RU2645323C1 - Способ бестраншейной прокладки трубопроводов в грунте - Google Patents

Способ бестраншейной прокладки трубопроводов в грунте Download PDF

Info

Publication number
RU2645323C1
RU2645323C1 RU2017107702A RU2017107702A RU2645323C1 RU 2645323 C1 RU2645323 C1 RU 2645323C1 RU 2017107702 A RU2017107702 A RU 2017107702A RU 2017107702 A RU2017107702 A RU 2017107702A RU 2645323 C1 RU2645323 C1 RU 2645323C1
Authority
RU
Russia
Prior art keywords
pipeline
gas
soil
laid
nozzle
Prior art date
Application number
RU2017107702A
Other languages
English (en)
Inventor
Андрей Константинович Ткачук
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук
Priority to RU2017107702A priority Critical patent/RU2645323C1/ru
Application granted granted Critical
Publication of RU2645323C1 publication Critical patent/RU2645323C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/16Machines for digging other holes in the soil
    • E02F5/18Machines for digging other holes in the soil for horizontal holes or inclined holes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к строительству, используется для прокладки в грунте трубопроводов различного назначения с изменяемой в процессе прокладки траекторией. Способ включает периодический размыв в грунте канала струями газообразующей жидкости, подаваемой через рабочий орган, находящийся в головной части трубопровода, при его прокладке по заданной траектории. Прокладку трубопровода по заданной траектории осуществляют ударным механизмом, расположенным в головной части прокладываемого трубопровода и жестко соединенным с рабочим органом, выполненным в виде насадки, оснащенной соплами, расположенными с наружной стороны насадки и связанными через блок управления с источником газообразующей жидкости. Траекторию прокладки изменяют, используя сопла, обеспечивающие поворот прокладываемого трубопровода в заданном направлении прокладки. Проблема - повышение эффективности прокладки трубопровода в грунте путем изменения траектории прокладки трубопровода подачами струй газообразующей жидкости в заданном направлении. 4 з.п. ф-лы, 3 ил.

Description

Техническое решение относится к строительству и может быть использовано для прокладки в грунте трубопроводов различного назначения с изменяемой в процессе прокладки траекторией.
Известен способ бестраншейной прокладки трубопроводов в грунте (по патенту РФ №2075000, F16L 1/06, опубл. в БИ №7, 1997 г.), включающий размыв в грунте канала и введение в него трубопровода, при этом перед размывом канала на трассе трубопровода осуществляют бурение скважин на глубину не менее глубины заложения трубопровода с пересечением ими проектной оси трубопровода, а размыв канала ведут посекционно из скважин струями жидкости и газа, направленными вдоль оси прокладки трубопровода.
Общими признаками аналога и предлагаемого технического решения являются: применение жидкости и газа при прокладке трубопроводов в грунте, размыв грунта, обеспечение заданного направления прокладки.
Недостатки этого способа:
- для осуществления размыва канала из скважин требуется прокладка к ним коммуникаций и работа механизмов на поверхности, что усложняет производство работ, а часто (при прокладке трубопроводов под дорогами и другими сооружениями) делает его невозможным;
- сложность наращивания трубопроводов при непрерывной подаче жидкости и газа;
- необходимость заполнения околотрубного пространства твердеющим раствором во избежание просадки грунта;
- невозможность изменить траекторию прокладки трубопровода без установки вспомогательных механизмов на поверхности для обхода препятствий под дорогами, ЛЭП и т.д.
Наиболее близким по технической сущности и совокупности существенных признаков к заявляемому техническому решению является способ бестраншейной прокладки трубопроводов в грунте (по патенту РФ №2460851, E02F 5/18, F16L 1/028, опубл. в БИ №25, 2012 г.), включающий размыв в грунте канала струями жидкости, подаваемой через наконечник трубопровода при его прокладке в заданном направлении, при этом жидкость подают периодически, а перед подачей в нее доставляют раствор, по меньшей мере, одного поверхностно-активного вещества (ПАВ) и, по меньшей мере, один газообразующий агент, образуя смесь, а газообразование производят непосредственно в порах грунта при его контакте с газообразующим агентом смеси.
Общими признаками прототипа и предлагаемого технического решения являются: применение газообразующей жидкости при прокладке трубопроводов в грунте, представляющей собой водный раствор, по меньшей мере, одного ПАВ и, по меньшей мере, одного газообразующего агента, периодичность размыва в грунте канала струями газообразующей жидкости, подаваемой через рабочий орган в головной части трубопровода, обеспечение заданной траектории прокладки.
Основным недостатком этого способа является невозможность отклонения траектории трубопровода под землей без вспомогательных операций (бурения скважин, рытья приямков и т.д.), что серьезно снижает эффективность способа.
Проблема заключается в создании способа бестраншейной прокладки трубопроводов в грунте с повышенной эффективностью прокладки трубопровода в грунте и решается за счет возможности отклонения траектории прокладки трубопроводов путем подачи струй газообразующей жидкости в заданном направлении.
Для решения указанной проблемы в способе бестраншейной прокладки трубопроводов в грунте, включающем периодический размыв в грунте канала струями газообразующей жидкости, подаваемой через рабочий орган, находящийся в головной части трубопровода, при его прокладке по заданной траектории, согласно техническому решению прокладку трубопровода по заданной траектории осуществляют ударным механизмом, расположенным в головной части прокладываемого трубопровода и жестко соединенным с рабочим органом, выполненным в виде насадки, оснащенной соплами, расположенными с наружной стороны насадки и связанными через блок управления с источником газообразующей жидкости, при этом траекторию прокладки изменяют, используя сопла, обеспечивающие поворот прокладываемого трубопровода в заданном направлении прокладки.
Подача струй газообразующей жидкости через сопла снижает лобовое сопротивление грунта около сопел рабочего органа, выполненного в виде насадки. При снижении лобового сопротивления грунта около сопел рабочего органа образуется вспененная газоводяная грунтовая пульпа. В результате происходит отклонение траектории движения трубопровода (речь идет преимущественно об изгибаемых пластиковых трубопроводах, когда траекторию прокладки необходимо изменить на 10-30 град., при этом способ осуществим и при прокладке длинных металлических трубопроводов, когда нужное отклонение составляет не более двух градусов).
Таким образом, подавая струи газообразующей жидкости через сопла насадки, можно отклонять траекторию движения трубопровода в сторону сопла, из которого подается газообразующая жидкость. Отклоняя траекторию движения трубопровода, можно обходить подземные препятствия без осуществления работ с поверхности (бурения скважин, рытья котлованов, устройства колодцев и т.д.) там, где это сделать практически невозможно, т.е. можно обходить фундаменты зданий, ЛЭП, существующие подземные коммуникации и т.д., что значительно повышает эффективность предлагаемого способа.
Целесообразно канал в грунте расширять струями газообразующей жидкости, направленными под углом к оси прокладываемого трубопровода. В этом случае эффективность повышается за счет увеличения диаметра размываемого канала относительно диаметра прокладываемого трубопровода, что существенно снижает силы трения по боковой поверхности трубопровода и таким образом повышает дальность его прокладки.
При больших диаметрах прокладываемых трубопроводов (больше 225 мм) целесообразно грунт из размываемого канала удалять в рабочий приямок струями газообразующей жидкости, подаваемыми внутрь прокладываемого трубопровода. С этой целью с внутренней стороны насадки устанавливают дополнительные сопла, направленные внутрь прокладываемого трубопровода, удаляя таким образом грунт под действием струй газообразующей жидкости, значительно уменьшая лобовое сопротивление грунта, очищая прокладываемый трубопровод, а следовательно, повышая эффективность способа.
Целесообразно струи газообразующей жидкости подавать одновременно под разными давлениями через упомянутые сопла посредством блока управления, что позволит осуществлять отклонения трубопровода на любой угол относительно первоначальной оси прокладки и, как следствие, повысит эффективность способа.
Целесообразно использование навигационного оборудования для контроля заданной траектории прокладки трубопровода, что серьезно повысит эффективность способа.
Сущность технического решения поясняется примером его реализации и чертежами (фиг. 1-3). На фиг. 1 показана схема реализации способа бестраншейной прокладки трубопроводов в грунте. На фиг. 2 изображен разрез А-А на фиг. 1, на фиг. 3 - разрез Б-Б на фиг. 2 и схема распределительной нагрузки от грунта на рабочий орган через конус уплотненного грунта.
Способ бестраншейной прокладки трубопроводов в грунте (далее способ) реализуют следующим образом. В массив 1 грунта (фиг. 1) через рабочий приямок 2 (или колодец) вводят первую, например, пластиковую трубу 3 прокладываемого трубопровода 4. Внутри пластиковой трубы 3 располагают ударный механизм 5, работающий от источника 6 рабочей среды и жестко соединенный с рабочим органом, выполненным в виде насадки 7, оснащенной, например, четырьмя соплами 8 (фиг. 2). Первую пластиковую трубу 3 соединяют с остальными трубами 3 последовательно сварочным или резьбовым способами. Ударный механизм 5 затягивает трубопровод 4 в массив 1 грунта. Поскольку передний торец трубы 3 закрыт насадкой 7, перед торцом трубы 3 в процессе прокладки трубопровода 4 образуется конус 9 уплотненного грунта. В начальный период прокладки и периоды, когда сопротивление массива 1 грунта мало, сцепление трубопровода 4 с массивом 1 грунта проходит без подачи газообразующей жидкости. На участках, когда возникает сильное сопротивление движению трубопровода 4 по мере его продвижения в массиве 1 грунта, происходит снижение скорости прокладки трубопровода 4 до 10 м/ч. Тогда через все сопла 8 под давлением подают по шлангам 10 струи газообразующей жидкости из источника 11 газообразующей жидкости через блок 12 управления (например, четырехходовой кран), образуя, таким образом, канал 13 разупрочненного грунта, что сокращает лобовое и боковое сопротивление грунта и повышает скорость прокладки. Газообразующая жидкость представляет собой водный раствор, по меньшей мере, одного ПАВ и одного газообразующего агента (например, 5-10% раствор перекиси водорода). Газообразование производят непосредственно в порах грунта, поскольку последний, как правило, содержит естественные катализаторы (окислы металлов), позволяющие производить разложение газообразующего агента (перекиси водорода) на кислород и воду. Проникая в трещины, поры и микропоры грунта, образовавшийся газ абсорбируется на поверхности пор и трещин. В результате взаимодействия на границе газ - твердое тело понижается величина свободной поверхностной энергии (эффект Ребиндера), происходит расширение пор, соединение их между собой, что ведет к разрушению структуры грунта. Водные растворы ПАВ, взаимодействуя с поверхностями микропор и трещин грунта, снижают свободную энергию на их поверхности, приводя к дальнейшему разупрочнению грунта в канале 13 разупрочненного грунта. Образуется вспененная газоводяная грунтовая пульпа, и внедрение трубопровода 4 не требует высоких энергозатрат. При необходимости изменить траекторию движения трубопровода 4 в массиве 1 грунта для обхода, например, здания 14 газообразующую жидкость подают по одному из сопел 8, в зависимости от необходимого направления траектории прокладки трубопровода 4. В этом случае процессы разложения массива 1 грунта, описанные выше, действуют только перед подающими указанную жидкость соплами 8. Поскольку распределенная нагрузка q1 на уплотненный конус 9 грунта и насадку 7 в зоне канала 13 разупрочненного грунта значительно ниже распределенной нагрузки q2 в зоне грунта, общая составляющая сила Fq направлена в сторону канала 13 разупрочненного грунта. Трубопровод 4 начинает отклонять траекторию движения в направлении работающих сопел 8, т.к. сопротивление грунта напротив неработающих сопел 8 гораздо выше его сопротивления напротив канала 13 разупрочненного грунта работающих сопел 8.
Для расширения канала 13 разупрочненного грунта, а следовательно, уменьшения бокового сопротивления грунта внедрению трубопровода 4 целесообразно струи газообразующей жидкости направлять под углом к оси прокладываемого трубопровода 4.
Для сокращения лобового сопротивления грунта при прокладке трубопровода 4 большого диаметра (фиг. 3) целесообразно грунт из забоя удалять через насадку 7, мимо ударного механизма 5 через прокладываемый трубопровод 4 в рабочий приямок 2 посредством дополнительных сопел 15, установленных с внутренней стороны насадки 7 (фиг. 3) и направленных внутрь прокладываемого трубопровода 4.
Для расширения возможностей способа целесообразно подавать струи газообразующей жидкости одновременно под разными давлениями через сопла 8 посредством блока 12 управления. Это позволит изменять направление движения трубопровода 4 на любой угол относительно первоначальной оси прокладки. Для повышения точности и эффективности прокладки трубопровода 4 в массиве 1 грунта целесообразно использовать навигационное оборудование (не показано), позволяющее своевременно (для изменения направления прокладки) осуществлять подачу газообразующей жидкости через те или иные сопла 8.

Claims (5)

1. Способ бестраншейной прокладки трубопроводов в грунте, включающий периодический размыв в грунте канала струями газообразующей жидкости, подаваемой через рабочий орган, находящийся в головной части трубопровода, при его прокладке по заданной траектории, отличающийся тем, что прокладку трубопровода по заданной траектории осуществляют ударным механизмом, расположенным в головной части прокладываемого трубопровода и жестко соединенным с рабочим органом, выполненным в виде насадки, оснащенной соплами, расположенными с наружной стороны насадки и связанными через блок управления с источником газообразующей жидкости, при этом траекторию прокладки изменяют, используя сопла, обеспечивающие поворот прокладываемого трубопровода в заданном направлении прокладки.
2. Способ по п. 1, отличающийся тем, что канал в грунте расширяют струями газообразующей жидкости, направленными под углом к оси прокладываемого трубопровода.
3. Способ по п. 1, отличающийся тем, что грунт из размываемого канала удаляют в рабочий приямок струями газообразующей жидкости, подаваемыми внутрь прокладываемого трубопровода дополнительными соплами, установленными с внутренней стороны насадки и направленными внутрь прокладываемого трубопровода.
4. Способ по п. 1, отличающийся тем, что струи газообразующей жидкости подают одновременно под разными давлениями через упомянутые сопла посредством блока управления.
5. Способ по п. 1, отличающийся тем, что заданную траекторию прокладки трубопровода контролируют посредством навигационного оборудования.
RU2017107702A 2017-03-07 2017-03-07 Способ бестраншейной прокладки трубопроводов в грунте RU2645323C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017107702A RU2645323C1 (ru) 2017-03-07 2017-03-07 Способ бестраншейной прокладки трубопроводов в грунте

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017107702A RU2645323C1 (ru) 2017-03-07 2017-03-07 Способ бестраншейной прокладки трубопроводов в грунте

Publications (1)

Publication Number Publication Date
RU2645323C1 true RU2645323C1 (ru) 2018-02-20

Family

ID=61227039

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017107702A RU2645323C1 (ru) 2017-03-07 2017-03-07 Способ бестраншейной прокладки трубопроводов в грунте

Country Status (1)

Country Link
RU (1) RU2645323C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429239A1 (ru) * 1971-11-25 1974-05-25 В. С. Казаков, В. А. Емель нов, Г. М. Зюликов , Е. В. Струков Рабочий орган для бестраншейной *^ прокладки трубопровода
RU2005858C1 (ru) * 1992-04-20 1994-01-15 Минаев Всеволод Иоакимович Устройство для бестраншейной прокладки трубопроводов в грунте
RU2184191C1 (ru) * 2000-12-18 2002-06-27 Институт горного дела - научно-исследовательское учреждение СО РАН Способ и устройство для бестраншейной прокладки подземных коммуникаций
RU2344241C1 (ru) * 2007-06-05 2009-01-20 Институт горного дела Сибирского отделения Российской академии наук Способ бестраншейной прокладки коммуникаций в грунте (варианты)
CN101440895A (zh) * 2008-12-30 2009-05-27 浙江尤尼克管业有限公司 一种非开挖拖拉管施工的回填装置及方法
RU2460851C1 (ru) * 2011-02-25 2012-09-10 Учреждение Российской академии наук Институт горного дела Сибирского отделения РАН Способ бестраншейной прокладки трубопроводов в грунте

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU429239A1 (ru) * 1971-11-25 1974-05-25 В. С. Казаков, В. А. Емель нов, Г. М. Зюликов , Е. В. Струков Рабочий орган для бестраншейной *^ прокладки трубопровода
RU2005858C1 (ru) * 1992-04-20 1994-01-15 Минаев Всеволод Иоакимович Устройство для бестраншейной прокладки трубопроводов в грунте
RU2184191C1 (ru) * 2000-12-18 2002-06-27 Институт горного дела - научно-исследовательское учреждение СО РАН Способ и устройство для бестраншейной прокладки подземных коммуникаций
RU2344241C1 (ru) * 2007-06-05 2009-01-20 Институт горного дела Сибирского отделения Российской академии наук Способ бестраншейной прокладки коммуникаций в грунте (варианты)
CN101440895A (zh) * 2008-12-30 2009-05-27 浙江尤尼克管业有限公司 一种非开挖拖拉管施工的回填装置及方法
RU2460851C1 (ru) * 2011-02-25 2012-09-10 Учреждение Российской академии наук Институт горного дела Сибирского отделения РАН Способ бестраншейной прокладки трубопроводов в грунте

Similar Documents

Publication Publication Date Title
CN104790873B (zh) 松软岩土层射流导向成孔‑扩孔‑防塌孔一体化钻进方法
US8272811B2 (en) Process for grouting a curtain with polymer
KR101868086B1 (ko) 천공 및 그라우팅 로드장치
CN105113530A (zh) 高压喷射沉井助沉工艺
JP5717148B2 (ja) 地中固結体造成工法
RU2645323C1 (ru) Способ бестраншейной прокладки трубопроводов в грунте
CN203081294U (zh) 一种用于非开挖钻机在淤泥质土层导向施工的钻具
KR20120032168A (ko) 지향식 수평굴착공사용 확공기
CN105386724A (zh) 一种用于导管喷射下入水力参数优化设计的方法
KR101867599B1 (ko) 전진하며 확공이 가능한 확공기
KR101867598B1 (ko) 굴착공법에서의 시작구로부터 확공을 하는 방법
RU2460851C1 (ru) Способ бестраншейной прокладки трубопроводов в грунте
CN112832821B (zh) 基于高承压水断层破碎带流变研究的断面支护方法
CN205936411U (zh) 一种高压旋喷桩用钻头装置
KR102297853B1 (ko) 부상토 발생 저감이 가능한 몰탈 파일 형성 공법
CN206632077U (zh) 一种多工艺耦合式管具内壁仿生清洁装置
CN213836633U (zh) 地下注浆成桩多用钻头
KR100996295B1 (ko) 강관압입장치와 이를 이용한 강관압입공법 및 그라우팅공법
KR102097169B1 (ko) 선단 장치
CN109898558B (zh) 用于沉管的冲沉装置及沉管冲沉方法
RU2698934C1 (ru) Способ бестраншейной прокладки трубопроводов в грунте
CN110952541A (zh) 一种振动沉管与高压旋喷组合的大直径抗浮锚杆施工方法
CN205875140U (zh) 一种硬石层旋喷搅拌装置
CN205369235U (zh) 一种高压旋喷桩结构
CN205259179U (zh) 一种基础桩成孔装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190308