RU2643703C1 - Кварцевый генератор - Google Patents

Кварцевый генератор Download PDF

Info

Publication number
RU2643703C1
RU2643703C1 RU2016135844A RU2016135844A RU2643703C1 RU 2643703 C1 RU2643703 C1 RU 2643703C1 RU 2016135844 A RU2016135844 A RU 2016135844A RU 2016135844 A RU2016135844 A RU 2016135844A RU 2643703 C1 RU2643703 C1 RU 2643703C1
Authority
RU
Russia
Prior art keywords
getter
housing
base
generator
solder
Prior art date
Application number
RU2016135844A
Other languages
English (en)
Inventor
Иван Александрович Корж
Original Assignee
Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП") filed Critical Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП")
Priority to RU2016135844A priority Critical patent/RU2643703C1/ru
Application granted granted Critical
Publication of RU2643703C1 publication Critical patent/RU2643703C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

Настоящее изобретение относится к области электровакуумных приборов, и в частности к области приборов кварцевой стабилизации частоты, а именно к кварцевым генераторам, и может быть использовано для стабилизации частоты. Задача изобретения - упрощение конструкции кварцевого генератора. Кварцевый генератор состоит из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами, нераспыляемый газопоглотитель и некорпусированный кварцевый пьезоэлемент, причем металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием, с наружной стороны в основании корпуса генератора выполнено сквозное отверстие в виде конуса и, соответственно, корпус газопоглотителя с запрессованным внутри газопоглотителем выполняется в виде конусообразной детали, причем стенки отверстия покрыты припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель, или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки. Конусообразное отверстие в основании корпуса генератора дополнительно со стороны внутреннего объема корпуса генератора прикрывается тонким тепловым экраном с отверстиями. 1 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к области электровакуумных приборов, в частности к области приборов кварцевой стабилизации частоты, а именно к кварцевым генераторам, и может использоваться для стабилизации частоты.
Для обеспечения стабильности частоты в настоящее время широко используются кварцевые генераторы. Одной из распространенных конструкций кварцевого генератора является конструкция, состоящая из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными радиоэлементами (электрическая схема генератора) и некорпусированный кварцевый пьезоэлемент [1].
Достоинством данной конструкции являются малые габариты генератора из-за отсутствия отдельного корпуса для кварцевого пьезоэлемента.
Недостатком данной конструкции является недостаточная долговременная стабильность частоты кварцевого генератора - во время работы, особенно при повышенных температурах, происходит десорбция остаточных газов из объема радиоэлементов и внутренней поверхности корпуса. Эту десорбцию можно значительно уменьшить за счет длительного отжига в вакууме компонентов кварцевого генератора, однако это не дает гарантии того, что в течение нескольких лет эксплуатации долговременная стабильность генератора останется на первоначальном уровне. Опыт эксплуатации кварцевых генераторов, имеющих подобную конструкцию, показал, что уход частоты может наблюдаться после 4-5 лет эксплуатации. Это связано со снижением степени вакуума в объеме корпуса кварцевого генератора.
Известно техническое решение по снижению давления остаточных газов путем применения газопоглотителя [2]. В металлическом корпусе размещаются некорпусированный кварцевый пьезоэлемент, элементы крепления и нераспыляемый газопоглотитель. За счет применения газопоглотителя обеспечивается долговременная работа кварцевого пьезоэлемента. Недостатками такой конструкции являются: увеличенный объем корпуса из-за необходимости размещения внутри газопоглотителя, необходимость в дополнительных электрических вводах для подачи напряжения на нагреватель газопоглотителя с целью его активации, необходимость в защитных экранах от теплового излучения газопоглотителя в момент его активации. Температура активации газопоглотителя лежит в пределах от 350°С до 1000°С в зависимости от его состава. При использовании внутри корпуса электронных компонентов (полупроводниковых приборов, конденсаторов и резисторов), образующих электрическую схему генератора, выход теплового излучения во время активации газопоглотителя может повредить или модифицировать характеристики электронных компонентов.
Наиболее близким техническим решением к заявляемому является вакуумированная конструкция детектирующего элемента [3]. В данном прототипе газопоглотитель не встраивается во внутренний объем корпуса, а размещается на наружной поверхности основания корпуса. Внутренний объем газопоглотителя связан с внутренним объемом корпуса прибора - детектирующего элемента - отверстием. Перед герметизацией элемент размещают в специальную вакуумную камеру. В вакуумной камере происходит одновременная откачка и дегазация внутреннего пространства прибора и высокотемпературная активация внутреннего пространства газопоглотителя, выполненного в виде отдельного корпуса с закрепленной внутри, например, таблеткой газопоглотителя. Причем корпус прибора и отдельный корпус с газопоглотителем в момент обезгаживания и активации находятся на некотором удалении друг от друга, таком, что тепловое излучение от газопоглотителя не повреждало электронные компоненты внутри прибора.
На основании корпуса прибора выполнено углубление с кольцеобразной областью, покрытой припоем. На корпусе газопоглотителя также имеется кольцеобразная область с золотым покрытием. После окончания процесса активации и обезгаживания корпус газопоглотителя своей кольцевой областью соединяется с кольцевой областью на корпусе прибора. Припой смачивает золотое покрытие и после выключения подогрева происходит вакуумплотное соединение основания корпуса с корпусом газопоглотителя. Достоинство данного технического решения - газопоглотитель не увеличивает размеры прибора, не требуются дополнительные электрические вводы для активации газопоглотителя, инфракрасное излучение при активации газопоглотителя не повреждает электронные компоненты, находящиеся внутри корпуса прибора.
Недостатком данной конструкции прибора, в котором полость в основании прибора выполнена в виде углубления, в которое встраивается корпус с газопоглотителем, с дном со стороны внутреннего объема прибора и отверстием в дне для сообщения объемов газопоглотителя и внутреннего объема прибора, а по периметру дна выполняется кольцевая проточка, покрытая припоем, являются:
1 - высота корпуса газопоглотителя с газопоглотителем внутри, а следовательно, и его объем ограничены глубиной полости в основании прибора, распространяющейся до дна в основании прибора, что уменьшает объем газа, поглощаемым этим газопоглотителем, а следовательно, и срок службы прибора;
2 - для надежного соединения пайкой корпуса газопоглотителя с основанием прибора, кольцевая проточка должна иметь достаточную ширину (1-2 мм), тем самым занимается полезная площадь на основании прибора, что в ряде случаев неприемлемо.
Задача изобретения - упрощение конструкции кварцевого генератора.
Эта задача достигается следующим образом. Кварцевый генератор представляет собой конструкцию, состоящую из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами (электрическая схема генератора) и некорпусированнный кварцевый пьезоэлемент. Металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием методами сварки, пайки или при помощи клея. В основании корпуса генератора выполняется отверстие в виде конуса, и, соответственно, корпус газопоглотителя с газопоглотителем внутри выполняется в виде конусообразной детали, причем стенки отверстия в основании генератора покрываются припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки. Эта конструкция позволяет более точно (без зазоров) производить соединение корпуса газопоглотителя с корпусом генератора.
На фиг. 1 показана конструкция кварцевого генератора с отверстием в корпусе в виде конуса и корпусом газопоглотителя также в виде конусообразной детали.
Здесь: 1 - основание корпуса генератора, 2 - крышка, 3 - керамическая подложка со смонтированными электронными компонентами (электрическая схема генератора), 4 - кварцевый пьезоэлемент, 5 - замкнутая полость генератора, 6 - вводы в основании корпуса, 7 - корпус газопоглотителя, 8 - газопоглотитель, 9 - кольцеобразная область на основании корпуса (конусообразное отверстие), покрытая припоем - область соединения основания корпуса генератора с корпусом газопоглотителя.
На фиг. 2 показана конструкция корпуса газопоглотителя с газопоглотителем в сборе. Здесь: 7 - корпус газопоглотителя, 8 - газопоглотитель, 10 - кольцевые проточки. Проточки необходимы для удержания расплавленного припоя на поверхности конусообразной детали корпуса газопоглотителя.
На фиг. 3 показан фрагмент конструкции корпуса с дополнительным тепловым экраном. Здесь: 1 - основание корпуса генератора, 11 - тепловой экран с отверстиями 12.
Устройство работает следующим образом (фиг. 1). Соединение основания корпуса генератора 1 с основанием газопоглотителя 8 осуществляется следующим образом. В специальной вакуумной камере производится обезгаживание (предварительный прогрев при температуре до 150°С в течение от нескольких минут до десятков часов) корпуса генератора 1 и корпуса газопоглотителя 7 со смонтированным газопоглотителем 8, после чего производится активация газопоглотителя 8 при соответствующей температуре, присущей данному применяемому газопоглотителю (нагрев до температуры 350-600°С в течение десятков минут). Причем корпус генератора 1 и отдельный корпус газопоглотителя 7 с газопоглотителем 8 (фиг. 2) в момент обезгаживания и активации располагаются на некотором удалении друг от друга, таком, чтобы тепловое излучение от газопоглотителя не повреждало электронные компоненты внутри прибора. Температура корпуса генератора 1 (фиг. 1) поддерживается на 10-20°С ниже температуры расплавления припоя в кольцеобразной области основания корпуса генератора 1, например, на уровне 150°С при использовании в качестве припоя индия. В кольцеобразной канавке 10 (фиг. 2) в корпусе газопоглотителя 7 также используется припой, который при высокой температуре активации (350-600°С) расплавляется и принимает в сечении выпуклую форму, например в виде полусферы. Температура газопоглотителя 8 обычно выбирается ниже температуры припоя. В случае применения в качестве припоя индия температура испарения более 800°С, а применение в качестве припоя олова более 1000°С.
По истечении времени активации (обычно от нескольких минут до нескольких часов) производится соединение корпуса газопоглотителя 7 с кольцеобразной областью 9 в основании корпуса генератора 1, при этом часть тепла от корпуса газопоглотителя 7 передается на припой на боковой поверхности кольцеобразной области 9 в основании корпуса генератора 1, что приводит к его расплавлению. В этот момент выключается нагрев корпуса газопоглотителя 7 и корпуса генератора 1. Припой в месте соединения основания корпуса генератора 1 и корпуса газопоглотителя 7 затвердевает, при этом образуется вакуумплотное соединение корпуса газопоглотителя 7 с корпусом генератора 1. При этом происходит герметизация замкнутой полости генератора 5 (фиг. 1). Активированный газопоглотитель поддерживает в течение жизненного цикла кварцевого генератора (до 25 лет) вакуум внутри замкнутой полости генератора 5, тем самым, обеспечивая высокую долговременную стабильность частоты.
Для уменьшения влияния теплового воздействия от нагретого корпуса газопоглотителя 7 на керамическую подложку со смонтированными электронными компонентами (электрическая схема генератора) 3 (фиг. 1), кольцеобразная область 9 (фиг. 1) в основании корпуса генератора 1 может быть дополнительно со стороны внутреннего объема корпуса генератора прикрываться тепловым экраном 11 с отверстиями 12, как это показано на фиг. 3.
По сравнению с прототипом заявленная конструкция кварцевого генератора обладает следующими преимуществами.
1. Нет необходимости в обеспечении кольцевой области на корпусе газопоглотителя и на основании корпуса генератора, что позволяет экономить занимаемую площадь на основании корпуса генератора.
2. Кольцевая область на основании корпуса генератора выполняется в виде сквозного отверстия, что позволяет увеличить объем газопоглотителя, встраиваемого в основание корпуса генератора, а сквозное отверстие позволяет увеличить скорость откачки остаточных газов газопоглотителем в процессе обезгаживания и эксплуатации кварцевого генератора.
3. Конусообразная конструкция корпуса газопоглотителя и конусообразное отверстие в основании корпуса генератора позволяет более точно (без зазоров) производить соединение корпуса газопоглотителя с корпусом генератора.
Источники информации
1. Термостатируемый кварцевый генератор. Патент РФ №2503122 от 27.12.2013 г.
2. Кварцевый резонатор. Патент РФ №2351062 от 23.03.2009 г.
3. Элемент для детектирования электромагнитного излучения, в частности инфракрасного излучения, модуль формирования оптического инфракрасного изображения, включающий такой элемент и способ для его реализации. Патент РФ №2386157 от 10.04.2010 г.

Claims (2)

1. Кварцевый генератор, состоящий из металлического вакуумированного корпуса, в котором размещены керамическая подложка со смонтированными электронными компонентами, нераспыляемый газопоглотитель и некорпусированный кварцевый пьезоэлемент, причем металлический корпус выполнен в виде основания с герметичными электрическими вводами и металлической крышки, соединенной с основанием, отличающийся тем, что с наружной стороны в основании корпуса генератора выполнено сквозное отверстие в виде конуса и, соответственно, корпус газопоглотителя с запрессованным внутри газопоглотителем выполняется в виде конусообразной детали, причем стенки отверстия покрыты припоем, а боковые поверхности корпуса газопоглотителя - золотым покрытием с подслоем титан-никель, или тонким слоем припоя, а для удержания расплавленного припоя на боковых поверхностях выполнены кольцевые проточки.
2. Кварцевый генератор по п. 1, отличающийся тем, что конусообразное отверстие в основании корпуса генератора дополнительно со стороны внутреннего объема корпуса генератора прикрывается тонким тепловым экраном с отверстиями.
RU2016135844A 2016-09-05 2016-09-05 Кварцевый генератор RU2643703C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016135844A RU2643703C1 (ru) 2016-09-05 2016-09-05 Кварцевый генератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016135844A RU2643703C1 (ru) 2016-09-05 2016-09-05 Кварцевый генератор

Publications (1)

Publication Number Publication Date
RU2643703C1 true RU2643703C1 (ru) 2018-02-05

Family

ID=61173697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016135844A RU2643703C1 (ru) 2016-09-05 2016-09-05 Кварцевый генератор

Country Status (1)

Country Link
RU (1) RU2643703C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135491A (zh) * 2020-09-27 2020-12-25 中国电子科技集团公司第二十六研究所 一种半球谐振陀螺吸气剂散热装置及散热方法
RU2799520C1 (ru) * 2022-08-03 2023-07-05 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Микроузел вакуумного прибора и способ его сборки

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317157A (en) * 1991-11-20 1994-05-31 Fujitsu Limited Infrared ray detecting sensor with getter partition
RU2081506C1 (ru) * 1995-03-06 1997-06-10 Акционерное общество открытого типа "Морион" Кварцевый генератор и способ его изготовления
RU2349025C1 (ru) * 2007-05-16 2009-03-10 Федеральное государственное унитарное предприятие Омский научно-исследовательский институт приборостроения Способ изготовления миниатюрного кварцевого генератора (резонатора) - термостата
RU2386157C2 (ru) * 2004-08-24 2010-04-10 Юлис Элемент для детектирования электромагнитного излучения, в частности инфракрасного излучения, модуль формирования оптического инфракрасного изображения, включающий такой элемент, и способ для его реализации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317157A (en) * 1991-11-20 1994-05-31 Fujitsu Limited Infrared ray detecting sensor with getter partition
RU2081506C1 (ru) * 1995-03-06 1997-06-10 Акционерное общество открытого типа "Морион" Кварцевый генератор и способ его изготовления
RU2386157C2 (ru) * 2004-08-24 2010-04-10 Юлис Элемент для детектирования электромагнитного излучения, в частности инфракрасного излучения, модуль формирования оптического инфракрасного изображения, включающий такой элемент, и способ для его реализации
RU2349025C1 (ru) * 2007-05-16 2009-03-10 Федеральное государственное унитарное предприятие Омский научно-исследовательский институт приборостроения Способ изготовления миниатюрного кварцевого генератора (резонатора) - термостата

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Альтшуллер Г.Б., Елфимов Н.Н., Шакулин В.Г. Кварцевые генераторы. - М.: Радио и связь, 1984, с. 120. *
Альтшуллер Г.Б., Елфимов Н.Н., Шакулин В.Г. Кварцевые генераторы. - М.: Радио и связь, 1984, с. 120. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ИЗГОТОВЛЕНИЯ РЕЗОНАТОРА-ТЕРМОСТАТА КВАРЦЕВОГО ЦЛЗ.380.059, НИИ ПРИБОРОСТРОЕНИЯ, г.Омск, 19.08.1992. *
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ИЗГОТОВЛЕНИЯ РЕЗОНАТОРА-ТЕРМОСТАТА КВАРЦЕВОГО ЦЛЗ.380.059, НИИ ПРИБОРОСТРОЕНИЯ, г.Омск, 19.08.1992. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135491A (zh) * 2020-09-27 2020-12-25 中国电子科技集团公司第二十六研究所 一种半球谐振陀螺吸气剂散热装置及散热方法
CN112135491B (zh) * 2020-09-27 2024-05-10 中国电子科技集团公司第二十六研究所 一种半球谐振陀螺吸气剂散热装置及散热方法
RU2799520C1 (ru) * 2022-08-03 2023-07-05 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Микроузел вакуумного прибора и способ его сборки
RU2806609C1 (ru) * 2023-05-11 2023-11-02 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ сборки микроузла вакуумного прибора

Similar Documents

Publication Publication Date Title
US10511310B2 (en) Oven controlled crystal oscillator consisting of heater-embedded ceramic package
JP4354347B2 (ja) 水晶発振器
US20150158720A1 (en) Integrated heater for gettering or outgassing activation
US6900702B2 (en) MEMS frequency standard for devices such as atomic clock
US7427902B2 (en) High-stability piezoelectric oscillator
US20060060785A1 (en) Component for detecting electromagnetic radiation, particularly infrared radiation, infrared optical imaging unit including such a component and process for implementing it
US20030110865A1 (en) Method of producing an integrated reference pressure sensor element
US20200076438A1 (en) Oven controlled crystal oscillator
RU2643703C1 (ru) Кварцевый генератор
JP6198522B2 (ja) 陽極接合された蒸気セル内で圧力の均一性を高める製作技法
JP2013021079A (ja) パッケージの封止方法
JP2013038727A (ja) 気密パッケージおよびその製造方法。
JP4843424B2 (ja) 水晶振動子用のガラス封止カバー及びこれを用いた水晶振動子の製造方法
RU103042U1 (ru) Кварцевый резонатор-термостат
RU2349025C1 (ru) Способ изготовления миниатюрного кварцевого генератора (резонатора) - термостата
US2413579A (en) Crystal holder
JP2010081127A (ja) 水晶発振子および水晶発振子の製造方法
RU167515U1 (ru) Кварцевый резонатор-термостат
JP5807755B2 (ja) 圧電デバイス
JP2007324466A (ja) 半導体パッケージ
CN108358158B (zh) 一种晶圆级封装结构、制备方法及其吸气剂的激活方法
RU123218U1 (ru) Кварцевый резонатор-термостат
RU175889U1 (ru) Миниатюрный кварцевый резонатор-термостат
CN105312767A (zh) 气室的密封方法
US2820931A (en) Semiconductor devices and methods