RU2645836C1 - Способ определения уровня жидкости в емкости - Google Patents

Способ определения уровня жидкости в емкости Download PDF

Info

Publication number
RU2645836C1
RU2645836C1 RU2016149107A RU2016149107A RU2645836C1 RU 2645836 C1 RU2645836 C1 RU 2645836C1 RU 2016149107 A RU2016149107 A RU 2016149107A RU 2016149107 A RU2016149107 A RU 2016149107A RU 2645836 C1 RU2645836 C1 RU 2645836C1
Authority
RU
Russia
Prior art keywords
liquid
long line
segment
excited
reservoir
Prior art date
Application number
RU2016149107A
Other languages
English (en)
Inventor
Александр Сергеевич Совлуков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук
Priority to RU2016149107A priority Critical patent/RU2645836C1/ru
Application granted granted Critical
Publication of RU2645836C1 publication Critical patent/RU2645836C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной
Figure 00000032
с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости.
Известны способы и устройства для измерения уровня жидкостей в емкостях, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с.). Такой отрезок длинной линии размещают вертикально в емкости с контролируемыми жидкостью. Измеряя какой-либо его информативный параметр, в частности резонансную частоту электромагнитных колебаний, можно определить уровень жидкости. Недостатком таких способов измерения и реализующих их устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров жидкости.
Известно также техническое решение (SU 460447, 10.04.1973), которое содержит описание способа измерения и двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждают электромагнитные колебания типа ТЕМ на основной (1-й) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно найти уровень z из соотношения
Figure 00000001
где
Figure 00000002
и
Figure 00000003
- начальные (при z=0) значения ƒ1 и ƒ2, соответственно.
Данное соотношение обладает свойством инвариантности к величине ε и ее возможным изменениям.
Недостатком этих способа и устройства является невысокая точность измерения, главным образом, в области малых значений уровня, близких к нулевому значению. В этом случае при нулевом значении уровня (z=0) имеется неопределенность типа "0/0", а вблизи значения z=0 погрешность измерения резко возрастает, поскольку результат совместного преобразования резонансных частот может принимать разные значения из-за возможных, даже малых, девиаций значений резонансных частот (вышеприведенное преобразование неустойчиво относительно возможных флуктуаций значений
Figure 00000004
и
Figure 00000005
).
Известно также техническое решение (SU 1765712 А1, 10.10.1980), в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемый вертикально отрезок длинной линии и заполняемых жидкостью в соответствии с ее уровнем в емкости. Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.
Недостатком этого технического решения является невысокая точность измерения, обусловленная расположением двух отрезков длинной линии в разных областях внутри резервуара с контролируемой жидкостью. В этих областях электрофизические параметры (диэлектрическая проницаемость, электропроводность) жидкости могут отличаться. Это приводит к снижению точности измерения, так как величина информативного параметра (резонансной частоты, фазового сдвига) зависит как от уровня жидкости, так и от ее электрофизических параметров.
Известно также техническое решение (RU 2473056 C1, 20.01.2013), в котором применяют отрезок длинной линии с оконечным горизонтальным участком, располагаемый вертикально отрезок длинной линии и заполняемый жидкостью в соответствии с ее уровнем в емкости. Горизонтальный участок отрезка длинной линии скачкообразно заполняется жидкостью и опорожняется при соответственно поступлении жидкости в емкость и ее удалении из нее. Возбуждая в отрезке длинной линии электромагнитные колебания на двух разных резонансных частотах, которым соответствуют разные распределения энергии электромагнитного поля вдоль данного отрезка длинной линии, измеряя эти резонансные частоты и производя их совместную функциональную обработку согласно соотношению, соответствующему именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.
Недостатком этого способа является наличие определенных трудностей при возбуждении и выделении гармоники отрезка длинной линии более высокого порядка, чем основная гармоника, что усложняет его реализацию.
Известно также техническое решение, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (SU 1744502 А1, 30.06.1992), в котором применяют отрезок длинной линии, располагаемый вертикально отрезок длинной линии и заполняемый жидкостью в соответствии с ее уровнем в емкости. Согласно данному способу в первом такте измерений измеряют резонансную частоту ƒ электромагнитных колебаний отрезка длинной линии, а также, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ.
Недостатком этих способа и устройства является невысокая точность измерения в области малых значений уровня, близких к нулевому значению. В этом случае при нулевом значении уровня (z=0) имеется неопределенность типа "0/0", а вблизи значения z=0 погрешность измерения резко возрастает, поскольку при этом результат совместного преобразования ƒ и Δϕ может принимать разные значения из-за возможных, даже малых, девиаций значений ƒ и Δϕ.
Техническим результатом настоящего изобретения является повышение точности измерений.
Технический результат достигается тем, что в предлагаемом способе определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной
Figure 00000006
с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования ƒ и Δϕ согласно соотношению
Figure 00000007
, где α - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте, с - скорость света, Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки отрезка длинной линии на конце его горизонтального участка.
Предлагаемый способ поясняется чертежом на фиг. 1, где приведена схема устройства для его реализации.
На фиг. 1 показаны контролируемая жидкость 1, отрезок длинной линии 2, горизонтальный участок на конце отрезка длинной линии 3, коммутатор 4, электронные блоки 5 и 6, функциональный преобразователь 7, регистратор 8.
Сущность предлагаемого способа состоит в следующем.
В емкости с контролируемой жидкостью 1 размещают вертикально отрезок длинной линии 2 с длиной
Figure 00000006
с оконечным горизонтальным участком 3 фиксированной длины z0, скачкообразно заполняемым жидкостью 1 и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости (фиг. 1). По мере изменения уровня z жидкости в емкости изменяются и характеристики распространения электромагнитных волн в отрезке длинной линии 2 с оконечным горизонтальным участком 3. Как следствие, изменяются также информативные параметры отрезка длинной линии.
Согласно данному способу в данном отрезке длинной линии с оконечным горизонтальным участком в первом такте измерений возбуждают электромагнитные колебания, измеряют резонансную частоту ƒ его электромагнитных колебаний, дополнительно, во втором такте измерений возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и, по завершении указанных двух тактов измерений, осуществляют совместное функциональное преобразование ƒ и Δϕ. Поскольку информативные параметры ƒ и Δϕ являются функциями как уровня z жидкости, так и ее электрофизических параметров, то, осуществляя совместные преобразования ƒ и Δϕ, можно исключить влияние электрофизических параметров жидкости на результаты определения уровня z жидкости.
Если для фазового сдвига Δϕ падающих и отраженных электромагнитных волн можно записать точное выражение, то для резонансной частоты отрезка длинной линии возможно как точное, так и приближенное соотношение, причем первое (точное) описывается трансцендентным уравнением, содержащим зависимость ƒ(z) в неявном виде (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 42-50). Приближенное соотношение для ƒ(z) описывает такую зависимость в явном виде и является более подходящим для совместного функционального преобразования ƒ и Δϕ.
Не ограничивая общности для получения искомого соотношения, будем применять следующую формулу для ƒ(z) отрезка длинной линии (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 50-59):
Figure 00000008
где ƒ0 - начальное (при отсутствии жидкости в емкости) значение ƒ; α(z) - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте:
Figure 00000009
;
где U(ξ) - напряжение в точке с координатой ξ отрезка линии, возбуждаемого на резонансной частоте ƒ;
Figure 00000010
- длина отрезка длинной линии, z0 - длина оконечного горизонтального участка.
Для фазового сдвига Δϕ(z) возбуждаемой на фиксированной частое F электромагнитной волны и волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, будем иметь (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):
Figure 00000011
где Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце оконечного горизонтального участка отрезка длинной линии.
Фазовый сдвиг Δϕ0 имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π; для разомкнутого на конце отрезка длинной линии имеем Δϕ0=0. Здесь ХН - реактивное нагрузочное сопротивление, W - волновое (характеристическое) сопротивление отрезка длинной линии.
Рассматривая соотношения (1) и (2) как систему уравнений относительно z и ε, получаем в результате решения этой системы соотношение, в котором значение z содержится в неявном виде:
Figure 00000012
В соотношении (3) отсутствует величина ε, т.е. данное выражение является инвариантным к ε и ее изменениям.
Таким образом, измеряя ƒ и Δϕ и осуществляя их совместное преобразование согласно соотношению (3) в содержащем вычислительное устройство функциональном преобразователе устройства, реализующего данный способ, можно определить текущее значение уровня z независимо от значения ε и его возможных изменений. Нахождение значения z из (3) в вычислительном блоке возможно при решении конкретных задач при известных численных значениях величин, входящих в соотношение (3).
В зависимости от величины и характера нагрузки отрезка длинной линии соотношение (1) принимает тот или иной конкретный вид. Если отрезок длинной линии коротко замкнут на нижнем конце, то в этом случае распределение напряжения вдоль него на основном ТЕМ типе колебаний, возбуждаемых в рассматриваемом отрезке длинной линии, определяется следующим образом:
Figure 00000013
и, соответственно этому, будем иметь:
Figure 00000014
. В данном случае, для короткозамкнутого на конце отрезка длинной линии, имеем Δϕ0=π. Тогда соотношение (3) принимает следующий вид:
Figure 00000015
При равномерном распределении энергии электромагнитного поля вдоль отрезка длинной линии, возбуждаемого на резонансной частоте ƒ (в первом такте измерений), будем иметь: U(ξ)=const и, соответственно,
Figure 00000016
. В данном случае, для разомкнутого на конце отрезка длинной линии имеем Δϕ0=0. В этом случае соотношение (3) принимает следующий вид:
Figure 00000017
Обеспечить равномерное распределение энергии электромагнитного поля вдоль отрезка длинной линии можно, подключив на одном из его концов достаточно большое индуктивное сопротивление (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М: Наука. 280 с. С.50-59).
Рассмотрим устройство, реализующее данный способ измерения уровня (фиг.1). В первом такте измерений возбуждение электромагнитных колебаний в отрезке длинной линии 2, расположенном в емкости с жидкостью 1, производят через коммутатор 4 с помощью электронного блока 5. Этот электронный блок 5 предназначен также для измерения резонансной частоты ƒ электромагнитных колебаний отрезка длинной линии. Во втором такте измерений другой электронный блок 6 обеспечивает возбуждение в отрезке длинной линии 2 электромагнитных волн на фиксированной частоте F и измерение фазового сдвига Δϕ возбуждаемой и принимаемой волн (принимаемая волна отражается от нагрузки на конце оконечного горизонтального участка отрезка длинной линии). Через коммутатор 3 осуществляют связь электронных блоков 5 и 6 с отрезком длинной линии 2, обеспечивая попеременное существование в отрезке длинной линии 2 как режима колебаний в первом такте измерений, так и режима распространения и интерференции падающих и отраженных волн во втором такте измерений. Значения резонансной частоты ƒ и фазового сдвига Δϕ, измеряемые с помощью, соответственно, электронных блоков 5 и 6, поступают в функциональный преобразователь 7. В нем осуществляют совместное преобразование параметров ƒ и Δϕ согласно вышеприведенному соотношению (3). Результат совместного преобразования ƒ и Δϕ, несущий информацию об уровне z жидкости в емкости независимо от электрофизических параметров жидкости и получаемый при решении (3) относительно z в вычислительном устройстве, содержащемся в функциональном преобразователе 7, поступает на индикатор 8.
Приведем некоторые данные, характеризующие измерения резонансной (собственной) частоты ƒ и фазового сдвига Δϕ в отрезке длинной линии. Если
Figure 00000018
м, то для короткозамкнутого на конце отрезка длинной линии будем иметь
Figure 00000019
МГц. При контроле уровня жидкости с ε=2 (нефтепродукты)
Figure 00000020
МГц. При измерении фазового сдвига Δϕ на частоте F=100 МГц находим
Figure 00000021
, что при ε=2 дает значение Δϕ=19,2°; данное значение
Figure 00000022
свидетельствует и об однозначности фазовых измерений при реальных значениях конструктивных параметров отрезка длинной линии и значениях ε жидкости. Наличие горизонтального участка на конце отрезка длинной линии существенно не изменяет приведенные выше оценочные данные.
Соотношение (3) позволяет определять уровень z при любом его значении, включая значение z=0. При этом отсутствует присущая способу-прототипу неопределенность типа "0/0", поскольку в данном случае результат совместного преобразования ƒ и Δϕ согласно (3) при z=0 имеет конечное значение, определяемое значениями ƒ(0)/ƒ0 и Δϕ(0). При z=0 имеет место скачкообразное изменение этих значений ƒ и Δϕ вследствие заполнения горизонтального участка отрезка длинной линии. При z=0 имеем (в первом такте измерений):
Figure 00000023
где
Figure 00000024
- конечная, отличная от нуля величина. Соответственно, ƒ(0)/ƒ0 также является конечной, отличной от единицы величиной.
Так, для отрезка длинной линии с равномерным распределением энергии электромагнитного поля вдоль него, возбуждаемого на резонансной частоте ƒ (в первом такте измерений), будем иметь:
Figure 00000025
. Соответственно этому значению α(0) находим:
Figure 00000026
.
Из соотношения (2) при z=0 находим (во втором такте измерений):
Figure 00000027
Это означает, что Δϕ(0) так же, как и ƒ(0)/ƒ0, является конечной величиной.
Следовательно, при z=0 соответствующие значения ƒ(0)/ƒ0 и Δϕ(0), входящие в соотношение (3), имеют разные конечные значения, что устраняет получение при z=0 неопределенности типа "0/0". Численное решение уравнения (3) относительно z, возможное при подстановке в (3) конкретных значений входящих в (3) величин, имеет конечное значение при всех значениях уровня z жидкости в емкости, включая его нулевое значение. В любой малой окрестности значения z=0 преобразование (3) устойчиво относительно возможных флуктуаций значений ƒ и Δϕ. Это подтверждает, что предлагаемый способ измерения обеспечивает высокую точность измерения при любых значениях координаты z, включая его малые, вблизи нуля, значения.
В вышеприведенных формулах следует использовать вместо ε значение эффективной диэлектрической проницаемости εэфф при применении отрезка длинной линии, по меньшей мере, один из проводников которой покрыт диэлектрической оболочкой определенной толщины и материала, что позволяет существенно увеличивать добротность колебательной системы и снижать коэффициент затухания электромагнитной волны (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М: Наука. С. 125-131). В этом случае возможно измерение уровня жидкости с произвольными электрофизическими параметрами (диэлектрической проницаемости, электропроводности) независимо от ее значений и возможных изменений в процессе измерения.
Таким образом, данный способ позволяет определять уровень жидкости в емкости независимо от электрофизических параметров жидкости. Этот способ достаточно прост в реализации, которая осуществима на основе одного отрезка длинной линии с горизонтальным оконечным участком.

Claims (1)

  1. Способ определения уровня жидкости в емкости, при котором, в первом такте измерений, возбуждают электромагнитные колебания в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии, измеряют резонансную частоту
    Figure 00000028
    его электромагнитных колебаний, дополнительно, во втором такте измерений, возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование
    Figure 00000029
    и Δϕ, отличающийся тем, что электромагнитные колебания возбуждают в размещаемом вертикально в емкости с контролируемой жидкостью отрезке длинной линии длиной l с оконечным горизонтальным участком фиксированной длины z0, скачкообразно заполняемым жидкостью и опорожняемым при, соответственно, поступлении жидкости в емкость и ее удалении из емкости, и определяют значение z уровня жидкости в результате совместного функционального преобразования
    Figure 00000030
    и Δϕ согласно соотношению
    Figure 00000031
    , где α - функция распределения напряжения вдоль отрезка длинной линии на его резонансной частоте, с - скорость света, Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки отрезка длинной линии на конце его горизонтального участка.
RU2016149107A 2016-12-14 2016-12-14 Способ определения уровня жидкости в емкости RU2645836C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149107A RU2645836C1 (ru) 2016-12-14 2016-12-14 Способ определения уровня жидкости в емкости

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149107A RU2645836C1 (ru) 2016-12-14 2016-12-14 Способ определения уровня жидкости в емкости

Publications (1)

Publication Number Publication Date
RU2645836C1 true RU2645836C1 (ru) 2018-02-28

Family

ID=61568418

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149107A RU2645836C1 (ru) 2016-12-14 2016-12-14 Способ определения уровня жидкости в емкости

Country Status (1)

Country Link
RU (1) RU2645836C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1765712A1 (ru) * 1990-10-10 1992-09-30 Институт проблем управления Устройство дл определени уровн вещества
RU2120610C1 (ru) * 1996-12-31 1998-10-20 Институт проблем управления РАН Устройство для измерения уровня расплавленного металла
US6293142B1 (en) * 1998-08-14 2001-09-25 Mts Systems Corporation Electromagnetic method of liquid level monitoring
RU2473056C1 (ru) * 2011-08-30 2013-01-20 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Способ определения уровня жидкости в емкости
RU2578749C1 (ru) * 2014-12-24 2016-03-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Способ определения положения границы раздела двух веществ в емкости

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1765712A1 (ru) * 1990-10-10 1992-09-30 Институт проблем управления Устройство дл определени уровн вещества
RU2120610C1 (ru) * 1996-12-31 1998-10-20 Институт проблем управления РАН Устройство для измерения уровня расплавленного металла
US6293142B1 (en) * 1998-08-14 2001-09-25 Mts Systems Corporation Electromagnetic method of liquid level monitoring
RU2473056C1 (ru) * 2011-08-30 2013-01-20 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Способ определения уровня жидкости в емкости
RU2578749C1 (ru) * 2014-12-24 2016-03-27 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова РАН Способ определения положения границы раздела двух веществ в емкости

Similar Documents

Publication Publication Date Title
RU2647182C1 (ru) Способ измерения положения границы раздела двух сред в емкости
RU2626409C1 (ru) Способ измерения физических свойств жидкости
RU2473889C1 (ru) Способ измерения физической величины
RU2578749C1 (ru) Способ определения положения границы раздела двух веществ в емкости
RU2702698C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2706455C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2698575C1 (ru) Способ измерения положения границы раздела двух веществ в резервуаре
RU2473052C1 (ru) Устройство для измерения уровня диэлектрической жидкости в емкости
RU2752555C1 (ru) Способ определения положения границы раздела двух жидкостей в резервуаре
RU2645836C1 (ru) Способ определения уровня жидкости в емкости
RU2620780C1 (ru) Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2534747C1 (ru) Устройство для измерения физических свойств жидкости в емкости
Semenov et al. Device for measurement and control of humidity in crude oil and petroleum products
RU2426076C1 (ru) Устройство для измерения уровня жидкости
RU2757472C1 (ru) Способ определения уровня жидкости в емкости
RU2753830C1 (ru) Способ измерения положения границы раздела двух жидкостей в емкости
RU2650605C1 (ru) Способ измерения внутреннего диаметра металлической трубы
RU2647186C1 (ru) Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости
RU2776192C1 (ru) Способ измерения уровня диэлектрической жидкости в емкости
RU2424508C1 (ru) Устройство для измерения физических свойств жидкости
RU2536184C1 (ru) Концентратомер
RU2774218C1 (ru) Способ измерения положения границы раздела двух диэлектрических сред в резервуаре
RU2757759C1 (ru) Способ измерения положения границы раздела двух диэлектрических сред в емкости
RU2768556C1 (ru) Устройство для измерения уровня жидкости в резервуаре
RU2778284C1 (ru) Устройство для измерения уровня диэлектрической жидкости в резервуаре