RU2640144C2 - Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже - Google Patents

Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже Download PDF

Info

Publication number
RU2640144C2
RU2640144C2 RU2015130350A RU2015130350A RU2640144C2 RU 2640144 C2 RU2640144 C2 RU 2640144C2 RU 2015130350 A RU2015130350 A RU 2015130350A RU 2015130350 A RU2015130350 A RU 2015130350A RU 2640144 C2 RU2640144 C2 RU 2640144C2
Authority
RU
Russia
Prior art keywords
grooves
inner casing
end portion
seal assembly
hot gas
Prior art date
Application number
RU2015130350A
Other languages
English (en)
Other versions
RU2015130350A (ru
Inventor
Чин-Пан ЛИ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2015130350A publication Critical patent/RU2015130350A/ru
Application granted granted Critical
Publication of RU2640144C2 publication Critical patent/RU2640144C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved

Abstract

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя. Неподвижный узел направляющих лопаток включает множество направляющих лопаток и внутренний кожух. Внутренний кожух содержит обращенную радиально наружу первую поверхность, обращенную радиально внутрь вторую поверхность и множество канавок, выходящих на вторую поверхность. Канавки располагаются таким образом, что между смежными канавками образована область, имеющая протяженность в окружном направлении, причем во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении канала горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через канал горячего газа. Канавки сужаются в направлении от их входов, расположенных на удалении относительно аксиального концевого участка внутреннего бандажа, до их выходов, расположенных вблизи аксиального концевого участка внутреннего бандажа, таким образом, что входы имеют ширину больше, чем выходы. Изобретение позволяет более эффективно предотвращать попадание горячего газа в полость диска турбины газотурбинного двигателя. 8 з.п. ф-лы, 4 ил.

Description

Область техники
Настоящее изобретение относится, в общем, к узлу уплотнения для использования в газотурбинном двигателе, который включает в себя множество канавок, расположенных на радиально внутренней стороне внутреннего бандажа, чтобы способствовать ограничению утечки между путепроводом (каналом) горячего газа и полостью диска.
Уровень техники
В многоступенчатых ротационных машинах, таких как газотурбинные двигатели, текучая среда, например воздух, сжимается в секции компрессора и смешивается с топливом в секции камеры сгорания. Смесь воздуха и топлива воспламеняется в секции камеры сгорания для генерирования газов сгорания, которые образуют горячий рабочий газ, который направляется на ступени турбины внутри секции турбины двигателя для получения вращательного движения компонентов турбины. Секция турбины и секция компрессора имеют неподвижные или не вращающиеся компоненты, такие как, например, направляющие лопатки, которые взаимодействуют с вращающимися компонентами, такими как, например, рабочие лопатки, для сжатия и расширения горячего рабочего газа. Многие компоненты внутри машины необходимо охлаждать посредством охлаждающей текучей среды для предотвращения перегрева компонентов.
Попадание горячего рабочего газа из путепровода горячего газа в полости диска, которые содержат охлаждающую текучую среду, ухудшает характеристики двигателя и его эффективность, например из-за повышения температуры диска и основания лопатки. Попадание горячего рабочего газа из путепровода горячего газа в полости диска также может уменьшить срок службы и/или вызвать выход из строя компонентов, расположенных в полостях диска или около них.
Сущность изобретения
Согласно первому аспекту изобретения, предлагается узел уплотнения между полостью диска и путепроводом горячего газа, который продолжается через секцию турбины газотурбинного двигателя. Узел уплотнения содержит вращающийся узел рабочих лопаток, включающий в себя множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя, и неподвижный узел направляющих лопаток, включающий в себя множество направляющих лопаток и внутренний бандаж (кожух). Внутренний бандаж содержит обращенную радиально наружу первую поверхность, обращенную радиально внутрь вторую поверхность и множество канавок, продолжающихся во вторую поверхность. Канавки располагаются таким образом, что между смежными канавками образовано пространство, имеющее компоненту в окружном направлении. Во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении путепровода горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через путепровод горячего газа.
Согласно второму аспекту изобретения, предлагается узел уплотнения между полостью диска и путепроводом горячего газа, который продолжается через секцию турбины газотурбинного двигателя. Узел уплотнения содержит вращающийся узел рабочих лопаток, включающий в себя множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя, и неподвижный узел направляющих лопаток, включающий в себя множество направляющих лопаток и внутренний бандаж. Внутренний бандаж содержит обращенную радиально наружу первую поверхность, которая продолжается до аксиального концевого участка внутреннего бандажа, вторую поверхность, которая продолжается от аксиального концевого участка внутреннего бандажа в направлении от узла рабочих лопаток и обращена радиально внутрь и аксиально, обращенную по существу аксиально третью поверхность, которая продолжается радиально внутрь от второй поверхности и обращена к узлу рабочих лопаток, и множество канавок, продолжающихся во внутренний бандаж. Канавки включают в себя входы, расположенные на третьей поверхности внутреннего бандажа, и выходы, расположенные на второй поверхности внутреннего бандажа, причем канавки располагаются таким образом, что между смежными канавками образовано пространство, имеющее компоненту в окружном направлении. Во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении путепровода горячего газа таким образом, что направление потока продувочного воздуха по существу выровнено с направлением потока горячего воздуха через путепровод горячего воздуха, которое по существу параллельно углу выхода задней кромки по меньшей мере одной из направляющих лопаток.
Согласно третьему аспекту изобретения, предлагается узел уплотнения между полостью диска и путепроводом горячего газа, который продолжается через секцию турбины газотурбинного двигателя. Узел уплотнения содержит вращающийся узел рабочих лопаток, включающий в себя множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя, и неподвижный узел направляющих лопаток, расположенный выше по потоку от узла рабочих лопаток относительно впуска и выпуска секции турбины. Узел направляющих лопаток включает в себя множество направляющих лопаток и внутренний бандаж, содержащий обращенную радиально наружу первую поверхность, которая продолжается до аксиального концевого участка внутреннего бандажа, вторую поверхность, которая продолжается от аксиального концевого участка внутреннего бандажа в направлении от узла рабочих лопаток и обращена радиально внутрь и аксиально, обращенную по существу аксиально третью поверхность, которая продолжается радиально внутрь от второй поверхности и обращена к узлу рабочих лопаток. Внутренний бандаж дополнительно содержит множество канавок, продолжающихся во внутренний бандаж, причем канавки включают в себя входы, расположенные на третьей поверхности внутреннего бандажа, и выходы, расположенные на второй поверхности внутреннего бандажа. Канавки располагаются таким образом, что между смежными канавками образовано пространство, имеющее компоненту в окружном направлении, причем канавки сужаются в направлении от их входов к их выходам таким образом, что входы имеют ширину больше, чем выходы, и канавки наклонены и/или изогнуты в окружном направлении таким образом, что их выходы располагаются выше по потоку от их входов относительно направления вращения ротора турбины. Во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении путепровода горячего газа таким образом, что направление потока продувочного воздуха по существу выровнено с направлением потока горячего воздуха через путепровод горячего воздуха.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием вариантов его осуществления со ссылкой на сопроводительные чертежи, на которых:
Фиг. 1 изображает схематичный вид в разрезе части ступени турбины в газотурбинном двигателе, включающей в себя узел уплотнения согласно варианту воплощения изобретения.
Фиг. 2 - местный вид в изометрии, иллюстрирующий множество канавок узла уплотнения на Фиг. 1.
Фиг. 2А - вид сбоку, иллюстрирующий несколько канавок, показанных на Фиг. 2.
Фиг. 3 - вид в поперечном разрезе ступени, показанной на Фиг. 1, если смотреть в направлении радиально внутрь.
Подробное описание изобретения
Далее подробно описывается предпочтительный вариант воплощения с помощью прилагаемых чертежей, который приведен только в качестве иллюстрации и не ограничивает изобретение. Понятно, что возможны другие варианты воплощения и возможны изменения, не выходя за пределы сущности и объема настоящего изобретения.
На Фиг. 1 схематично иллюстрируется часть турбинного двигателя 10, включающая в себя неподвижный узел 12 направляющих лопаток, включающий в себя множество направляющих лопаток 14, подвешенных на наружном кожухе (не показан) и прикрепленных к кольцевому внутреннему бандажу 16, и узел 18 рабочих лопаток, включающий в себя множество рабочих лопаток 20 и структуру 22 диска ротора, которая образует часть ротора 24 турбины. Узел 12 направляющих лопаток и узел 18 рабочих лопаток могут быть обобщенно названы здесь как «ступень» секции 26 турбины двигателя 10, которая может содержать множество ступеней, что очевидно специалистам в этой области техники. Узлы 12 направляющих лопаток и узлы 18 рабочих лопаток разнесены относительно друг друга в аксиальном направлении, образующем продольную ось LA двигателя 10, причем узел 12 направляющих лопаток, иллюстрируемый на Фиг. 1, располагается выше по потоку от иллюстрируемого узла 18 рабочих лопаток относительно впуска 26А и выпуска 26В секции 26 турбины, см. Фиг. 1 и Фиг. 3.
Структура 22 диска ротора может содержать платформу 28, диск 30 рабочей лопатки и любые другие структуры, связанные с узлом 18 рабочих лопаток, которые вращаются вместе с ротором 24 во время работы двигателя 10, такие как, например, основания, боковые стенки, хвостовики и т.д.
Направляющие лопатки 14 и рабочие лопатки 20 продолжаются в кольцевой путепровод 34 горячего газа, образованный внутри секции 26 турбины. Рабочий газ НG (см. Фиг. 3), содержащий горячие газы сгорания, направляется через путепровод 34 горячего газа и течет мимо направляющих лопаток 14 и рабочих лопаток 20 к остальным ступеням во время работы двигателя 10. Прохождение рабочего газа HG через путепровод 34 горячего газа заставляет вращаться рабочие лопатки 20 и соответствующий узел 18 рабочих лопаток, чтобы получить вращение ротора 24 турбины.
Обращаясь к Фиг. 1, полость 36 диска располагается радиально внутри относительно путепровода 34 горячего газа между кольцевым внутренним бандажом 16 и структурой 22 диска ротора. Продувочный воздух РА, такой как, например, воздух с выхода компрессора, обеспечивается в полости 36 диска для охлаждения внутреннего бандажа 16 и структуры 22 диска ротора. Продувочный воздух РА также обеспечивает выравнивание давления относительно давления рабочего воздуха HG, текущего через путепровод 34 горячего газа, чтобы противодействовать потоку рабочего газа HG в полость 36 диска. Продувочный воздух РА может обеспечиваться в полости 36 диска из каналов для охлаждения (не показаны), образованных в роторе 24, и/или из других верхних по потоку каналов (не показаны), если это требуется. Отметим, что другие полости диска (не показаны) обычно обеспечиваются между остальными внутренними бандажами 16 и соответствующими смежными структурами 22 диска ротора.
Как показано на Фиг. 1-3, внутренний бандаж 16 в иллюстрируемом варианте воплощения содержит продолжающуюся по существу радиально наружу первую поверхность 40, от которой продолжаются направляющие лопатки 14. Первая поверхность 40 в иллюстрируемом варианте воплощения продолжается от аксиально верхнего по потоку концевого участка 42 внутреннего бандажа 16 до аксиально нижнего по потоку концевого участка 44, см. Фиг. 2 и Фиг. 3. Внутренний бандаж 16 дополнительно содержит обращенную радиально внутрь и аксиально вторую поверхность 46, которая продолжается от аксиально нижнего по потоку концевого участка 44 внутреннего бандажа в направлении от смежного узла 18 рабочих лопаток до обращенной по существу аксиально третьей поверхности 48 внутреннего бандажа 16, см. Фиг. 1 и Фиг. 2. Вторая поверхность 46 внутреннего бандажа 16 в иллюстрируемом варианте воплощения продолжается от нижнего по потоку концевого участка 44 под углом β относительно линии L1, которая параллельна продольной оси LA, т.е. таким образом, что вторая поверхность 46 также продолжается от нижнего по потоку концевого участка 44 под углом β относительно продольной оси LA, причем угол β предпочтительно находится в диапазоне порядка 30-60°, и в иллюстрируемом варианте воплощения составляет порядка 45°, см. Фиг. 1. Третья поверхность 48 продолжается радиально внутрь от второй поверхности 46 и обращена к структуре 22 диска ротора смежного узла 18 рабочих лопаток.
Компоненты внутреннего бандажа 16 и структуры 22 диска ротора, расположенные радиально внутри относительно соответствующих направляющих лопаток 14 и рабочих лопаток 20, взаимодействуют, чтобы образовать кольцевой узел 50 уплотнения между путепроводом 34 горячего газа и полостью 36 диска. Кольцевой узел 50 уплотнения способствует предотвращению попадания рабочего газа HG из путепровода 34 горячего газа в полость 36 диска и направляет часть продувочного газа РА из полости 36 диска в требуемом направлении относительно направления потока рабочего газа HG через путепровод 34 горячего газа, как будет описано ниже. Отметим, что другие узлы 50 уплотнения, подобные описываемому здесь, могут быть обеспечены между внутренними бандажами 16 и структурами 22 диска ротора остальных ступеней двигателя 10, чтобы способствовать предотвращению попадания рабочего газа HG из путепровода 34 горячего газа в соответствующие полости 36 диска и направлять часть продувочного газа РА из полостей 36 диска в требуемом направлении относительно направления потока рабочего газа HG через путепровод 34 горячего газа, как будет описано ниже.
Как показано на Фиг. 1-3, узел 50 уплотнения содержит части узла 12 направляющих лопаток и узла 18 рабочих лопаток. В частности, в иллюстрируемом варианте воплощения узел 50 уплотнения содержит вторую и третью поверхности 46, 48 внутреннего бандажа 16 и аксиально верхний по потоку концевой участок 28А платформы 28 структуры 22 диска ротора. Эти компоненты взаимодействуют, чтобы образовать выпуск 52 из полости 36 диска для продувочного воздуха РА, см. Фиг. 1 и Фиг. 3.
Узел 50 уплотнения дополнительно содержит множество канавок 60, продолжающихся во вторую и третью поверхности 46, 48 внутреннего бандажа 16. Канавки 60 располагаются таким образом, что между смежными канавками 60 образованы пространства 62, имеющие компоненты в окружном направлении, см. Фиг. 2 и Фиг. 3. Размеры пространств 62 могут изменяться в зависимости от конкретной конструкции двигателя 10 и могут быть выбраны таким образом, чтобы обеспечить точную настройку выпуска продувочного воздуха РА из канавок 60, причем выпуск продувочного воздуха РА из канавок 60 будет рассмотрен более подробно ниже.
Как показано более ясно на Фиг. 2, входы 64 канавок 60, т.е. где продувочный воздух РА, выходящий из полости 36 диска в направлении путепровода 34 горячего газа, входит в канавки 60, располагаются дистально относительно аксиального концевого участка 44 внутреннего бандажа 16 на его третьей поверхности 48, и выходы канавок 60, т.е. где продувочный воздух РА выходит из канавок 60, располагаются проксимально относительно аксиального концевого участка 44 внутреннего бандажа 16 на его второй поверхности 46. Обращаясь к Фиг. 2А, канавки 60 предпочтительно сужаются в направлении от их входов 64 до их выходов 66 таким образом, что ширина W1 входов 64 больше, чем ширина W2 выходов 66, причем ширины W1, W2 соответственно измеряются между противоположными боковыми стенками SW1, SW2 внутреннего бандажа 16, которые образуют канавки 60, в направлениях, по существу перпендикулярных общему направлению потока продувочного воздуха РА через соответствующие канавки 60. Это сужение канавок 60 обеспечивает более сосредоточенный и оказывающий большее действие выпуск продувочного воздуха РА из канавок 60, чтобы более эффективно предотвращать попадание горячего газа HG в полость 36 диска, как будет описано ниже.
Как показано на Фиг. 3, канавки 60 также предпочтительно наклонены и/или изогнуты в окружном направлении таким образом, что их входы 64 располагаются выше по потоку от их выходов 66 относительно направления DR вращения ротора 24 турбины. Этот наклон и/или изгиб канавок 60 обеспечивает направление продувочного воздуха РА из полости 36 диска наружу из канавок 60 в направлении путепровода 34 горячего газа таким образом, что продувочный воздух РА течет в требуемом направлении относительно потока рабочего газа HG через путепровод 34 горячего газа. В частности, канавки 60 согласно этому аспекту изобретения направляют продувочный воздух РА из полости 36 диска таким образом, что направление потока продувочного воздуха РА по существу выровнено с направлением потока рабочего газа HG в соответствующей аксиальной позиции в путепроводе 34 горячего газа, причем направление потока рабочего газа HG в соответствующей аксиальной позиции в путепроводе 34 горячего газа по существу параллельно углам выхода задних кромок 14А направляющих лопаток 14.
Обращаясь к Фиг. 1-3, узел 50 уплотнения дополнительно содержит продолжающуюся по существу аксиально уплотнительную структуру 70 внутреннего бандажа 16, которая продолжается от его третьей поверхности 48 в направлении диска 30 рабочей лопатки узла 18 рабочих лопаток. Как показано на Фиг. 1 и Фиг. 3, аксиальный конец 70А уплотнительной структуры 70 располагается в непосредственной близости от диска 30 рабочей лопатки узла 18 рабочих лопаток. Уплотнительная структура 70 может быть образована за одно целое с внутренним бандажом 16 или может быть образована отдельно от внутреннего бандажа 16 и прикреплена к нему. Как показано на Фиг. 1, уплотнительная структура 70 предпочтительно перекрывает верхний по потоку конец 28А платформы 28 таким образом, что рабочий газ HG, чтобы попасть из путепровода 34 горячего газа в полость 36 диска, должен проходить по извилистому путепроводу.
Во время работы двигателя 10 прохождение горячего рабочего газа HG через путепровод 34 горячего газа заставляет узел 18 рабочих лопаток и ротор 24 турбины вращаться в направлении DR вращения, как показано на Фиг. 3.
Разница давлений между полостью 36 диска и путепроводом 34 горячего газа, а именно, давление в полости 36 диска больше, чем давление в путепроводе 34 горячего газа, заставляет продувочный воздух РА, расположенный в полости 36 диска, течь в направлении путепровода 34 горячего газа, см. Фиг. 1. Когда продувочный воздух РА достигает третью поверхность 48 внутреннего бандажа 36, часть продувочного воздуха РА течет во входы 64 канавок 60. Эта часть продувочного воздуха РА течет радиально наружу через канавки 60 и затем, при достижении участков канавок 60 на второй поверхности 46 внутреннего бандажа 16, продувочный воздух РА течет радиально наружу и аксиально в канавках 60 в направлении смежного узла 18 рабочих лопаток. Благодаря наклону и/или изгибу канавок 60, как было описано выше, продувочный воздух РА получает окружную компоненту скорости, так что продувочный воздух РА выходит из канавок 60 по существу в том же направлении, в котором течет рабочий газ HG после выхода с задних кромок 14А направляющих лопаток 14, см. Фиг. 3.
Выпуск продувочного воздуха РА из канавок 60 способствует ограничению попадания горячего рабочего газа HG из путепровода 34 горячего газа в полость 36 диска за счет принудительного вытеснения рабочего газа HG из узла 50 уплотнения. Так как узел 50 уплотнения ограничивает попадание рабочего газа HG из путепровода 34 горячего газа в полость 36 диска, узел 50 уплотнения позволяет уменьшить количество продувочного воздуха РА, которое должно быть обеспечено в полости 36 диска, тем самым увеличивая эффективность двигателя.
Кроме того, так как продувочный воздух РА выходит из канавок 60 по существу в том же направлении, в котором рабочий газ HG течет через путепровод 34 горячего газа после выхода с задних кромок 14А направляющих лопаток 14, будут меньше потери давления, связанные со смешиванием продувочного воздуха РА с рабочим газом HG, тем самым дополнительно увеличивается эффективность двигателя. Это, в частности, реализовано с помощью канавок 60 согласно настоящему изобретению, так как они образованы в нижнем по потоку концевом участке 44 внутреннего бандажа 16, так что продувочный воздух РА, выходящий из канавок 60, течет аксиально ниже по потоку относительно направления потока горячего рабочего газа HG через путепровод 34 горячего газа, дополнительно к продувочному воздуху РА, выходящему из канавок 60 по существу в том же окружном направлении, в котором течет горячий рабочий газ HG после выхода с задних кромок 14А направляющих лопаток 14, благодаря тому, что канавки 60 наклонены и/или изогнуты в окружном направлении. Тем самым канавки 60, образованные во внутреннем бандаже 16, обеспечивают меньшие потери давления, связанные со смешиванием продувочного воздуха РА с рабочим газом HG, чем если бы они были образованы в верхнем по потоку участке 28А платформы 28, когда продувочный воздух, выходящий из канавок, образованных в верхнем по потоку участке 28А платформы 28, будет течь аксиально выше по потоку относительно направления потока горячего рабочего газа HG через путепровод 34 горячего газа, что ведет к большим потерям давления, связанным со смешиванием.
Отметим, что наклон и/или изгиб канавок 60 может изменяться для точной настройки направления выпуска продувочного воздуха РА из канавок 60. Это может быть желательным на основании углов выхода задних кромок 14А направляющих лопаток 14 и/или чтобы изменять величину потерь давления, связанных со смешиванием продувочного воздуха РА с рабочим газом HG, текущим через путепровод 34 горячего газа.
Кроме того, входы 64 канавок 60 могут располагаться на третьей поверхности 48 внутреннего бандажа 16 дальше или ближе в радиальном направлении, или входы 64 могут располагаться на второй поверхности 46 внутреннего бандажа 16, т.е. таким образом, что канавки 60 будут полностью располагаться на второй поверхности 46 внутреннего бандажа 16.
И наконец, описываемые здесь канавки 60 предпочтительно получают путем литья вместе с внутренним бандажом 16 или получают путем механической обработки внутреннего бандажа 16. Поэтому структурная целостность и сложность изготовления канавок 60 будут улучшены по сравнению с ребрами, которые образуются отдельно и прикрепляются к внутреннему бандажу 16.
Хотя здесь был проиллюстрирован и описан конкретный вариант воплощения настоящего изобретения, специалистам в этой области техники очевидно, что возможны различные изменения и модификации, не выходящие за пределы сущности и объема изобретения. Поэтому прилагаемая формула изобретения охватывает все изменения и модификации, находящиеся в пределах объема изобретения.

Claims (15)

1. Узел уплотнения между полостью диска и каналом горячего газа, который проходит через секцию турбины газотурбинного двигателя, содержащий:
вращающийся узел рабочих лопаток, включающий в себя множество рабочих лопаток, которые вращаются вместе с ротором турбины во время работы двигателя; и
неподвижный узел направляющих лопаток, включающий в себя множество направляющих лопаток и внутренний кожух, причем внутренний кожух содержит:
обращенную радиально наружу первую поверхность;
обращенную радиально внутрь вторую поверхность;
и множество канавок, выходящих на вторую поверхность, причем канавки располагаются таким образом, что между смежными канавками образована область, имеющая протяженность в окружном направлении;
в котором во время работы двигателя канавки направляют продувочный воздух из полости диска в направлении канала горячего газа таким образом, что продувочный воздух течет в требуемом направлении относительно направления потока горячего воздуха через канал горячего газа, причем канавки сужаются в направлении от их входов, расположенных на удалении относительно аксиального концевого участка внутреннего бандажа, до их выходов, расположенных вблизи аксиального концевого участка внутреннего бандажа таким образом, что входы имеют ширину больше, чем выходы.
2. Узел уплотнения по п. 1, в котором вторая поверхность внутреннего кожуха обращена радиально внутрь от аксиального концевого участка внутреннего кожуха под углом относительно продольной оси, которая продолжается аксиально через секцию турбины, таким образом, что вторая поверхность внутреннего кожуха также обращена в аксиальном направлении.
3. Узел уплотнения по п. 2, в котором вторая поверхность внутреннего кожуха обращена радиально внутрь от аксиального концевого участка внутреннего кожуха под углом от порядка 30° до порядка 60° относительно продольной оси.
4. Узел уплотнения по п. 3, в котором вторая поверхность внутреннего кожуха обращена радиально внутрь от аксиального концевого участка внутреннего кожуха под углом порядка 45° относительно продольной оси.
5. Узел уплотнения по п. 1, в котором канавки имеют по меньшей мере наклон и/или изгиб в окружном направлении таким образом, что их входы, расположенные удаленно относительно аксиального концевого участка внутреннего кожуха, располагаются выше по потоку от их выходов, расположенных вблизи аксиального концевого участка внутреннего кожуха, относительно направления вращения ротора турбины.
6. Узел уплотнения по п. 1, в котором направляющие лопатки прикреплены к первой поверхности внутреннего кожуха.
7. Узел уплотнения по п. 1, в котором канавки направляют продувочный воздух таким образом, что направление потока продувочного воздуха по существу выровнено с направлением потока горячего воздуха через канал горячего воздуха, определяемым углом выхода задней кромки по меньшей мере одной из направляющих канавок.
8. Узел уплотнения по п. 1, в котором внутренний кожух дополнительно содержит обращенную по существу аксиально третью поверхность, которая продолжается радиально внутрь от второй поверхности и обращена к узлу рабочих лопаток, и в котором входы канавок располагаются на третьей поверхности внутреннего кожуха и выходы канавок располагаются на второй поверхности внутреннего кожуха.
9. Узел уплотнения по п. 8, в котором внутренний кожух дополнительно содержит продолжающуюся по существу аксиально уплотнительную структуру, которая продолжается от третьей поверхности внутреннего кожуха в направлении узла рабочих лопаток до непосредственной близости от узла рабочих лопаток.
RU2015130350A 2013-01-23 2014-01-22 Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже RU2640144C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/747,868 US9068513B2 (en) 2013-01-23 2013-01-23 Seal assembly including grooves in an inner shroud in a gas turbine engine
US13/747,868 2013-01-23
PCT/EP2014/051209 WO2014114662A2 (en) 2013-01-23 2014-01-22 Seal assembly including grooves in an inner shroud in a gas turbine engine

Publications (2)

Publication Number Publication Date
RU2015130350A RU2015130350A (ru) 2017-03-02
RU2640144C2 true RU2640144C2 (ru) 2017-12-26

Family

ID=50071590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130350A RU2640144C2 (ru) 2013-01-23 2014-01-22 Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже

Country Status (7)

Country Link
US (1) US9068513B2 (ru)
EP (1) EP2948639B1 (ru)
JP (1) JP6109961B2 (ru)
CN (1) CN104919141B (ru)
RU (1) RU2640144C2 (ru)
SA (1) SA515360769B1 (ru)
WO (1) WO2014114662A2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393132B2 (en) 2014-08-08 2019-08-27 Siemens Aktiengesellschaft Compressor usable within a gas turbine engine
US20160123169A1 (en) * 2014-11-04 2016-05-05 General Electric Company Methods and system for fluidic sealing in gas turbine engines
US10590774B2 (en) 2015-01-22 2020-03-17 General Electric Company Turbine bucket for control of wheelspace purge air
US10619484B2 (en) 2015-01-22 2020-04-14 General Electric Company Turbine bucket cooling
US10544695B2 (en) 2015-01-22 2020-01-28 General Electric Company Turbine bucket for control of wheelspace purge air
US10626727B2 (en) 2015-01-22 2020-04-21 General Electric Company Turbine bucket for control of wheelspace purge air
US10815808B2 (en) * 2015-01-22 2020-10-27 General Electric Company Turbine bucket cooling
US20160215625A1 (en) * 2015-01-22 2016-07-28 General Electric Company Turbine bucket for control of wheelspace purge air
US9631509B1 (en) * 2015-11-20 2017-04-25 Siemens Energy, Inc. Rim seal arrangement having pumping feature
CN109630210B (zh) * 2018-12-17 2021-09-03 中国航发沈阳发动机研究所 一种咬嘴封严结构及具有其的航空发动机
US11215063B2 (en) 2019-10-10 2022-01-04 General Electric Company Seal assembly for chute gap leakage reduction in a gas turbine
CN110805476B (zh) * 2019-10-17 2022-04-12 南京航空航天大学 一种带有容腔封严结构的涡轮盘
FR3107298B1 (fr) * 2020-02-18 2022-02-04 Safran Aircraft Engines Turbine comportant un espace secondaire interne équipé d’ailettes de correction de giration d’un flux d’air

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759012A (en) * 1996-12-13 1998-06-02 Caterpillar Inc. Turbine disc ingress prevention method and apparatus
RU2183747C1 (ru) * 2000-10-05 2002-06-20 Акционерное общество открытого типа "Ленинградский Металлический завод" Устройство для охлаждения рабочего колеса газовой турбины
US6773225B2 (en) * 2002-05-30 2004-08-10 Mitsubishi Heavy Industries, Ltd. Gas turbine and method of bleeding gas therefrom
EP1582697A1 (en) * 2004-03-30 2005-10-05 United Technologies Corporation Cavity on-board injection for leakage flows
US7189055B2 (en) * 2005-05-31 2007-03-13 Pratt & Whitney Canada Corp. Coverplate deflectors for redirecting a fluid flow

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327814B2 (ja) 1997-06-18 2002-09-24 三菱重工業株式会社 ガスタービンのシール装置
US6146091A (en) * 1998-03-03 2000-11-14 Mitsubishi Heavy Industries, Ltd. Gas turbine cooling structure
US6077035A (en) 1998-03-27 2000-06-20 Pratt & Whitney Canada Corp. Deflector for controlling entry of cooling air leakage into the gaspath of a gas turbine engine
JPH11324608A (ja) * 1998-05-20 1999-11-26 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンの段落シール部構造
US6887039B2 (en) 2002-07-10 2005-05-03 Mitsubishi Heavy Industries, Ltd. Stationary blade in gas turbine and gas turbine comprising the same
JP2006090219A (ja) * 2004-09-24 2006-04-06 Toshiba Corp 軸流タービン
US7244104B2 (en) 2005-05-31 2007-07-17 Pratt & Whitney Canada Corp. Deflectors for controlling entry of fluid leakage into the working fluid flowpath of a gas turbine engine
US7465152B2 (en) * 2005-09-16 2008-12-16 General Electric Company Angel wing seals for turbine blades and methods for selecting stator, rotor and wing seal profiles
US8016552B2 (en) * 2006-09-29 2011-09-13 General Electric Company Stator—rotor assemblies having surface features for enhanced containment of gas flow, and related processes
EP2093381A1 (en) * 2008-02-25 2009-08-26 Siemens Aktiengesellschaft Turbine blade or vane with cooled platform
US8419356B2 (en) 2008-09-25 2013-04-16 Siemens Energy, Inc. Turbine seal assembly
US8075256B2 (en) 2008-09-25 2011-12-13 Siemens Energy, Inc. Ingestion resistant seal assembly
US8282346B2 (en) * 2009-04-06 2012-10-09 General Electric Company Methods, systems and/or apparatus relating to seals for turbine engines
DE102009040758A1 (de) * 2009-09-10 2011-03-17 Mtu Aero Engines Gmbh Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine
US8312729B2 (en) * 2009-09-21 2012-11-20 Honeywell International Inc. Flow discouraging systems and gas turbine engines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759012A (en) * 1996-12-13 1998-06-02 Caterpillar Inc. Turbine disc ingress prevention method and apparatus
RU2183747C1 (ru) * 2000-10-05 2002-06-20 Акционерное общество открытого типа "Ленинградский Металлический завод" Устройство для охлаждения рабочего колеса газовой турбины
US6773225B2 (en) * 2002-05-30 2004-08-10 Mitsubishi Heavy Industries, Ltd. Gas turbine and method of bleeding gas therefrom
EP1582697A1 (en) * 2004-03-30 2005-10-05 United Technologies Corporation Cavity on-board injection for leakage flows
US7189055B2 (en) * 2005-05-31 2007-03-13 Pratt & Whitney Canada Corp. Coverplate deflectors for redirecting a fluid flow

Also Published As

Publication number Publication date
CN104919141A (zh) 2015-09-16
US9068513B2 (en) 2015-06-30
JP6109961B2 (ja) 2017-04-05
RU2015130350A (ru) 2017-03-02
WO2014114662A2 (en) 2014-07-31
CN104919141B (zh) 2017-09-01
JP2016505111A (ja) 2016-02-18
SA515360769B1 (ar) 2018-10-15
EP2948639B1 (en) 2018-08-22
EP2948639A2 (en) 2015-12-02
WO2014114662A3 (en) 2014-10-02
US20140286760A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
RU2640144C2 (ru) Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже
RU2650228C2 (ru) Узел уплотнения для газотурбинного двигателя
US9181816B2 (en) Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine
US9260979B2 (en) Outer rim seal assembly in a turbine engine
RU2599413C2 (ru) Канал для охлаждения корпуса
JP2017198202A (ja) タービン翼の先端シュラウドの冷却用シールレールのためのシステム
JP2015086872A (ja) ガスタービンのセグメント間隙の冷却用および/またはパージ用の微細チャネル排出装置
US10683758B2 (en) Inter-stage cooling for a turbomachine
EP3052761A1 (en) Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine
US8561997B2 (en) Adverse pressure gradient seal mechanism
WO2019030314A1 (en) TURBOMACHINE COMPONENT
WO2012132787A1 (ja) ガスタービン
US20160123169A1 (en) Methods and system for fluidic sealing in gas turbine engines
CN115135854A (zh) 具有配备有用于校正气流回转的翅片的内部次级空间的涡轮
KR20210113553A (ko) 가스 터빈용 터보머신 구성요소, 터보머신 조립체, 및 이를 포함하는 가스 터빈
JP7271408B2 (ja) タービンロータ
US20180038234A1 (en) Turbomachine component with flow guides for film cooling holes in film cooling arrangement
WO2017082907A1 (en) Turbine airfoil with a cooled trailing edge
US20200124052A1 (en) Fan assembly with recirculation flow
US20210123358A1 (en) Spline seal for disk post
US9771817B2 (en) Methods and system for fluidic sealing in gas turbine engines

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200123