащей тромбоцитов (пропускание света бедной тромбоцитами плазмы принимали за 100%). О степени агрегации судили по максимальной величине пропускания света в кювете с богатой тромбоцитами плазмой после окончания реакции агрегации тромбоцитов. На агрегатограмме (кривой агрегации тромбоцитов) определяли максимальную амплитуду кривой агрегации (в %) и угол наклона кривой агрегации (отн. ед./мин), отражающий скорость развития агрегации тромбоцитов. Статистический анализ полученных данных проводили в соответствии с общепринятыми методами вариационной статистики с использованием критерия Манна - Уитни и программы Биостатистика.
Изобретение поясняется следующими примерами.
Пример 1. Образец хитозана X10 с Мм 10 кДа, СД 85% и индексом полидисперсности (ИП) 2.1 был получен ферментативной деполимеризацией хитозана краба с Мм 1000 кДа и СД 85% производства ЗАО "Биопрогресс" (Щелково, Россия). Условия получения: 1,0 г хитозана (Мм 1000 кДа, СД 85%) растворяли в течение 2 ч в 40 мл раствора 1М СН3СООН при перемешивании, затем добавляли 116 мл воды (рН 3,8). Полученный раствор хитозана подщелачивали раствором 1М NaOH до рН 5,4-5,6 (44 мл), термостати-ровали при 37±1°С, после чего добавляли 20 мг ФП (1 мг ФП содержал 0,063 мг белка). Соотношение фермент-субстрат составило 1/800. Гидролиз проводили в течение 2 часов. Ферментативную реакцию останавливали резким смещением значений рН до 8.5-9.5 с использованием раствора NH4OH (12%). Образовавшуюся суспензию продуктов реакции центрифугировали (5000 об/мин, 30 мин), осадок ресуспендировали в воде, диализовали против воды с трехкратной сменой. В качестве диализной трубки использовали полупроницаемую мембрану из регенерированной целлюлозы (25×16 мм, Мм=3.5 кДа). Раствор из диализной трубки лиофильно высушивали. Выход образца хитозана X10 составлял 50%.
Для получения образца хитозана Х5 с ММ 5 кДа, СД 85% и ИП 2.1 использовали методику ферментативного гидролиза, описанную выше, отличающуюся продолжительностью гидролиза. Время процесса составляло 6 ч. Выход лиофильно высушенного образца 25%.
Пример 2. Оценка антиагрегантной активности производных хитозана.
Эксперименты проводили следующим образом: в кювету, содержащую 300 мкл богатой тромбоцитами плазмы, добавляли 33 мкл раствора (растворитель - 0.05 М трис-НСl буфер, рН 7.4, содержащий 0.175 М NaCl) исследуемого соединения Х5 с Мм 5 кДа, СД 85% или X10 с Мм 10 кДа, СД 85% (конечная концентрация 0.343-1,37 мг/мл) и инкубировали полученную смесь в течение 5 мин при температуре 37°С. Процесс агрегации тромбоцитов индуцировали, добавляя 33 мкл раствора АФД (Sigma) в конечной концентрации 2⋅10-5 М (проведение опыта в последовательности "образец + плазма > инкубация + АДФ). В контрольных опытах богатую тромбоцитами плазму предварительно инкубировали с растворителем для исследуемого образца (0.05 М трис-HCl буфером, рН 7.4, содержащим 0.175 М NaCl) и после этого вносили индуктор агрегации тромбоцитов (проведение опыта в последовательности "буфер + плазма > инкубация + АДФ"), либо предварительно инкубировали богатую тромбоцитами плазму с раствором образца, а затем, вместо АДФ добавляли буфер (проведение опыта в последовательности "образец + плазма > инкубация + буфер").
При инкубации плазмы с образцами Х5 и X10 в концентрациях 0,343, 0,685 и 1,37 мг/мл отмечали достоверное снижение АДФ-индуцированной агрегации тромбоцитов до 56,58±3,02%, 41,67±3,39%, 54,38±2,73% и до 53,25±2,09%, 30,75±1,48%, 29,40±1,70%, соответственно (табл. 1), в сравнении с контролями. На кривой агрегации тромбоцитов наблюдали и достоверное снижение, в сравнении с контролем, скорости развития процесса (табл. 2).
Таким образом, олигохитозан с Мм 10 кДа в концентрации 1,37 мг/ мл снижал АДФ-индуцированную агрегацию тромбоцитов на 60%, а олигохитозан с ММ 5 кДа на 41% снижал АДФ-индуцированную агрегацию тромбоцитов в концентрации 0,685 мг/мл.
Figure 00000001
Примечание 1: Агрегация тромбоцитов при проведении опыта в последовательности "образец + плазма > инкубация + буфер": для 4* - 5,5±1,3%; для 5* - 0,25±0,17%;
1 - проведение опыта в последовательности "буфер + плазма > инкубация + АДФ;
2 - проведение опыта в последовательности "образец + плазма > инкубация + АДФ; # - р<0,05 - достоверность различий с показаниями в столбце 1; n=6.
Примечание 2: & - PI-88 (маннопентаозофосфат SO4) из патента US 6271215 B1 Aug.7 2001; Int. Cl. A61K 31/715; Sulfated oligosaccharides having anticoagu-lant/antithrombotic activity [Text]// Inventor W.B. Cowden, C.R. Parish // Appl. No.: US 09/380,899 Mar 11 1997; Assignee The Australian National University.
Figure 00000002
Примечание: Наклон кривой агрегации тромбоцитов при проведении опыта в последовательности "образец + плазма > инкубация + буфер": для Х5 - 3,67±1,86 отн. ед./мин; для Х10 - 2,50±0,72 отн. ед. / мин; проведение опыта в последовательности "буфер + плазма > инкубация + АДФ;
2 - проведение опыта в последовательности "образец + плазма > инкубация + АДФ; # - р<0,05 - достоверность различий с показаниями в столбце

Claims (1)

  1. Антиагрегантное средство на основе полисахарида, отличающееся тем, что оно представляет собой олигохитозан с молекулярной массой 5 кДа или 10 кДа и степенью дезацетилирования 85%, полученный из хитозана краба путем его гидролиза сухим ферментным препаратом культуральной жидкости штамма мицелиального гриба Myceliophthora fergusii BKM F_3932D.
RU2017112549A 2017-04-12 2017-04-12 Антиагрегантное средство RU2647366C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017112549A RU2647366C1 (ru) 2017-04-12 2017-04-12 Антиагрегантное средство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017112549A RU2647366C1 (ru) 2017-04-12 2017-04-12 Антиагрегантное средство

Publications (1)

Publication Number Publication Date
RU2647366C1 true RU2647366C1 (ru) 2018-03-15

Family

ID=61627646

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017112549A RU2647366C1 (ru) 2017-04-12 2017-04-12 Антиагрегантное средство

Country Status (1)

Country Link
RU (1) RU2647366C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2157209C1 (ru) * 2000-03-23 2000-10-10 Открытое акционерное общество "Химико-фармацевтический комбинат "Акрихин" Улучшающее мозговое кровообращение, антиагрегатное средство и способ его получения
US6271215B1 (en) * 1997-03-11 2001-08-07 The Australian National University Sulfated oligosaccharides having anticoagulant/antithrombotic activity
RU2241447C2 (ru) * 2003-01-27 2004-12-10 Общество с ограниченной ответственностью "Олигофарм" Растворимая шипучая лекарственная форма

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271215B1 (en) * 1997-03-11 2001-08-07 The Australian National University Sulfated oligosaccharides having anticoagulant/antithrombotic activity
RU2157209C1 (ru) * 2000-03-23 2000-10-10 Открытое акционерное общество "Химико-фармацевтический комбинат "Акрихин" Улучшающее мозговое кровообращение, антиагрегатное средство и способ его получения
RU2241447C2 (ru) * 2003-01-27 2004-12-10 Общество с ограниченной ответственностью "Олигофарм" Растворимая шипучая лекарственная форма

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОНИН Д. Л. и др. Гемосовместимость n-карбоксиацильных производных хитозана// Трансляционная медицина. Экспериментальные исследования. 2016, N 3(2), с. 80-88. *

Similar Documents

Publication Publication Date Title
Mestechkina et al. Sulfated polysaccharides and their anticoagulant activity: A review
Arlov et al. Engineered sulfated polysaccharides for biomedical applications
Shanmugam et al. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents
Colliec et al. Anticoagulant properties of a fucoidan fraction
Wu et al. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase
Jouault et al. Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus
US5321133A (en) Sulphated polysaccharides, anticoagulant agent and anticomplementary agent obtained from brown algae fucuses and method of obtaining same
Wu et al. Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas
Zhao et al. A comparative study of antithrombotic and antiplatelet activities of different fucoidans from Laminaria japonica
JPH06506685A (ja) 新規な非抗凝固剤ヘパリン誘導体
EP0048231A1 (en) Oligosaccharides having selective anticoagulation activity
US20070259833A1 (en) Use of Low-Molecular-Weight Highly Sulfated Polysaccharide Derivatives for Modulating Angiogenesis
Farias et al. Dual effects of sulfated D-galactans from the red algae Botryocladia occidentalis preventing thrombosis and inducing platelet aggregation
WO2011063595A1 (zh) 低聚凤梨参糖胺聚糖及其制备方法
Zhao et al. Preparation of low-molecular-weight polyguluronate sulfate and its anticoagulant and anti-inflammatory activities
Boisson‐Vidal et al. Relationship between antithrombotic activities of fucans and their structure
US5583121A (en) Non-anticoagulant chemically modified heparinoids for treating hypovolemic shock and related shock syndromes
US6127347A (en) Non-anticoagulant chemically modified heparinoids for treating hypovolemic shock and related shock syndromes
RU2647366C1 (ru) Антиагрегантное средство
JP6980018B2 (ja) 内因系テンナーゼ複合体を阻害するオリゴ糖、その製造方法と用途
DK175087B1 (da) Alkanoylestere af heparin, farmaceutisk præparat, der indeholder dem og anvendelse deraf
CN109251255A (zh) 一种新型岩藻糖化硫酸软骨素FCS hm及其制备方法和应用
WO2009137899A2 (en) Sulfated galactans with antithrombotic activity, pharmaceutical composition, method for treating or prophylaxis of arterial or venous thrombosis, method of extraction and use thereof
CN104610459A (zh) 一种低分子量仿刺参糖胺聚糖及其制备方法和应用
RU2366441C2 (ru) Антикоагулянтное средство на основе биологически активного комплекса из коры кедра сибирского