RU2646953C1 - Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности - Google Patents

Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности Download PDF

Info

Publication number
RU2646953C1
RU2646953C1 RU2016151251A RU2016151251A RU2646953C1 RU 2646953 C1 RU2646953 C1 RU 2646953C1 RU 2016151251 A RU2016151251 A RU 2016151251A RU 2016151251 A RU2016151251 A RU 2016151251A RU 2646953 C1 RU2646953 C1 RU 2646953C1
Authority
RU
Russia
Prior art keywords
sensor
nanocalorimetric
sample
holder
holder according
Prior art date
Application number
RU2016151251A
Other languages
English (en)
Inventor
Дмитрий Анатольевич Иванов
Андрей Александрович Рычков
Алексей Петрович Мельников
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2016151251A priority Critical patent/RU2646953C1/ru
Application granted granted Critical
Publication of RU2646953C1 publication Critical patent/RU2646953C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/006Microcalorimeters, e.g. using silicon microstructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2211/00Thermometers based on nanotechnology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • G01N25/4866Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/945Holders with built-in electrical component

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца, а также структуры и свойств его поверхности дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и свойств поверхности, а также теплофизических свойств материалов различного типа с возможностью одновременного снятия базовой линии. Устройство представляет собой приставку к сканирующей головке атомно-силового микроскопа, совмещенную с прецизионным XY столиком. На столике имеется возможность жесткого пространственного крепления нанокалориметрического чипа и электрической платы, обеспечивающей переход от 14-контактного разъема коннекторасенсора к 25-контактному разъему D-Sub блока управления нанокалориметра. Дополнительно на данном держателе реализована возможность закрепления термопары вблизи рабочей области нанокалориметра. Технический результат - снижение уровня шумов в электрических сигналах. 10 з.п. ф-лы, 13 ил.

Description

Область техники
Настоящее изобретение относится к научному приборостроению и может быть использовано при проведении измерений теплофизических параметров образцов и параметров его поверхности. Заявляемый держатель состоит из двух конструктивных частей - коннектора для нанокалориметрического сенсора и прецизионного XY столика. При помощи коннектора организованна стабильная передача сигнала от используемого нанокалориметрического сенсора до электронного контроллера для получения теплофизических параметров исследуемого образца, a XY столик обеспечивает надежную фиксацию нанокалориметрического сенсора в блоке, а также сканирующего зонда непосредственно над активной областью нанокалориметрического сенсора для определения параметров поверхности исследуемого образца. Заявляемое устройство предназначено для использования в приборах, обеспечивающих проведение in situ исследований параметров поверхности и теплофизических свойств материалов различного типа (образцов), например на атомно-силовых микроскопах и сканирующих зондовых микроскопах, использующие сканирующие головки линейки NTEGRA производства компании NT-MDT SpectrumInstruments.
Уровень техники
Из уровня техники известно устройство FlashDSC1 компании Mettler-ToledoGmbh, выбранное за прототип. Данное устройство также использует нанокалориметрические сенсоры и предназначено для проведения теплофизических исследований образцов. В основе его работы FlashDSC1 лежит запатентованное устройство (US 6079873A «Микронный дифференциальный сканирующий калориметр на чипе»), в котором описывается устройство дифференциального сканирующего микрокалориметра на кремниевом чипе, позволяющее проводить измерения сканирующей калориметрии на образцах микронных масштабов и тонких пленках. Чип для данного устройства изготавливается с использованием стандартных процессов CMOS. Устройство-прототип FlashDSC1 компании Mettler-ToledoGmbh способно исследовать образцы массой от 10 нг до 1000 нг, что позволяет развивать скорости нагрева активной области калориметрического сенсора от 0,5°С/сек до 40000°С/сек и скорости охлаждения от 0,1°С/сек до 4000°С/сек. Благодаря конструкции устройства достигнута высокая скорость теплообмена с окружающей средой, что в сочетании с простотой смены сенсоров сокращает время, затрачиваемое на подготовку эксперимента. Однако значительно сужается спектр возможных экспериментов благодаря тому, что прибор предусматривает лишь линейные нагревы со скоростью до 40000°С/сек. Кроме того, конструкция прибора не предусматривает совмещения нанокалориметрических исследований с другими видами физико-химического анализа, так как прибор представляет собой единый блок с размещенным в нем микроскопом, платами цифроаналогового преобразователя, элементами крепления сенсоров.
В свою очередь, заявляемый держатель предусматривает возможность работы с прибором - аналогом устройства FlashDSC1, а именно нанокалориметром, который имеет ряд преимуществ. Одним из таких преимуществ предлагаемого электронного контроллера является возможность проводить нанокалориметрические измерения не только в режимах линейных нагревов (так называемая DC-калориметрия), но и в режимах температурной модуляции (АС-калориметрия). Режим температурной модуляции необходим для достижения большей точности измерений, что особенно важно при наблюдении ряда основополагающих явлений структурообразования в полимерных системах. Возможная достигаемая скорость нагрева активной области нанокалориметрического сенсора в DC-режимах выше, чем у рассмотренного аналога, и составляет до 1000000°С/сек. Небольшие размеры предлагаемого к использованию контрольно-измерительного блока упрощают адаптацию устройства к различным лабораторным условиям, что ускоряет процесс калибровки прибора. Необходимость калибровки возникает только в случае смены типа используемых сенсоров. Температурный диапазон устройства имеет верхний предел в 450°С. Превосходством предлагаемого устройства также является компактность конструкции и тот факт, что сенсор размещен отдельно от корпуса электронного контроллера устройства измерения параметров образца. Последнее обстоятельство является ключевым при обеспечении возможности проведения in-situ исследований теплофизических параметров образца и параметров его поверхности, что в свою очередь возможно благодаря применению заявляемого держателя нанокалориметрического сенсора.
Конструкция заявляемого держателя нанокалориметрического сенсора для измерения теплофизических параметров образца и параметров его поверхности является универсальной, позволяет его использовать в любых атомно-силовых микроскопах и сканирующих зондовых микроскопах, основанных на сканирующих головках линейки NTEGRA производства компании NT-MDT SpectrumInstruments. Предусмотрена работа с сенсорами XEN Т08 а также с другими сенсорами линейки XEN392, выпускаемых компанией Xensor.
В силу того что заявляемое устройство предназначено для работы с нанокалориметрическими сенсорами разных поколений, следует отметить, что в материалах патента US 5788373 A «Датчик дифференциального термического анализатора на основе термопар» описаны принципы работы универсальных нанокалориметрических сенсоров нового поколения. Известное устройство имеет 2 зоны - зону сканирования образца и эталонную зону сравнения. Данные зоны могут находиться как на одном чипе, так и на двух различных чипах. Встроенные поликристаллические кремниевые нагреватели обеспечивают подвод тепла к каждой из зон. Термобатареи, состоящие из последовательности термопар, создают напряжение, представляющее разность температур между зоной с образцом и эталонной зоной сравнения. Разность температур между зонами предоставляет информацию о процессах химических реакций, фазовых переходах, происходящих в образце, помещенном в зону для сканирования образца. После проведения измерений проводится расчет с использованием математической модели, принимающей во внимание реальное поведение теплофизического устройства. Стоит отметить, что необходимо соблюдать точное позиционирование обоих тиглей для повышения качества получаемых экспериментальных данных.
Как было отмечено выше, в основе работы FlashDSC1 лежит устройство, описанное в патенте US 5288147 A «Датчик дифференциального термического анализатора на основе термопар», использующее низкоомную дифференциальную термоэлектрическую батарею, составляющую основную часть дифференциального датчика для термического анализа. Термобатарея состоит из шести последовательно соединенных термопар, контакты которых расположены равномерно вокруг измерительной области. Стоит отметить, что в представленном решении температура нанокалориметрического сенсора ограничивается пределами подаваемого напряжения на нагревательные термопары, с одной стороны, и температурой окружающей среды, с другой. Кроме того, размер активной области слишком мал для того, чтобы применять данные устройства в заявляемом держателе.
Раскрытие изобретения
Задачей настоящего изобретения является создание держателя для проведения in-situ измерений теплофизических параметров образцов и параметров его поверхности, предусматривающего возможность интеграции с атомно-силовыми микроскопами и сканирующими зондовыми микроскопами, использующими сканирующие головки линейки NTEGRA производства компании NT-MDT SpectramInstruments.
Техническим результатом изобретения является возможность проведения комплекса измерений с использованием нанокалориметрического сенсора теплофизических параметров образца и/или структуры и свойств его поверхности. Заявляемая конструкция держателя позволяет размещать его в устройствах по исследованию параметров поверхности образцов, например, в атомно-силовых микроскопах или сканирующих зондовых микроскопах, использующих сканирующие головки линейки NTEGRA производства компании NT-MDT SpectrumInstruments. Кроме того, заявляемое устройство обеспечивает надежную передачу аналоговых сигналов от нанокалориметрического сенсора к измерительным устройствам. Данное условие обеспечивается надежными электрическими контактами используемых конструктивных элементов заявляемого держателя, а также надежной фиксацией нанокалориметрического сенсора и возможностью неподвижного размещения на нем сканирующей части измерительного устройства определения структуры его поверхности.
Поставленная задача решается тем, что держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности содержит размещенный в корпусе прецизионный XY столик, включающий основание с размещенной на нем подложкой, предназначенной для размещения нанокалориметрического сенсора с образцом, снабженного электрическими контактами, при этом основание выполнено с возможностью перемещения в горизонтальной плоскости по одной оси, а подложка выполнена с возможностью перемещения по поверхности основания по другой оси; коннектор, выполненный в виде пластины, снабженной отверстием для обеспечения доступа к исследуемому образцу, и электрическими контактами, имеющими расположение, обеспечивающее их совмещение с контактами сенсора, при этом коннектор выполнен съемным, с возможностью подключения посредством проводов к разъему измерительного устройства для определения теплофизических параметров образца; при этом корпус выполнен с возможностью неподвижного размещения на нем сканирующей части измерительного устройства определения структуры его поверхности.
Для перемещения основания в горизонтальной плоскости держатель может быть снабжен направляющей рельсой, выполненной с возможностью размещения в корпусе под основанием. При этом в одном из вариантов выполнения основание и рельс имеют тип разъемного соединения «ласточкин хвост». Кроме того, для перемещения подложки по поверхности основания держатель может быть снабжен направляющими втулками, при этом подложка имеет сквозные отверстия для размещения направляющих втулок.
Перемещение основания и подложки может быть реализовано подвижными ручками-винтами, расположенными перпендикулярно друг относительно друга, одна из которых выполнена с возможностью скользящего контакта с торцевой поверхностью подложки, вторая жестко соединена с основанием со стороны его торцевой поверхности, при этом корпус снабжен отверстиями для размещения ручек.
Корпус выполнен с возможностью размещения на столике микроскопа в области сканирования.
Подложка может быть выполнена в виде объемного тела в форме параллелепипеда, снабженного выемкой, геометрия которой соответствует геометрии сенсора, обеспечивающей неподвижное размещение сенсора в выемке подложки.
Для неподвижного размещения на корпусе сканирующей части измерительного устройства определения структуры поверхности образца корпус снабжен пазами для ножек упомянутой сканирующей части.
В частном варианте выполнения - при использовании нанокалориметрического сенсора типа XEN Т08, отверстие коннектора имеет круглую форму, а количество электрических контактов - 14, которые расположены по окружности, плата коннектора сенсора имеет толщину не более 1 мм.
Таким образом, конструкция устройства представляет собой подставку под сканирующую головку АСМ, оборудованную прецизионным XY столиком, в котором крепится нанокалориметрический чип с исследуемым образцом. Устройство обеспечивает жесткое закрепление нанокалориметрического сенсора в активной области сканирования измерительного устройства определения структуры его поверхности с возможностью его точного позиционирования и перемещения при помощи вращающихся ручек XY столика в ходе проведения эксперимента. Жесткая фиксация нанокалориметрического сенсора необходима, чтобы исключить влияние внешних вибраций, а так же чтобы обеспечить прецизионное позиционирование рабочей области нанокалориметрического сенсора (размер которой составляет 1000×1000 мкм) под зондом микроскопа. В свою очередь, возможность перемещения нанокалориметрического сенсора необходима для того, чтобы точно располагать исследуемый образец, нанесенный на активную область нанокалориметрического сенсора, непосредственно под зондом сканирующей части измерительного устройства.
Кроме того, конструкция устройства предусматривает наличие вмонтированного коннектора для нанокалориметрического сенсора для обеспечения стабильной передачи сигнала от используемого нанокалориметрического сенсора до электронного контроллера для получения теплофизических параметров исследуемого образца в ходе проведения эксперимента без введения каких-либо помех в сигналы от нанокалориметрического сенсора в процессе его перемещения.
Заявляемое устройство учитывает специфику используемых методов измерения, а именно: высокую чувствительность нанокалориметрических сенсоров к электрическому сигналу; широкий диапазон модуляции температуры - от 1.0 Гц до 40 кГц; точность измерения фазового смещения температурного отклика образца - выше 0.05°; максимальную частоту выборки (разрешение по времени) - 5 мкс и др. Поэтому необходимо реализовать стабильную передачу аналогового сигнала, получаемого нанокалориметрическим сенсором до блока управления без каких-либо потерь интенсивности сигнала и без внесения дополнительных шумов. Кроме того, сконструированный держатель должен выполнять функцию переходника с разъема нанокалориметрического сенсора на 25-контактный разъем, который наиболее часто используется в различных электронных контрольных блоках. Помимо этого сигнал должен доходить до нанокалориметрического сенсора для дальнейшей обработки полученных результатов и снятия базовой линии эксперимента.
Все вышеперечисленные требования учитываются благодаря вмонтированному коннектору, который в предпочтительном варианте осуществления изобретения представляет собой съемную пластину из диэлектрика толщиной не более 1 мм, снабженную отверстием для обеспечения доступа к образцу для проведения исследований структуры его поверхности при помощи измерительного устройства, например атомно-силового микроскопа или сканирующего зондового микроскопа. Конструкция коннектора предусматривает возможность его подключения посредством проводов к разъему электронного контроллера для стабильной передачи синхронного аналогового сигнала нанокалориметрического сенсора до аналого-цифрового преобразователя, размещенного в электронном контроллере, для измерения теплофизических параметров образца. Плата данного прижимного коннектора в конкретном варианте исполнения имеет толщину 1 мм, а диаметр сквозного выреза - 10 мм.
Краткое описание чертежей
Изобретение поясняется чертежами.
На фиг. 1 представлена электрическая блок-схема электронного контроллера для измерения теплофизических параметров образца (нанокалориметра) с нанокалориметрическим сенсором, подсоединенных к персональному компьютеру (ПК).
На фиг. 2, 3 изображен заявляемый держатель для нанокалориметрического сенсора, используемый в данной системе и выполняющий роль прецизионного XY столика, а также ретранслятора сигнала от нанокалориметрического сенсора до электронного контроллера, общий вид и вид сверху соответственно.
На фиг. 4 приведена электрическая схема контактов, используемая для изготовления держателя нанокалориметрического сенсора.
На фиг. 5 изображен нанокалориметрический чип Xensor в исполнении Т08 с указанием основных размеров в мм.
На фиг. 6 изображены рабочая область нанокалориметрического сенсора и подведенный к ней зонд сканирующей части измерительного устройства определения структуры поверхности материалов.
На фиг. 7 приведена модель прецизионного XY столика, использованного в данной конструкции.
На фиг. 8 приведена схема электронной платы коннектора (вид сверху).
На фиг. 9 представлено изображение держателя нанокалориметрических сенсоров в сборе.
На фиг. 10 представлено изображение держателя нанокалориметрического сенсора в сборе, установленного на виброизоляционном столике с активной системой подавления шумов, используемом в сканирующих измерительных устройствах определения структуры поверхности материалов.
На фиг. 11 представлены примеры сигналов нанокалориметрических сенсоров, полученных без применения держателя.
На фиг. 12 представлены нанокалориметрические кривые, полученные с применением предлагаемого держателя нанокалориметрических сенсоров.
На фиг. 13 представлены примеры нанокалориметрических кривых до вычета базовой линии и после вычета базовой линии.
Позициями на чертежах обозначены: держатель - 1, нанокалориметрический сенсор для измерения теплофизических параметров образца - 2, основание прецизионного XY столика - 3, подложка прецизионного XY столика - 4, коннектор - 5, разъем D-Sub измерительного устройства определения теплофизических параметров образца - 6, измерительное устройство определения структуры и свойств поверхности образца - 7, направляющая рельса прецизионного XY столика - 8, направляющие втулки прецизионного XY столика - 9, подвижные ручки для позиционирования прецизионного XY столика - 10, пазы для ножек сканирующей части измерительного устройства определения структуры поверхности материалов - 11, зонд сканирующей части измерительного устройства определения структуры поверхности материалов (кантилевер) - 12, головка сканирующей части измерительного устройства определения структуры поверхности материалов - 13, виброизоляционный стол с активной системой шумоподавления - 14.
Осуществление изобретения
Держатель (1) необходим для расположения над исследуемым образцом сканирующей части измерительного устройства определения структуры поверхности материалов. Держатель (1) представляет собой блок, имеющий форму параллелепипеда, в корпусе которого размещен прецизионный XY столик. Данный XY столик включает в себя основание (3), которое крепится в корпусе держателя посредством направляющей рельсы (8), и подложку (4), имеющую 2 сквозных выреза для крепления к основанию (3) посредством направляющих втулок (9). Направляющая рельса (8) имеет тип разъемного соединения «ласточкин хвост» с основанием (3), которая пространственно ориентирована в горизонтальной плоскости в перпендикулярном направлении к направляющим втулкам (9).
При этом на подложке (4) прецизионного XY столика реализована возможность жесткого закрепления нанокалориметрического сенсора в плоскости, параллельной плоскости сканирования измерительного устройства (13). В корпусе держателя предусмотрены отверстия для размещения ручек (10), необходимых для грубого размещения нанокалориметрического сенсора по осям X и Y непосредственно под кантилевером (12) измерительного устройства определения структуры поверхности материалов. Ручки (10) выполнены в виде винтов, расположены перпендикулярно друг относительно друга, одна из которых выполнена с возможностью скользящего контакта с торцевой поверхностью подложки (4), вторая жестко соединена с основанием (3) со стороны его торцевой поверхности. Кроме того, корпус держателя снабжен пазами (11) для ножек сканирующей части измерительного устройства определения структуры поверхности материалов, расположенными таким образом, чтобы данная сканирующая часть располагалась непосредственно над активной областью нанокалориметрического сенсора.
Держатель предусматривает возможность фиксирования платы коннектора (5) непосредственно над калориметрическим сенсором с исследуемым образцом для обеспечения возможности подключения посредством проводов к разъему электронного контроллера (6) и стабильной передачи синхронного аналогового сигнала нанокаолриметрического сенсора до аналого-цифрового преобразователя, размещенного в электронном контроллере для измерения теплофизических параметров образца. Плата коннектора (5) выполнена на фольгированном стеклотекстолите и имеет круглый вырез диаметром 10 мм, который необходим для доступа зонда (12) к рабочим областям сенсора. Плата коннектора (5) представляет собой двухслойную электрическую плату на основе диэлектрика размерами 30 мм×23 мм, толщиной 1 мм, с четырьмя сквозными отверстиями, предназначенными для соосного размещения коннектора и нанокалориметрического сенсора, а также для крепления коннектора в устройстве для измерения параметров поверхности образца. Коннектор снабжен 14-контактным гнездом круглой формы для соединения нанокалориметрического сенсора с 25-контактным разъемом (6) и обеспечения передачи электрических сигналов до электронного контроллера для измерения теплофизических параметров образца. Плата коннектора (5) может быть изготовлена в соответствии с ГОСТ Р 53432-2009 при помощи субтрактивного метода, когда проводящий рисунок формируется на фольгированном материале путем удаления участков фольги. Соединение электрической платы коннектора (5) с электронным контроллером для измерения теплофизических параметров образца осуществляется с помощью разъема (6) и гибких проводов, например МГТФ 0.14, во избежание механических напряжений при перемещении прецизионного XY столика. Каждый провод экранирован для уменьшения шумов во входных и выходных сигналах нанокалориметрического сенсора. Виброизоляционный стол (14) обеспечивает защиту всей системы от внешних вибраций и других шумов.
Одной из задач данного изобретения является обеспечение качественной передачи сигнала от сенсора линейки XEN Т08 фирмы Xensor в процессе пространственного передвижения нанокалориметрического сенсора, а также получение базовой линии, используемой при дальнейшей обработке полученных результатов. В процессе использования держателя электрические сигналы от нанокалориметрического сенсора передаются на 25-контактный разъем D-Sub (6), при этом заявляемая конструкция обеспечивает передачу сигнала с минимальными помехами (см. фиг. 11, 12). Примером нормальных сигналов, необходимых для функционирования электронного контроллера (нанокалориметра) и корректного снятия базовой линии, может служить фиг. 11.
Доказательством реализации данного устройства является низкий шум скачков амплитуды сигнала во время перемещения нанокалориметрического сенсора с использованием держателя (фиг. 11-12), а также результаты, полученные до и после учета базовой линии (фиг. 13). Также обеспечивается параллельность плоскости нанокалориметрического сенсора с плоскостью сканирования атомно-силового микроскопа, что дает возможность проведения экспериментов для исследований структуры и свойств поверхности образца во всей активной области нанокалориметрического сенсора. Также для реализации экспериментов с различной геометрией размеры модульного держателя должны быть минимальны. Держатель, который был изготовлен для проведения исследований, характеризовался следующими габаритными размерами: ширина - 120 мм, длина - 150 мм, высота - 18 мм. Габаритные размеры прецизионного XY столика (основание+подложка): ширина - 60 мм, длина - 65 мм, высота - 13 мм; электрическая плата коннектора: ширина - 23 мм, длина - 30 мм, высота - 1 мм. Кроме того, важны материалы, используемые в конструкции держателя, они должны быть максимально прочными, легкими и инертными. Корпус заявляемого держателя был выполнен из нержавеющей стали марки 08X18Н10, прецизионный XY столик и вкладыши в пазы держателя для сканирующего устройства изготовлены из высокопрочной стали марки 40ХГСН3ВА. Плата коннектора изготавливалась из нагревостойкого фольгированного стеклотекстолита марки СФН (ГОСТ 10316-78).
Конструкция заявляемого держателя нанокалориметрического сенсора для измерения теплофизических параметров образца и параметров его поверхности является универсальной, позволяет его использовать в любых атомно-силовых микроскопах и сканирующих зондовых микроскопах, основанных на сканирующих головках линейки NTEGRA производства компании NT-MDT SpectrumInstruments. Предусмотрена работа с сенсорами XEN Т08, а также с другими сенсорами линейки XEN392, выпускаемыми компанией Xensor. Заявляемое устройство позволяет проводить качественные измерения указанных характеристик образцов посредством обеспечения устойчивого положения нанокалориметрического сенсора в процессе измерения перечисленных выше параметров образца, а также обеспечения надежности электрических контактов сенсора с платой коннектора.

Claims (11)

1. Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности, включающий размещенный в корпусе прецизионный XY столик, включающий основание с размещенной на нем подложкой, предназначенной для размещения нанокалориметрического сенсора с образцом, снабженного электрическими контактами, при этом основание выполнено с возможностью перемещения в горизонтальной плоскости по одной оси, а подложка выполнена с возможностью перемещения по поверхности основания по другой оси; коннектор, выполненный в виде пластины, снабженной отверстием для обеспечения доступа к исследуемому образцу, и электрическими контактами, имеющими расположение, обеспечивающее их совмещение с контактами сенсора, при этом коннектор выполнен съемным, с возможностью подключения посредством проводов к разъему измерительного устройства для определения теплофизических параметров образца; при этом корпус выполнен с возможностью неподвижного размещения на нем сканирующей части измерительного устройства определения структуры его поверхности.
2. Держатель по п. 1, характеризующийся тем, что для перемещения основания в горизонтальной плоскости держатель снабжен направляющей рельсой, выполненной с возможностью размещения в корпусе под основанием.
3. Держатель по п. 2, характеризующийся тем, что основание и рельс имеют тип разъемного соединения «ласточкин хвост».
4. Держатель по п. 1, характеризующийся тем, что он снабжен направляющими втулками для перемещения подложки по поверхности основания.
5. Держатель по п. 4, характеризующийся тем, что подложка имеет сквозные отверстия для размещения направляющих втулок.
6. Держатель по п. 1, характеризующийся тем, что он снабжен двумя подвижными ручками-винтами, расположенными перпендикулярно друг относительно друга, одна из которых выполнена с возможностью скользящего контакта с торцевой поверхностью подложки, вторая жестко соединена с основанием со стороны его торцевой поверхности, при этом корпус снабжен отверстиями для размещения ручек.
7. Держатель по п. 1, характеризующийся тем, что при использовании нанокалориметрического сенсора типа XEN Т08 отверстие коннектора имеет круглую форму, а количество электрических контактов - 14, которые расположены по окружности.
8. Держатель по п. 1, характеризующийся тем, что плата коннектора сенсора имеет толщину не более 1 мм.
9. Держатель по п. 1, характеризующийся тем, что корпус выполнен с возможностью размещения на столике микроскопа в области сканирования.
10. Держатель по п. 1, характеризующийся тем, что подложка выполнена в виде объемного тела в форме параллелепипеда, снабженного выемкой, геометрия которой соответствует геометрии сенсора, обеспечивающей неподвижное размешение сенсора в выемке подложки.
11. Держатель по п. 1, характеризующийся тем, что для неподвижного размещения на корпусе сканирующей части измерительного устройства определения структуры поверхности образца корпус снабжен пазами для ножек упомянутой сканирующей части.
RU2016151251A 2016-12-26 2016-12-26 Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности RU2646953C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016151251A RU2646953C1 (ru) 2016-12-26 2016-12-26 Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016151251A RU2646953C1 (ru) 2016-12-26 2016-12-26 Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности

Publications (1)

Publication Number Publication Date
RU2646953C1 true RU2646953C1 (ru) 2018-03-12

Family

ID=61627591

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016151251A RU2646953C1 (ru) 2016-12-26 2016-12-26 Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности

Country Status (1)

Country Link
RU (1) RU2646953C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211395U1 (ru) * 2021-12-29 2022-06-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Универсальная платформа для проведения комбинированных in situ измерений теплофизических, спектроскопических и структурных параметров образца

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1247687A1 (ru) * 1984-08-03 1986-07-30 Отделение ордена Ленина института химической физики АН СССР Калориметр
US5288147A (en) * 1992-11-09 1994-02-22 Ta Instruments, Inc. Thermopile differential thermal analysis sensor
US6079873A (en) * 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
WO2002008710A1 (en) * 2000-07-21 2002-01-31 Point Of Care Ab A micro-calorimeter apparatus
WO2012103601A1 (en) * 2011-02-03 2012-08-09 Katholieke Universiteit Leuven Differential adiabatic scanning calorimeter
US8393785B2 (en) * 2009-05-14 2013-03-12 Palo Alto Research Center Incorporated Nanocalorimeter based on thermal probes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1247687A1 (ru) * 1984-08-03 1986-07-30 Отделение ордена Ленина института химической физики АН СССР Калориметр
US5288147A (en) * 1992-11-09 1994-02-22 Ta Instruments, Inc. Thermopile differential thermal analysis sensor
US6079873A (en) * 1997-10-20 2000-06-27 The United States Of America As Represented By The Secretary Of Commerce Micron-scale differential scanning calorimeter on a chip
WO2002008710A1 (en) * 2000-07-21 2002-01-31 Point Of Care Ab A micro-calorimeter apparatus
US8393785B2 (en) * 2009-05-14 2013-03-12 Palo Alto Research Center Incorporated Nanocalorimeter based on thermal probes
WO2012103601A1 (en) * 2011-02-03 2012-08-09 Katholieke Universiteit Leuven Differential adiabatic scanning calorimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211395U1 (ru) * 2021-12-29 2022-06-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Универсальная платформа для проведения комбинированных in situ измерений теплофизических, спектроскопических и структурных параметров образца
RU221652U1 (ru) * 2023-06-20 2023-11-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Основа держателя нанокалориметрического сенсора для исследования материалов методами сверхбыстрой калориметрии на чипе и рамановской микроскопии в режиме реального времени

Similar Documents

Publication Publication Date Title
JP6764417B2 (ja) 回転磁場ホール装置、回転磁場ホール装置を動作させる方法、およびコンピューティング・システム
US20020028456A1 (en) Method for conducting sensor array-based rapid materials characterization
Bakli et al. Interferometric technique for scanning near-field microwave microscopy applications
JP2012503304A (ja) 定義された熱条件の下で試験器内の試験物質を検査する方法
US5065106A (en) Apparatus and method for analyzing dielectric properties using a single surface electrode and force monitoring and adjusting
Anis-ur-Rehman et al. A modified transient method for an easy and fast determination of thermal conductivities of conductors and insulators
RU2646953C1 (ru) Держатель нанокалориметрического сенсора для измерения теплофизических параметров образца и/или структуры и свойств его поверхности
RU2620028C1 (ru) Термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения
CN105699619A (zh) 一种金属热电势测量仪器
CN107976467B (zh) 具有拉曼光谱测量功能的热功率测量装置
RU2620029C1 (ru) Блок держателей нанокалориметрических сенсоров для измерения теплофизических и структурных параметров образца
WO2020220081A1 (en) Thin film x-ray diffraction sample cell device and method
US6210035B1 (en) High-speed thermal analyzer
US3024644A (en) Ultrasonic microscope
US6605949B2 (en) Quasi-hemispherical fabry-perot resonator and method of operating the same
RU2707665C1 (ru) Термостатирующее устройство для проведения нанокалориметрических измерений в контролируемой атмосфере
RU2711563C1 (ru) Термостатирующее устройство для проведения нанокалориметрических измерений
Chaturvedi et al. A compact full Stokes polarimeter
Haddadi et al. Scanning microwave near-field microscope based on the multiport technology
RU211395U1 (ru) Универсальная платформа для проведения комбинированных in situ измерений теплофизических, спектроскопических и структурных параметров образца
RU2826425C2 (ru) Универсальный держатель для исследования материалов методами сверхбыстрой калориметрии на чипе и рамановской микроскопии в режиме реального времени
Weaver et al. Automated transient grating spectroscopy mapping and signal control for large samples
Fukai et al. Simultaneous estimation of thermophysical properties by periodic hot-wire heating method
RU2650836C1 (ru) Блок держателя образца, предназначенный для проведения комбинированных измерений с помощью рентгеноструктурного анализа в скользящем пучке и дополнительных физико-химических методов исследования
HU189716B (en) Method and appaeatus for non-destructive testing the heat physical characteristics of materials