RU2640311C1 - Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения - Google Patents

Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения Download PDF

Info

Publication number
RU2640311C1
RU2640311C1 RU2016148582A RU2016148582A RU2640311C1 RU 2640311 C1 RU2640311 C1 RU 2640311C1 RU 2016148582 A RU2016148582 A RU 2016148582A RU 2016148582 A RU2016148582 A RU 2016148582A RU 2640311 C1 RU2640311 C1 RU 2640311C1
Authority
RU
Russia
Prior art keywords
radiation
source
detector
distance
measurements
Prior art date
Application number
RU2016148582A
Other languages
English (en)
Inventor
Виктор Сергеевич Крусанов
Олег Николаевич Романов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2016148582A priority Critical patent/RU2640311C1/ru
Priority to KR1020197016639A priority patent/KR102105987B1/ko
Priority to US16/467,815 priority patent/US10838078B2/en
Priority to EP17878776.8A priority patent/EP3553567A4/en
Priority to JP2019530747A priority patent/JP6644958B2/ja
Priority to PCT/RU2017/000785 priority patent/WO2018106144A1/ru
Priority to CN201780076276.XA priority patent/CN110325880B/zh
Application granted granted Critical
Publication of RU2640311C1 publication Critical patent/RU2640311C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/169Exploration, location of contaminated surface areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/7806Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves using gamma or X-rays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. Технический результат – повышение точности измерения расстояния до источника. 3 з.п. ф-лы, 1 ил.

Description

Область техники
Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения и предназначено для ликвидации последствий радиационных инцидентов с помощью дистанционно-управляемых робототехнических комплексов и позволяет проводить аварийные работы в радиоактивно загрязненной зоне без присутствия человека.
Уровень техники
Известен способ дистанционного обнаружения ядерных зарядов (патент РФ №2068571, МПК G01T 1/29, опубл. 1996 г.), включающий определение вблизи обследуемого объекта интенсивности потока гамма-излучения в диапазоне 1,5-2,0 МэВ, затем дополнительно определяют интенсивность потока гамма-излучения вблизи 10,83 МэВ, устанавливают фоновое излучение в отмеченных интервалах, находят соотношение измеренных величин, по наличию заряда судят по соответствующему неравенству.
Способ позволяет определить наличие или отсутствие ядерных зарядов внутри обследуемого объекта при проведении измерений в непосредственной близости от него, но не позволяет определить местоположение источника на открытой местности, а также мощность излучения источника удаленного от измерительного устройства, что и относится к причинам, препятствующим использованию данного способа.
Известен способ дистанционного обнаружения радиоактивных объектов (патент РФ №2195006, МПК G01T 1/169, опубл. 2002 г.), включающий в себя определение расстояние до источника радиоактивного излучения и его дозиметрические характеристики путем измерения отношения интенсивностей испускания фотонов на энергетических линиях радионуклида, ослабленных слоем поглощающей среды, и позволяет определить расстояние до источника радиоактивного излучения и его дозиметрические характеристики.
К недостаткам способа можно отнести малую точность указания направления на обнаруженный источник и зависимость результатов измерений от изменения свойств поглощающей среды.
Известен способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения (патент РФ №2195005, МПК G01T 1/169, опубл. 2002 г.), заключающийся в регистрации излучения несколькими детекторами, размещенными на платформе мобильного робота (MP), для обнаружения источника в условиях неравномерно распределенного по площади радиоактивного загрязнения. Для чего регистрируют сигналы от первого и второго детекторов, разделенных экраном, добиваются их равенства путем поворота продольной оси MP в сторону области более интенсивного излучения, перемещают MP в указанном направлении до появления разности в сигналах от этих детекторов, регистрируют получение сигнала от третьего детектора, вызванного повышением мощности дозы при приближении к источнику гамма-излучения, и повторяют эти операции до момента получения сигнала от третьего детектора об уменьшении мощности дозы, свидетельствующего об обнаружении местонахождения источника.
К недостаткам способа относится то, что он не позволяет определить мощность излучения удаленного источника. Расположение детекторов излучения на корпусе подвижного аппарата РТК позволяет определить направление местонахождения источника, но не дает возможности определить конкретное положение источника на местности. По совокупности существенных признаков и достигаемому техническому результату, наиболее близким к заявляемому относится способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения по патенту РФ №2195005, который и выбран в качестве прототипа.
Раскрытие изобретения
Способ поиска и обнаружения источников гамма-излучения с помощью мобильного робота в условиях неравномерного радиоактивного загрязнения, включающий обнаружение источника излучения, замер мощности дозы излучения и регистрацию фиксируемого детектором значения мощности путем поочередного направления на источник излучения осей нацеливания детекторов, размещенных на платформе мобильного робота, определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние доисточника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением их между собой по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. В случаях расхождения в замерах выше погрешности лазерного дальномера результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют телекамеру, размещенную на подвижной платформе или на мобильном роботе. Обработку результатов измерений осуществляют с помощью программного обеспечения.
Задачей, на решение которой было направлено создание настоящего изобретения, является повышение надежности (достоверности) результатов измерений в процессе поиска радиоактивных источников за счет исключения случайных ошибок.
Технический результат
Техническим результатом является повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие, полное исключение ошибочных замеров мощности удаленного источника, возникающих вследствие некорректного измерения расстояния до него.
Краткое описание чертежей
Размещение на мобильном роботе дистанционно управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, схематически представлено на фиг. 1, где
1 - коллимированный детектор гамма-излучения;
2 - лазерный дальномер;
3 – радиационно стойкая телекамера;
4 - платформа;
5 - привод качания платформы;
6 - привод ротации платформы;
7 - ось измерения мощности гамма-излучения;
8 - ось измерения расстояния до объекта.
Осуществление изобретения
Способ осуществляют следующим образом.
Начинают работу с определения источника с максимальным активным излучением, для чего исследуемая область условно разбивается на прямоугольные участки с размерами, не превышающими телесный угол коллимированного детектора, и при помощи приводов MP (5) или приводов (6) наклона и поворота коллимированного детектора (1) производятся замеры мощности гамма-излучения в каждом из участков. Для этого проводят замер мощности гамма-излучения коллимированным детектором (1) по оси (7) и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера (2) по оси (8). Коллимированный детектор (1) гамма-излучения производит измерение мощности гамма-излучения в узком телесном угле (порядка 1,5-2 градусов) вдоль оси (7), что позволяет точно определить направление на источник и разделять источники расположенные близко друг от друга. Для проведения этих измерений оси детекторов (1 и 2) направляют параллельно друг другу, но с разнесением их на некоторое расстояния по горизонтали, после чего регистрируют показания лазерного дальномера (2) и значение дозы мощности фиксируемой коллимированным детектором (1).
Пересчет мощности источника производят бортовым вычислительным устройством обратно-пропорционально квадрату расстояния от источника излучения до коллимированного детектора (1) гамма-излучения. При попадании на ось измерения расстояний (8) посторонних предметов, не относящихся к обследуемому источнику возможен ошибочный результат пересчета мощности источника на основании некорректных данных о расстоянии до него. Для исключения ошибочных замеров для проверки адекватности измеренного расстояния до источника излучения перемещают ось (8) нацеливания дальномера (2) на величину разнесения по горизонтали, повторно измеряют и регистрируют результаты. Полученные в результате поочередных измерений расстояния данные сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера (2) информацию признают достоверной.
В случаях, когда расхождения в замерах выше погрешности лазерного дальномера (2) результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют радиационно стойкую телекамеру (3), размещенную на подвижной платформе (4) или на мобильном роботе.
На фиг. 1 схематически представлено размещение на мобильном роботе дистанционно-управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, где 1 - коллимированный детектор гамма-излучения (1), лазерный дальномер (2), радиационно стойкая телекамера (3), установленные на платформе (4), привод качания платформы (5) и привод ротации платформы (6). Коллимированный детектор гамма-излучения (1) производит измерение мощности гамма-излучения вдоль оси (7). Лазерный дальномер производит измерение расстояния до объектов вдоль оси (8).
Испытания предлагаемого способа проводились на опытном полигоне (г. Зеленоград) с источниками гамма-излучения 60Co.
Уровень загрязнения и активность определяемых источников гамма излучения, допустимые для применения данного метода, определяются в основном коэффициентом направленности (или защитой) и нагрузочной способностью коллимированного детектора.
Разнесение осей коллимированного детектора и лазерного дальномера зависит от используемых материалов и конструкции этих приборов, на испытаниях были опробованы следующие величины разнесения: 80 мм, 100 мм, 120 мм.
Измерения проводились в помещениях, где был сравнительно низкий уровень радиационного фона, а также так в специальном подвальном помещении, где уровень радиационного фона был до 8 Р/ч.
В подвальном помещении были размещены трубопроводы, диаметры которых, 65-200 мм, были сопоставимы с величиной разнесения параллельных лучей по горизонтали. Наблюдалась ситуация, когда луч лазера отражался от трубопроводов, а точечный источник находился далеко за ними (оптическим препятствием) или наоборот. Для загроможденных аварийных производственных помещений такая ситуация является обычной. На объекте проводили замер мощности и определение расстояния до источника (с разнесением по горизонтали параллельных лучей на 100 мм). На основании этих данных вычисляли мощность дозы реального источника. Затем для проверки адекватности измеренного расстояния перемещали ось нацеливания дальномера на 100 мм (величина разнесения лучей по горизонтали) и проводили повторное измерение с регистрацией расстояния. Сравнивали результат. Если расхождения в замерах не было, информация признавалась достоверной.
Так как в расчет мощности дозы входит квадрат расстояния до источника излучения, то ошибка в определении расстояния в 2 раза неизбежно приведет к ошибке в определении мощности дозы в 4 раза, в 3 раза - в 9 раз и т.д.
В случае расхождения в результатах замеров оператор оценивал обстановку при помощи телекамеры, размещенной на подвижной платформе, и далее производят замеры с другой точки наблюдения, чтобы исключить оптическое препятствие.
Ранее при проведении измерений при обнаружении источника излучения без использования предлагаемого способа приводило к необходимости в подозрительных случаях (наличия в исследуемой области распределенных по дальности объектов) проводить повторные измерения из других точек наблюдения, что не всегда возможно в силу геометрии и загруженности помещений.
Сравнение результатов, полученных дистанционно в соответствии с предлагаемым способом, с результатами непосредственных замеров показало полное соответствие по координатам выявленных «горячих точек».
Проблемные результаты могут возникнуть при проведении достаточно удаленных измерений, когда разрешающая способность телевизионной камеры может оказаться недостаточной для точной компенсации сдвига между лучами. Конкретные значения зависят от качества телевизионной камеры (разрешение, ZOOM и т.д.) и обрабатывающей аппаратуры. Использовавшаяся аппаратура позволяла компенсировать сдвиг на расстояниях до 8-10 метров.
В процессе испытаний предлагаемого способа на опытном полигоне предприятия с использованием калибровочного радиоактивного источника в условиях приближенных к реальным не были зафиксированы ошибочные замеры мощности удаленного источника.
Таким образом испытания предлагаемого способа полностью доказали достижение технического результата, указанного выше, а именно значительное повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие полное исключение ошибочных замеров мощности удаленного источника за счет некорректного измерения расстояния до него.

Claims (4)

1. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения, включающий обнаружение источника излучения, замер мощности дозы излучения и регистрацию фиксируемого детектором значения мощности путем поочередного направления на источник излучения осей нацеливания детекторов, размещенных на платформе, отличающийся тем, что определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной.
2. Способ по п. 1, отличающийся тем, что при расхождении в замерах выше погрешности лазерного дальномера результаты измерений передают оператору для визуального выяснения причин расхождения результатов.
3. Способ по п. 1, отличающийся тем, что используют телекамеру, размещенную на подвижной платформе или на мобильном роботе.
4. Способ по п. 1, отличающийся тем, что обработку результатов измерений осуществляют с помощью программного обеспечения.
RU2016148582A 2016-12-09 2016-12-09 Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения RU2640311C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2016148582A RU2640311C1 (ru) 2016-12-09 2016-12-09 Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения
KR1020197016639A KR102105987B1 (ko) 2016-12-09 2017-10-26 감마 방사선원들의 탐색 및 검출 방법
US16/467,815 US10838078B2 (en) 2016-12-09 2017-10-26 Method for searching for and detecting gamma radiation sources
EP17878776.8A EP3553567A4 (en) 2016-12-09 2017-10-26 METHOD FOR SEARCHING AND DETECTING GAMMA RADIATION SOURCES
JP2019530747A JP6644958B2 (ja) 2016-12-09 2017-10-26 ガンマ放射線源を探索し検出するための方法
PCT/RU2017/000785 WO2018106144A1 (ru) 2016-12-09 2017-10-26 Способ поиска и обнаружения источников гамма-излучения
CN201780076276.XA CN110325880B (zh) 2016-12-09 2017-10-26 用于搜索和探测伽马辐射源头的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148582A RU2640311C1 (ru) 2016-12-09 2016-12-09 Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения

Publications (1)

Publication Number Publication Date
RU2640311C1 true RU2640311C1 (ru) 2017-12-27

Family

ID=62492049

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148582A RU2640311C1 (ru) 2016-12-09 2016-12-09 Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения

Country Status (7)

Country Link
US (1) US10838078B2 (ru)
EP (1) EP3553567A4 (ru)
JP (1) JP6644958B2 (ru)
KR (1) KR102105987B1 (ru)
CN (1) CN110325880B (ru)
RU (1) RU2640311C1 (ru)
WO (1) WO2018106144A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698075C1 (ru) * 2018-04-18 2019-08-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МО РФ Способ определения мощности ядерного взрыва

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988972B (zh) * 2019-10-12 2022-10-21 中国辐射防护研究院 高精度三维便携式表面污染仪检定装置
TWI690721B (zh) * 2019-10-16 2020-04-11 行政院原子能委員會核能研究所 可移動定位並結合面式放射性沈積活度量測之裝置
CN112173107B (zh) * 2020-09-29 2021-12-21 深圳市欣横纵技术股份有限公司 一种基于无人机技术的快速伽马剂量率测量系统
CN114545324B (zh) * 2022-04-24 2022-07-12 南京宇安防务科技有限公司 一种适用于非均匀阵列的快速测向方法
CN116661429B (zh) * 2023-08-02 2023-10-03 青岛富欣城轨科技有限公司 一种列车控制过程动态调试的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286973A (en) * 1991-11-13 1994-02-15 Odetics, Inc. Radiation mapping system
RU27716U1 (ru) * 2002-06-17 2003-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский и конструкторский институт монтажной технологии" Гамма-локатор
RU82871U1 (ru) * 2008-11-05 2009-05-10 Государственное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК) Дистанционно управляемый робот радиационной разведки
JP2014185967A (ja) * 2013-03-25 2014-10-02 Hitachi Ltd 移動式線量計測装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602282A (en) * 1982-06-29 1986-07-22 Hamamatsu Photonics Kabushiki Kaisha Measuring devices for two-dimensional photon-caused or corpuscular-ray-caused image signals
RU2068571C1 (ru) 1991-06-04 1996-10-27 Институт энергетических проблем химической физики РАН Способ дистанционного обнаружения ядерных зарядов
US20030111612A1 (en) * 1997-05-15 2003-06-19 British Nuclear Fuels Plc Radiation dose rate measurement
WO1999010136A1 (en) * 1997-08-28 1999-03-04 Proteus Corporation Laser calibration of robotics systems
US6596998B1 (en) * 2000-07-31 2003-07-22 Westinghouse Electric Company Llc Method and system for identifying the source of a signal
RU2195005C2 (ru) * 2000-10-23 2002-12-20 Войсковая часть 61469 Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения
RU2195006C2 (ru) 2000-10-23 2002-12-20 Войсковая часть 61469 Способ дистанционного обнаружения радиоактивных объектов
JP4031618B2 (ja) * 2001-02-28 2008-01-09 安西メディカル株式会社 放射線源検出装置
JP4533659B2 (ja) * 2004-05-12 2010-09-01 株式会社日立製作所 レーザー計測により地図画像を生成する装置及び方法
JP2007120993A (ja) * 2005-10-25 2007-05-17 Tokyo Institute Of Technology 物体形状測定装置
GB0619145D0 (en) * 2006-09-27 2006-11-08 React Engineering Ltd Improvements in radiation modelling
FR2925702B1 (fr) * 2007-12-21 2010-02-26 Commissariat Energie Atomique Vehicule d'inspection teleguide pour la localisation et la mesure d'activite de sources radioactives
WO2012024487A2 (en) * 2010-08-18 2012-02-23 Savannah River Nuclear Solutions, Llc System and method for the identification of radiation in contaminated rooms
WO2013105519A1 (ja) * 2012-01-13 2013-07-18 独立行政法人放射線医学総合研究所 放射性物質検出装置、放射線源位置可視化システム、および放射性物質検出方法
CN102692637B (zh) * 2012-05-25 2014-04-16 西南科技大学 基于遥操作装置的核辐射环境虚拟重建系统及方法
KR101349785B1 (ko) * 2012-08-06 2014-01-15 한국원자력연구원 카메라를 이용한 방사선 선원조사장치 및 이를 구비한 이동로봇
JP5918093B2 (ja) * 2012-09-21 2016-05-18 日立アロカメディカル株式会社 放射線測定装置及び放射線測定方法
JP6189272B2 (ja) * 2014-09-26 2017-08-30 日立Geニュークリア・エナジー株式会社 調査システム
JP6699018B2 (ja) * 2014-12-26 2020-05-27 国立大学法人 東京大学 放射線計測システム
JP6643115B2 (ja) * 2016-02-02 2020-02-12 日立Geニュークリア・エナジー株式会社 放射性廃棄物の放射能濃度測定方法および装置
CN205508117U (zh) * 2016-04-08 2016-08-24 江苏省核与辐射安全监督管理局 一种便携式辐射监测数据采集和传输装置
CN105922921B (zh) * 2016-05-12 2018-03-09 浙江核芯监测科技有限公司 核应急自动监测车
CN105866819A (zh) * 2016-05-20 2016-08-17 浙江省辐射环境监测站 一种放射性监测设备
JP6427533B2 (ja) * 2016-05-27 2018-11-21 日本原子力発電株式会社 放射能表面汚染密度測定装置および該測定装置による放射能表面汚染密度測定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286973A (en) * 1991-11-13 1994-02-15 Odetics, Inc. Radiation mapping system
RU27716U1 (ru) * 2002-06-17 2003-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский и конструкторский институт монтажной технологии" Гамма-локатор
RU82871U1 (ru) * 2008-11-05 2009-05-10 Государственное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" (ЦНИИ РТК) Дистанционно управляемый робот радиационной разведки
JP2014185967A (ja) * 2013-03-25 2014-10-02 Hitachi Ltd 移動式線量計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698075C1 (ru) * 2018-04-18 2019-08-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" МО РФ Способ определения мощности ядерного взрыва

Also Published As

Publication number Publication date
US20200142080A1 (en) 2020-05-07
WO2018106144A1 (ru) 2018-06-14
CN110325880B (zh) 2021-10-29
KR20190073575A (ko) 2019-06-26
US10838078B2 (en) 2020-11-17
CN110325880A (zh) 2019-10-11
EP3553567A4 (en) 2020-07-29
KR102105987B1 (ko) 2020-04-29
JP6644958B2 (ja) 2020-02-12
JP2019536054A (ja) 2019-12-12
EP3553567A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
RU2640311C1 (ru) Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения
CN107064987B (zh) 一种放射源定位系统及定位方法
CN105510952A (zh) 飞行模式CdZnTe巡检系统和巡检方法
US10024985B1 (en) Gamma ray detector with two-dimensional directionality
CN205450294U (zh) 飞行模式CdZnTe巡检系统
KR102257327B1 (ko) 방사선 측정 장치 및 이를 이용한 방사성 오염도 측정 방법
JP6246003B2 (ja) 放射線計測装置及びそれを用いた燃料デブリの有無及び位置測定装置並びに燃料デブリの有無及び位置測定方法
US10551513B1 (en) Cylindrical directional detector without collimator
JPH05501608A (ja) パイプライン内の欠損箇所検知装置
CN107436446A (zh) 一种放射源定位方法及定位系统
US6657202B2 (en) Multiple-eye type dose distribution measuring method
Alwars et al. Conceptual design of an orphan gamma source finder
JP5450356B2 (ja) 放射線検出方法
KR101221291B1 (ko) 방사선과 집속장치를 이용한 아스팔트 포장도로의 층별 밀도 측정장치 및 그 방법
JP7140658B2 (ja) 放射線計測装置、及び放射線計測方法
JPH01260389A (ja) 放射線測定装置
KR20210049272A (ko) 스펙트로스코프에 기반한 방사선원 위치추적 방법 및 방사선원 위치추적 시스템
RU2578048C1 (ru) Устройство для радиационного измерения плотности
KR102495593B1 (ko) 감마선 검출기 및 이를 구비한 비파괴 검사 시스템
RU2738763C1 (ru) Способ измерения интенсивности импульсного источника излучения в условиях кругового перемещения источника
JP6254455B2 (ja) 空間線量の監視方法
JPS62297775A (ja) 放射線測定器および放射線量率分布評価装置
RU2616088C2 (ru) Способ определения направления на источник ядерного излучения
Тютюник EXPERIMENTAL EVALUATION OF ACCURACY IN DETERMINING THE DIRECTION TO A PULSED SOURCE OF GAMMA-RADIATION BY A SPHERICAL ABSORBER WITH CDTE DETECTORS IN A SYSTEM OF NUCLEAR SITUATION MONITORING
Khan et al. A detector system for searching lost g-ray source