RU2638668C1 - Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора - Google Patents
Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора Download PDFInfo
- Publication number
- RU2638668C1 RU2638668C1 RU2016146031A RU2016146031A RU2638668C1 RU 2638668 C1 RU2638668 C1 RU 2638668C1 RU 2016146031 A RU2016146031 A RU 2016146031A RU 2016146031 A RU2016146031 A RU 2016146031A RU 2638668 C1 RU2638668 C1 RU 2638668C1
- Authority
- RU
- Russia
- Prior art keywords
- acid
- volume
- composition
- acid composition
- concentration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 11
- 238000010306 acid treatment Methods 0.000 title claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 93
- 239000002253 acid Substances 0.000 claims abstract description 81
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims abstract description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 22
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 claims abstract description 22
- 239000007864 aqueous solution Substances 0.000 claims abstract description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004202 carbamide Substances 0.000 claims abstract description 11
- 235000010288 sodium nitrite Nutrition 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000654 additive Substances 0.000 claims abstract description 8
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 8
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000006260 foam Substances 0.000 claims description 28
- 238000002347 injection Methods 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 24
- 238000009472 formulation Methods 0.000 claims description 5
- 230000002611 ovarian Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 21
- 238000005086 pumping Methods 0.000 abstract description 12
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- 230000000996 additive effect Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 38
- 238000005755 formation reaction Methods 0.000 description 25
- 229910052742 iron Inorganic materials 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000011435 rock Substances 0.000 description 10
- -1 iron ions Chemical class 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000012445 acidic reagent Substances 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 244000309464 bull Species 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002506 iron compounds Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/592—Compositions used in combination with generated heat, e.g. by steam injection
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/72—Eroding chemicals, e.g. acids
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mining & Mineral Resources (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение области применения технологии за счет реагентов, устойчивых к высоким температурам, с одновременным снижением стоимости обработки за счет снижения количества используемой техники. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора включает в себя одновременную закачку кислотного и газогенерирующего составов по двум отделенным друг от друга каналам с последующей их продавкой в пласт. В качестве газогенерирующего состава используют водный раствор мочевина с нитритом натрия, содержащий, мас.%: мочевину 28,4-38,4; нитрит натрия 18,2-27,6;
вода остальное. В качестве кислотного состава - водный раствор неорганической кислоты с добавками. При этом в кислотном составе в качестве неорганической кислоты применяют водный раствор соляной кислоты 19-26%-ной концентрации, а в качестве добавок - 2-алкилимидазолин в концентрации 5-15 мас.% и фосфористую кислоту в концентрации 0,5-2,5 мас.%. Объем кислотного состава составляет 1-3 м3 на погонный метр интервала обработки для вертикальных скважин и 0,1-0,2 м3 - для горизонтальных скважин. Составы продавливают жидкостью глушения или товарной нефтью в объеме полости закачиваемых каналов плюс 3-5 м3 с последующим закрытием скважины на 4-12 часов для реагирования кислотного состава. 3 з.п. ф-лы, 2 пр.
Description
Изобретение относится к нефтедобывающей промышленности, в частности к интенсификации добычи нефти из скважин, эксплуатирующих карбонатные пласты.
Известен способ обработки призабойной зоны пласта (патент РФ №2527419, МПК Е21В 43/27, Е21В 43/22, С09К 8/74, С09К 8/94, опубл. Бюл. №24, 27.08.2014 г.), заключающийся в том, что обработку призабойной зоны скважины проводят путем закачки в скважину кислотной эмульсии и проведения технологической выдержки.
Недостатками данного способа являются сложность и трудоемкость процесса: требуется предварительный ввод высоковязкой разделительной полимерной жидкости с условной вязкостью не менее 120 с, необходимо наличие азотно-компрессорной установки для генерации инертного газа, что вызывает удорожание процесса обработки прискважинной зоны.
Кроме этого, недостатком является отсутствие в рецептуре пенообразующей эмульсии стабилизатора железа Fe3+. Используемые для обработки скважин кислотные составы растворяют сульфид железа, образуя при этом сероводород, который является токсичным и усиливает коррозию. Кроме того, растворенное железо по мере обработки кислоты в рабочей жидкости и увеличения рН склонно осаждаться в форме гидроокиси железа или сернистого железа. Осаждение соединений железа способствует ухудшению проницаемости пласта. Высвобождение ионов железа Fe3+ усиливает шламообразование, поскольку ионы работают в качестве фазопереносящего катализатора соляной кислоты. Шламообразование происходит в результате реакции ионов железа с полярными группами асфальтенов, содержащихся в нефти коллектора. Поэтому важное значение для качественной кислотной обработки пласта имеет нейтрализация негативного воздействия ионов железа.
Известен способ обработки призабойной зоны пласта (патент РФ №2391499, МПК Е21В 43/27, опубл. Бюл. №16, 10.06.2010 г.), заключающийся в закачке кислотного пенообразующего состава через скважину в зону продуктивного пласта, проведении технологической выдержки, удалении отработанного состава и освоении скважины.
Недостатками данного способа являются сложность и трудоемкость процесса: требуются газификационная установка для подачи газообразного азота, специальная фонтанная арматура для работы под давлением до 65 МПа.
Недостатками также являются высокое давление закачки нейтрального газа (10-65 МПа) и высокая производительность закачки (100-1200 м3/ч). Создаваемые в заявленном способе условия могут привести к деформации скважинного оборудования, цементного камня за эксплуатационной колонной и неконтролируемому росту искусственных трещин.
Кроме этого, недостатком является отсутствие в рецептуре пенообразующей эмульсии стабилизатора железа Fe3+. Отсутствие стабилизатора железа способствует образованию соединений асфальтенов и ионов железа Fe3+, что приводит к кольматации порового пространства.
Наиболее близким техническим решением к предлагаемому является способ обработки призабойной зоны пласта (патент РФ №2451169, МПК Е21В 43/22, Е21В 43/27, С09К 8/74, С09К 8/94, опубл. Бюл. №14, 20.05.2012 г.). Способ включает закачку газогенерирующего и кислотного реагентов. В качестве газогенерирующего реагента используют водный раствор мочевины с нитритом натрия, а в качестве кислотного реагента используют водный раствор неорганической кислоты с поверхностно-активным веществом (ПАВ), стабилизатором железа и флотореагентом. Кислотный реагент может дополнительно содержать ингибитор коррозии. Кроме этого, закачка реагентов может проводиться циклически.
Недостатком способа является многокомпонентность кислотного реагента. В заявленном способе для приготовления кислотного реагента применяются отдельная добавка ПАВ и флотореагента для ценообразования и стабилизации пены.
Кроме этого, предложенный способ имеет узкую область применения из-за того, что стабилизатор железа стабилен при температуре до 80°С. Увеличение температуры выше 80°С снизит эффективность стабилизатора железа, что приведет к кольматации прискважинной зоны нерастворимыми продуктами реакции (гидроксидами и сульфидами железа).
Техническими задачами, решаемыми предлагаемым способом, являются снижение стоимости термопенокислотной обработки за счет снижения количества используемой техники и расширение области применения технологии за счет реагентов, устойчивых к высоким температурам.
Указанные технические задачи решаются способом интенсификации скважинной добычи нефти, включающим одновременную закачку кислотного и газогенерирующего составов по двум отделенным друг от друга каналам с последующей их продавкой в пласт, причем в качестве газогенерирующего состава используют водный раствор мочевины с нитритом натрия в соотношении компонентов, мас. %:
мочевина | 28,4-38,4 |
нитрит натрия | 18,2-27,6 |
вода | остальное |
а в качестве кислотного состава - водный раствор неорганической кислоты с добавками.
Новым является то, что в кислотном составе в качестве неорганической кислоты применяют водный раствор соляной кислоты 19-26%-ной концентрации, а в качестве добавок - 2-алкилимидазолин в концентрации 5-15 мас. % и фосфористую кислоту в концентрации 0,5-2,5 мас. %, при этом объем кислотного состава составляет 1-3 м3 на погонный метр интервала обработки для вертикальных скважин и 0,1-0,2 м3 - для горизонтальных скважин; после чего составы продавливают жидкостью глушения или товарной нефтью в объеме полости закачиваемых каналов плюс 3-5 м3 с последующим закрытием скважины на 4-12 ч для реагирования кислотного состава.
Новым также является то, что закачку кислотного и газогенерирующего составов проводят с предварительной или последующей закачкой кислотного состава в объеме 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин.
Новым также является то, что закачанные составы продавливают в пласт жидкостью глушения или товарной нефтью в объеме 10-20 м3.
Сущность изобретения заключается в том, что за счет добавки реагентов комплексного действия, устойчивых к высоким температурам, и оптимального объема кислотного состава достигается более эффективное пенокислотное воздействие на весь интервал обработки, результатом которого является увеличение дебита нефти.
В качестве неорганической кислоты применяют водный раствор соляной кислоты 19-26%-ной концентрации. В зависимости от цели обработки прискважинной зоны (ОПЗ) используют различную концентрацию водного раствора соляной кислоты: при необходимости более глубокого проникновения пенокислотного состава используют меньшую концентрацию (19-22%); для более равномерной обработки протяженного интервала ОПЗ применяют концентрацию в диапазоне 22-26%.
В процессе смешения газогенерирующего и кислотного составов происходит экзотермическая химическая реакция, при этом расходуется часть кислоты, содержащейся в исходном кислотном составе. В зависимости от соотношения компонентов используют заявленную по способу концентрацию соляной кислоты с учетом остаточной ее концентрации в диапазоне 10-15% после образования пенокислоты. Такой концентрации достаточно для эффективного растворения карбонатной породы при температуре в зоне образования пенокислоты около 120-150°С.
Из-за присутствия в пенокислоте ПАВ происходит частичное удаление высокомолекулярных углеводородов с поверхности породы. Зарегистрированная в процессе скважинных испытаний температура в диапазоне 120-150°С в зоне генерации пенокислоты также способствует улучшенной очистке поверхности породы, на которой адсорбируются высокомолекулярные углеводороды. Тем самым увеличивается площадь контакта пенокислоты и породы.
Комплексной добавкой к кислотному составу в предложенном способе является 2-алкилимидазолин. Действие реагента - ингибитора коррозии происходит за счет уменьшения площади активной поверхности и изменения энергии активации коррозионного процесса. Реагент проявляет ингибирующие свойства путем изменения состояния поверхности металла вследствие адсорбции ингибитора или образования труднорастворимых соединений с катионами металла. Защитный слой, созданный подобным ингибитором коррозии, всегда тоньше наносимых покрытий.
За счет поверхностно-активных свойств, проявляемых 2-алкилимидазолином, происходят адсорбция, снижение поверхностного натяжения на границе фаз, уменьшение скорости реакции кислотного состава с породой, вследствие чего увеличивается глубина проникновения образованного пенокислотного состава.
Кроме перечисленных достоинств, 2-алкилимидазолин стабилизирует образующуюся пену за счет замедления процесса стекания жидкости. По результатам лабораторных испытаний кратность увеличения объема образовавшейся пены, содержащей 2-алкилимидазолин, при нормальных условиях варьируется в диапазоне 30-40 раз, при этом период полураспада пены составляет от 1 до 1,5 ч.
Значительную потенциальную опасность для продуктивности или приемистости скважин представляет собой осадкообразование ионов железа Fe2+ и Fe3+ в виде гидроксидов Fe(OH)2, Fe(OH)3. Наиболее «агрессивными» в плане кольматации прискважинной зоны пласта (ПЗП) являются ионы Fe3+, что обусловлено началом их осаждения при значениях рН=2,0 и окончанием этого процесса при рН=3,0. Ионы Fe2+ образуют гидроксиды в среде рН, равным 7,7-9,0. Исходя из требований для отработанных форм кислотных составов, значения рН не должны быть меньше 4,0, отсюда следует, что повышенную опасность представляют именно ионы Fe3+. Присутствие ингибитора коррозии в железосодержащем кислотном составе не изменяет негативное влияние ионов железа. При имитации кислотной обработки ПЗП путем прокачки водного раствора соляной кислоты преимущественное привнесение ионов железа происходит за счет снятия продуктов коррозии с поверхности труб. Для предотвращения негативного влияния ионов железа в предложенном способе используется фосфористая кислота в концентрации 0,5-2,5 мас. %. Указанная концентрация подобрана путем лабораторных испытаний разработанных кислотных составов. Кислотный состав с добавлением фосфористой кислоты в указанной концентрации устойчив к высоким температурам (80°С и выше), образующимся при генерации пены в интервале ОПЗ.
При коэффициенте удельной приемистости интервала ОПЗ менее 3 м3/(МПа⋅ч) используется предварительная закачка кислотного состава. В этом случае кислотный состав, проникая в ПЗП, растворяет породу и создает каналы фильтрации для последующей закачки пенокислотного состава. Объем кислотного состава для предварительной закачки подбирается из расчета 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин и определяется эмпирическим способом.
Объем кислотного состава подбирают эмпирическим способом в диапазоне 1-3 м3 на погонный метр интервала обработки для вертикальных скважин и 0,1-0,2 м3 - для горизонтальных скважин. По результатам оценочных расчетов динамики изменения дебита следует, что объем кислотного состава на погонный метр интервала обработки, указанный в способе, обеспечивает увеличение притока жидкости на 30-50%, эти значения являются оптимальными. Дальнейшее увеличение притока жидкости к открытому стволу на единицы процентов вызовет кратное увеличение необходимого объема кислотного состава по логарифмическому закону и значительно увеличит материальные затраты.
Пена способствует интенсификации притока нефти к скважине, отклоняя кислотные составы в поврежденные или низкопроницаемые слои прискважинной зоны пласта. Таким образом, в случае закачки кислотного состава вслед за образовавшейся пенокислотой происходит более равномерный контакт кислотного состава с породой по всей длине интервала обработки. Объем кислотного состава подбирается из расчета 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин и определяется эмпирическим способом.
При равномерном контакте происходит растворение породы по всей толщине интервала обработки. Радиус скважины увеличивается, что по общепринятым теоретическим формулам Dupuy, Joshi, Ю.П. Борисова, Renard, В.Г. Григулецкого для расчета дебита жидкости способствует увеличению притока жидкости к скважине.
При интервале обработки небольшой толщины (например, в вертикальных скважинах) составы продавливают из каналов закачки товарной нефтью или жидкостью глушения с расчетом превышения объема полости закачиваемых каналов на 3-5 м3 для проникновения кислотного состава в пласт. В случае протяженного интервала обработки (например, в открытом горизонтальном стволе), наличия трещин от гидроразрыва пласта, после многократных кислотных ОПЗ и т.д. составы продавливают жидкостью глушения или товарной нефтью в объеме 10-20 м3 для увеличения глубины обработки.
Время реагирования - 4-12 ч - является оптимальным для практически полной нейтрализации пенокислоты в карбонатном коллекторе и установлено эмпирическим способом путем отбора проб на рН в процессе свабирования.
Способ осуществляют следующим образом. Для подбора оптимальных соотношений химических реагентов в кислотном и газогенерирующем составах проводят лабораторные эксперименты. Определяют динамику растворения образцов керна, вспениваемость кислотного состава, устойчивость кислотного состава к образованию эмульсий. Замеряют скорость коррозии, тестируют состав на совместимость с пластовыми флюидами в присутствии ионов железа Fe3+. По имеющимся данным по скважине рассчитывают необходимый объем закачиваемого кислотного состава.
Скважину останавливают, проводят глушение и извлекают подъемный лифт вместе с глубинно-насосным оборудованием. При использовании пакера проводят шаблонирование ствола до предполагаемого интервала посадки.
При необходимости регистрации температуры и давления в интервале обработки в компоновку включают автономные манометр и термометр в перфорированном контейнере.
Для ОПЗ условно вертикальных скважин с применением колтюбинга используют следующую компоновку скважинного оборудования (снизу вверх): воронку (спускают на 1-5 м выше интервала обработки) + хвостовик из насосно-компрессорных труб (НКТ) + технологический пакер (устанавливают на 5-10 м выше интервала обработки) + колонну технологических НКТ. В колонну технологических НКТ спускается гибкая труба «колтюбинг» до глубины на 5-10 м выше глубины установки воронки.
Для ОПЗ скважин с горизонтальным окончанием с применением колтюбинга используют следующую компоновку скважинного оборудования (снизу вверх): заглушку + чередующиеся между собой технологические НКТ и перфопатрубки длиной 1-2 м (с отверстиями диаметром не менее 1-2 см) + хвостовик из технологических НКТ + технологический пакер + колонну НКТ. В колонну технологических НКТ спускают гибкую трубу «колтюбинг» до глубины установки верхних перфопатрубков.
При ОПЗ условно вертикальных скважин и скважин с горизонтальным окончанием без применения колтюбинга спускают аналогичную компоновку, но без использования технологического пакера. В этом случае газогенерирующий состав закачивается по межтрубному пространству между эксплуатационной колонной и колонной технологических НКТ, а кислотный состав - по колонне технологических НКТ или наоборот.
Для разобщения интервалов перфорации используют одно- и двухпакерные компоновки с заглушкой на конце, при этом расстояние между пакерами определяют протяженностью обрабатываемого интервала. Напротив интервала обработки равномерно устанавливают максимально возможное количество перфопатрубков (с отверстиями диаметром не менее 1-2 см) для снижения гидравлического сопротивления при генерации пенокислоты.
Закачкой жидкости (например, нефти) определяют коэффициент удельной приемистости интервала обработки за определенный период времени.
В качестве газогенерирующего состава используют водный раствор мочевины с нитритом натрия в следующем соотношении компонентов: мочевина - 28,4-38,4 мас. %, нитрит натрия - 18,2-27,6 мас. %, вода - остальное.
В качестве кислотного состава применяют водный раствор соляной кислоты 19-26%-ной концентрации с добавкой 2-алкилимидазолина в концентрации 5-15 мас. % и фосфористой кислоты в концентрации 0,5-2,5 мас. %.
В случае коэффициента удельной приемистости интервала ОПЗ менее 3 м3/(МПа⋅ч) предварительно закачивают кислотный состав в объеме 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин.
При коэффициенте удельной приемистости более 3 м3/(МПа⋅ч) одновременно закачивают кислотный и газогенерирующий составы по двум отдельным друг от друга каналам. Расход закачиваемых жидкостей подбирают расчетным способом в зависимости от размеров каналов закачки с условием одновременного достижения интервала заданными объемами закачиваемых жидкостей.
Объем кислотного состава составляет 1-3 м3 на погонный метр интервала обработки для условно вертикальных скважин и 0,1-0,2 м3 - для скважин с горизонтальным окончанием. Объем газогенерирующего раствора подбирается с условием образования пены заданной кратности в интервале обработки эмпирическим способом.
В случае закачки кислотного состава вслед за образовавшейся пенокислотой объем кислотного состава подбирается из расчета 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин.
При интервале обработки небольшой толщины (например, в вертикальных скважинах) составы продавливают из каналов закачки товарной нефтью или жидкостью глушения с расчетом превышения объема полости закачиваемых каналов на 3-5 м3 для проникновения кислотного состава в пласт. В случае протяженного интервала обработки (например, в открытом горизонтальном стволе), наличия трещин от гидроразрыва пласта, после многократных кислотных ОПЗ и т.д. продавку проводят жидкостью глушения или товарной нефтью в объеме 10-20 м3 для увеличения глубины обработки.
После окончания закачки скважина закрывается на 4-12 ч для нейтрализации пенокислоты.
Примеры конкретного выполнения способа.
Пример 1. Дебит жидкости скважины до обработки - 4,3 м3/сут, содержание воды в продукции скважины - 4,3%. Радиус условного контура питания равен 200 м. Скважина пробурена долотом диаметром 215,9 мм до глубины 1250 м и обсажена 146 мм эксплуатационной колонной с толщиной стенки, равной 7,3 мм. Продуктивный пласт вскрыт перфорацией в интервале 1207,5-1217 м и сложен карбонатными породами (известняками).
На основании лабораторных исследований подбирают оптимальные соотношения химреагентов в кислотном и газогенерирующем составах. По результатам лабораторных исследований газогенерирующий состав имеет следующее содержание компонентов: мочевина - 31 мас. %, нитрит натрия - 25 мас. %, вода - остальное. Кислотный состав состоит из следующих компонентов: 2-алкилимидазолин - 11 мас. %, фосфористая кислота - 1,5 мас. %, водный раствор соляной кислоты 24%-ной концентрации - остальное.
Скважину останавливают, глушат, поднимают глубинное насосное оборудование.
Спускают следующую компоновку (снизу вверх): заглушку, перфорированный контейнер с манометром и термометром (для регистрации забойной температуры и давления), заглушку, перфопатрубок (длиной 2 м, с десятью отверстиями диаметром 2 см, устанавливается в интервал 1200-1202 м), НКТ диаметром 73 мм до устья. Внутренний объем колонны технологических НКТ составляет 3,6 м3. Объем межтрубного пространства между колонной технологических НКТ и эксплуатационной колонной - 12,2 м3.
Герметизируют устье. Открывают трубную и затрубную задвижки. Вызывают циркуляцию нефтью. Определяют приемистость интервала обработки закачкой 6,0 м3 нефти по колонне технологических НКТ. Приемистость составляет 504 м3/сут при давлении закачки 3 МПа. Коэффициент удельной приемистости - 7 м3/(МПа⋅ч). Закрывают трубную и затрубную задвижки.
Подсоединяют нагнетательную линию первого насосного агрегата СИН-35 к затрубной задвижке. Подсоединяют нагнетательную линию второго насосного агрегата СИН-35 к трубной задвижке на НКТ. Открывают трубную и затрубную задвижки.
Одновременно закачивают кислотный состав в объеме 10,0 м3 по межтрубному пространству между колонной технологических НКТ и эксплуатационной колонной с расходом 10 дм3/с (л/с) и газогенерирующий состав по колонне технологических НКТ в объеме 3,9 м3 с расходом 4,0 дм3/с (л/с). Соотношение газогенерирующего состава к кислотному составу в данном случае составляет 1:2,57. Заданный расход обеспечивает поступление необходимого количества составов для образования пенокислоты с кратностью пены 35-40 раз.
Выполняют продавку составов нефтью с теми же параметрами закачки по межтрубному пространству между колонной технологических НКТ и эксплуатационной колонной в объеме 15,0 м3 и по колонне технологических НКТ в объеме 5,0 м3.
Закрывают задвижки. Выдерживают паузу на реагирование кислотного состава в течение 4 ч.
Вызывают приток из пласта свабированием для очистки интервала обработки от продуктов реакции с замером величины рН и определения притока жидкости.
Полностью поднимают всю компоновку на технологических трубах. Спускают насосное оборудование на НКТ на расчетную глубину, запускают скважину в работу.
По данным термометра и манометра, извлеченных после ОПЗ, температура в зоне образования пенокислоты составила 135-145°С при давлении 5,5 МПа.
По результатам освоения приток жидкости увеличился до 6,2 м3/сут, что на 45% больше дебита жидкости до обработки. Процент содержания пластовой воды в продукции скважины не изменился.
Пример 2. Дебит жидкости скважины до обработки - 3,2 м3/сут, содержание воды в продукции скважины - 11,4%. Радиус условного контура питания равен 200 м. Скважина пробурена долотом диаметром 215,9 мм до глубины 1570 м и обсажена 168 мм эксплуатационной колонной с толщиной стенки, равной 8,9 мм. Открытый горизонтальный ствол пробурен долотом диаметром 143,9 мм в интервале 1570-1690 м. Продуктивный пласт сложен карбонатными породами (известняками).
На основании лабораторных исследований подбирают оптимальные соотношения химреагентов в кислотном и газогенерирующем составах. По результатам лабораторных исследований газогенерирующий состав имеет следующее содержание компонентов: мочевина - 33 мас. %, нитрит натрия - 21 мас. %, вода - остальное. Кислотный состав состоит из следующих компонентов: 2-алкилимидазолин - 14 мас. %, фосфористая кислота - 2,5 мас. %, водный раствор соляной кислоты 24%-ной концентрации - остальное.
Скважину останавливают, глушат, поднимают глубинное насосное оборудование. Спускают следующую компоновку (снизу вверх): заглушку, перфорированный контейнер с манометром и термометром (для регистрации забойной температуры и давления), заглушку, перфопатрубок (длиной 2 м, с десятью отверстиями диаметром 2 см), НКТ диаметром 73 мм (1 штука), перфопатрубок (длиной 2 м, с десятью отверстиями диаметром 2 см), НКТ диаметром 73 мм (1 штука), перфопатрубок (длиной 2 м, с десятью отверстиями диаметром 2 см), хвостовик из НКТ диаметром 73 мм (длиной 70 м), технологический пакер (устанавливается на глубине 1570 м), НКТ диаметром 73 мм до устья.
Сажают пакер на глубине 1570 м. Герметизируют устье. Открывают трубную задвижку. Заполняют колонну технологических НКТ нефтью. Определяют приемистость интервала обработки закачкой 6,0 м3 нефти по колонне технологических НКТ. Приемистость составляет 144 м3/сут при давлении закачки 3 МПа. Коэффициент удельной приемистости - 2 м3/(МПа⋅ч).
Монтируют на устье установку «колтюбинг». Спускают гибкую трубу диаметром 31,8 мм на глубину 1650 м. Обвязывают устьевое оборудование с насосным агрегатом.
Подсоединяют нагнетательную линию первого насосного агрегата СИН-35 к задвижке на НКТ. Подсоединяют нагнетательную линию второго насосного агрегата СИН-35 к гибкой трубе «колтюбинг». Открывают трубную задвижку и задвижку на гибкой трубе «колтюбинг».
По межтрубному пространству между технологическими НКТ и гибкой трубой «колтюбинг» с расходом 1,5 дм3/с (л/с) закачивают кислотный состав в объеме 9,0 м3 для увеличения коэффициента удельной приемистости интервала ОПЗ. В процессе закачки кислотного состава приемистость увеличивается до 324 м3/сут при давлении закачки 3 МПа (коэффициент удельной приемистости - 4,5 м3/(МПа⋅ч).
Одновременно закачивают кислотный состав в объеме 18,0 м3 по межтрубному пространству между технологическими НКТ и гибкой трубой «колтюбинг» с расходом 10 дм3/с (л/с) и газогенерирующий состав в объеме 7,0 м3 с расходом 4,0 дм3/с (л/с). Соотношение газогенерирующего состава к кислотному составу в данном случае составляет 1:2,57. Заданный расход обеспечивает поступление необходимого количества составов для образования пенокислоты с кратностью пены 35-40.
Выполняют продавку составов нефтью с теми же параметрами закачки по межтрубному пространству между технологическими НКТ и гибкой трубой «колтюбинг» в объеме 18 м3 и по гибкой трубе «колтюбинг в объеме 1,4 м3.
Поднимают гибкую трубу «колтюбинг» и демонтируют установку.
Закрывают задвижки. Выдерживают паузу на реагирование кислотного состава 6 ч.
Вызывают приток из пласта свабированием для очистки интервала обработки от продуктов реакции с замером величины рН и определения притока жидкости.
Полностью поднимают всю компоновку на технологических трубах. Спускают насосное оборудование на НКТ на расчетную глубину, запускают скважину в работу.
По данным термометра и манометра, извлеченных после ОПЗ, температура в зоне образования пенокислоты составила 130-150°С при давлении 3,0 МПа.
По результатам освоения приток жидкости увеличился до 4,2 м3/сут, что на 30% больше дебита жидкости до обработки. Процент содержания пластовой воды в продукции скважины не изменился.
Предлагаемый способ позволяет снизить стоимость термопенокислотной обработки за счет снижения количества используемой техники и расширить область применения технологии за счет реагентов, устойчивых к высоким температурам.
Claims (6)
1. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора, включающий одновременную закачку кислотного и газогенерирующего составов по двум отделенным друг от друга каналам с последующей их продавкой в пласт, причем в качестве газогенерирующего состава используют водный раствор мочевины с нитритом натрия в соотношении компонентов, мас.%:
а в качестве кислотного состава - водный раствор неорганической кислоты с добавками, отличающийся тем, что в кислотном составе в качестве неорганической кислоты применяют водной раствор соляной кислоты 19-26%-ной концентрации, а в качестве добавок - 2-алкилимидазолин в концентрации 5-15 мас.% и фосфористую кислоту в концентрации 0,5-2,5 мас.%, при этом объем кислотного состава составляет 1-3 м3 на погонный метр интервала обработки для вертикальных скважин и 0,1-0,2 м3 - для горизонтальных скважин, после чего составы продавливают жидкостью глушения или товарной нефтью в объеме полости закачиваемых каналов плюс 3-5 м3 с последующим закрытием скважины на 4-12 ч для реагирования кислотного состава.
2. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора по п. 1, отличающийся тем, что закачку кислотного и газогенерирующего составов проводят с предварительной или последующей закачкой кислотного состава в объеме 1-2 м3 на погонный метр интервала обработки для вертикальных скважин и 0,05-0,1 м3 - для горизонтальных скважин.
3. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора по п. 1, отличающийся тем, что закачанные составы продавливают в пласт жидкостью глушения или товарной нефтью в объеме 10-20 м3.
4. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора по п. 2, отличающийся тем, что закачанные составы продавливают в пласт жидкостью глушения или товарной нефтью в объеме 10-20 м3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016146031A RU2638668C1 (ru) | 2016-11-23 | 2016-11-23 | Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016146031A RU2638668C1 (ru) | 2016-11-23 | 2016-11-23 | Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2638668C1 true RU2638668C1 (ru) | 2017-12-15 |
Family
ID=60718727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016146031A RU2638668C1 (ru) | 2016-11-23 | 2016-11-23 | Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2638668C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2717850C1 (ru) * | 2019-08-02 | 2020-03-26 | Публичное акционерное общество "Газпром" | Реагентный состав для растворения карбонатного кольматанта |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1406138A1 (ru) * | 1985-12-29 | 1988-06-30 | Волго-Уральский научно-исследовательский и проектный институт по добыче и переработке сероводородсодержащих газов | Состав дл предотвращени солеотложений в скважине и промысловом оборудовании |
US5979557A (en) * | 1996-10-09 | 1999-11-09 | Schlumberger Technology Corporation | Methods for limiting the inflow of formation water and for stimulating subterranean formations |
RU2351630C2 (ru) * | 2007-05-03 | 2009-04-10 | Общество с ограниченной ответственностью "Дельта-пром" | Газогенерирующий пенный состав для обработки призабойной зоны пласта (варианты) |
RU2373385C1 (ru) * | 2008-02-01 | 2009-11-20 | Виктор Николаевич Гусаков | Способ обработки призабойных зон добывающих скважин |
RU2451169C1 (ru) * | 2011-05-05 | 2012-05-20 | Общество с ограниченной ответственностью "Научно-производственный центр "Интехпромсервис" | Способ обработки призабойной зоны пласта |
-
2016
- 2016-11-23 RU RU2016146031A patent/RU2638668C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1406138A1 (ru) * | 1985-12-29 | 1988-06-30 | Волго-Уральский научно-исследовательский и проектный институт по добыче и переработке сероводородсодержащих газов | Состав дл предотвращени солеотложений в скважине и промысловом оборудовании |
US5979557A (en) * | 1996-10-09 | 1999-11-09 | Schlumberger Technology Corporation | Methods for limiting the inflow of formation water and for stimulating subterranean formations |
RU2351630C2 (ru) * | 2007-05-03 | 2009-04-10 | Общество с ограниченной ответственностью "Дельта-пром" | Газогенерирующий пенный состав для обработки призабойной зоны пласта (варианты) |
RU2373385C1 (ru) * | 2008-02-01 | 2009-11-20 | Виктор Николаевич Гусаков | Способ обработки призабойных зон добывающих скважин |
RU2451169C1 (ru) * | 2011-05-05 | 2012-05-20 | Общество с ограниченной ответственностью "Научно-производственный центр "Интехпромсервис" | Способ обработки призабойной зоны пласта |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2717850C1 (ru) * | 2019-08-02 | 2020-03-26 | Публичное акционерное общество "Газпром" | Реагентный состав для растворения карбонатного кольматанта |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2478164C1 (ru) | Способ разработки залежи нефти, расположенной над газовой залежью и отделенной от нее непроницаемым пропластком | |
US20180244982A1 (en) | Diversion acid containing a water-soluble retarding agent and methods of making and using | |
CA2998843A1 (en) | Ethoxylated amines for use in subterranean formations | |
US20240360749A1 (en) | Composition and method for non-mechanical intervention and remediation of wellbore damage and reservoir fractures | |
RU2681796C1 (ru) | Способ разработки залежи сверхвязкой нефти с глинистой перемычкой | |
RU2638668C1 (ru) | Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора | |
RU2610967C1 (ru) | Способ селективной обработки продуктивного карбонатного пласта | |
RU2012114259A (ru) | Способ повышения добычи нефтей, газоконденсатов и газов из месторождений и обеспечения бесперебойной работы добывающих и нагнетательных скважин | |
Jelinek et al. | Improved production from mature gas wells by introducing surfactants into wells | |
RU2499134C2 (ru) | Способ разработки залежи нефти, расположенной под газовой залежью и отделенной от нее непроницаемым пропластком | |
RU2337234C1 (ru) | Способ разработки залежи нефти | |
Neill et al. | Field and laboratory results of carbon dioxide and nitrogen in well stimulation | |
US11414592B2 (en) | Methods and compositions for reducing corrosivity of aqueous fluids | |
RU2579093C1 (ru) | Способ повторного гидравлического разрыва пласта | |
RU2509883C1 (ru) | Способ гидравлического разрыва карбонатного пласта | |
RU2645688C1 (ru) | Способ гидравлического разрыва карбонатного пласта | |
RU2657052C1 (ru) | Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты) | |
RU2618543C1 (ru) | Способ снижения обводненности нефтяных добывающих скважин | |
RU2528805C1 (ru) | Способ повышения нефтеотдачи в неоднородных, высокообводненных, пористых и трещиновато-пористых, низко- и высокотемпературных продуктивных пластах | |
RU2755114C1 (ru) | Способ разработки слоистой нефтяной залежи | |
RU2600137C1 (ru) | Способ технологической обработки скважины | |
RU2278967C1 (ru) | Способ обработки призабойной зоны терригенного пласта | |
RU2570179C1 (ru) | Способ поинтервальной обработки продуктивного пласта с открытым горизонтальным стволом скважины | |
RU2733561C2 (ru) | Способ гидравлического разрыва пласта на поздней стадии выработки | |
RU2525244C1 (ru) | Способ уменьшения обводненности продукции нефтедобывающей скважины |