RU2618543C1 - Способ снижения обводненности нефтяных добывающих скважин - Google Patents
Способ снижения обводненности нефтяных добывающих скважин Download PDFInfo
- Publication number
- RU2618543C1 RU2618543C1 RU2016107281A RU2016107281A RU2618543C1 RU 2618543 C1 RU2618543 C1 RU 2618543C1 RU 2016107281 A RU2016107281 A RU 2016107281A RU 2016107281 A RU2016107281 A RU 2016107281A RU 2618543 C1 RU2618543 C1 RU 2618543C1
- Authority
- RU
- Russia
- Prior art keywords
- pressure
- well
- formation
- modifier
- reservoir
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000003607 modifier Substances 0.000 claims abstract description 55
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 53
- 239000007864 aqueous solution Substances 0.000 claims abstract description 32
- 239000004094 surface-active agent Substances 0.000 claims abstract description 9
- 150000003841 chloride salts Chemical class 0.000 claims abstract description 6
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims abstract description 4
- 238000002347 injection Methods 0.000 claims description 27
- 239000007924 injection Substances 0.000 claims description 27
- 238000012360 testing method Methods 0.000 claims description 11
- 230000002940 repellent Effects 0.000 claims description 5
- 239000005871 repellent Substances 0.000 claims description 5
- 239000002455 scale inhibitor Substances 0.000 claims description 4
- 238000005755 formation reaction Methods 0.000 abstract description 52
- 238000004519 manufacturing process Methods 0.000 abstract description 30
- 238000005086 pumping Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 239000003112 inhibitor Substances 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 24
- 239000011148 porous material Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 18
- 230000035699 permeability Effects 0.000 description 16
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000004078 waterproofing Methods 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 235000011164 potassium chloride Nutrition 0.000 description 5
- 239000011435 rock Substances 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 210000003850 cellular structure Anatomy 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000012224 working solution Substances 0.000 description 3
- BAERPNBPLZWCES-UHFFFAOYSA-N (2-hydroxy-1-phosphonoethyl)phosphonic acid Chemical compound OCC(P(O)(O)=O)P(O)(O)=O BAERPNBPLZWCES-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- DALDUXIBIKGWTK-UHFFFAOYSA-N benzene;toluene Chemical compound C1=CC=CC=C1.CC1=CC=CC=C1 DALDUXIBIKGWTK-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229940056913 eftilagimod alfa Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/138—Plastering the borehole wall; Injecting into the formation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
Abstract
Изобретение относится к способу разработки нефтяных месторождений, а именно к способу обработки призабойной зоны пласта, в частности к способу снижения обводненности скважинной продукции нефтяных добывающих скважин, и может быть применено на карбонатных или терригенных с карбонатным типом цемента коллекторах. В затрубное пространство скважины осуществляют закачку водного раствора модификатора коллекторских свойств пласта «Компонекс-21», содержащего хлористые соли щелочных металлов, ингибиторы солеотложения, ПАВ и гидрофобизатор, объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины, но не менее 80% от объема затрубного пространства скважины. Измеряют давление закачки на забое скважины. Выдерживают от 10 до 12 часов. Осуществляют порционную продавку водного раствора модификатора коллекторских свойств пласта водой в пласт с выдержкой между продавками от 10 до 12 часов и измерением давления на забое скважины в начале и в конце каждой продавки. После достижения давления на забое скважины, превышающего давление закачки не менее чем на 1,0 МПа, но не превышающего давление опрессовки эксплуатационной колонны, проводят окончательную продавку в пласт оставшегося в затрубном пространстве водного раствора модификатора коллекторских свойств пласта. Техническим результатом является повышение нефтеотдачи пластов, увеличичение зоны охвата пласта заводнением. 1 з.п. ф-лы, 1 ил., 1 табл., 2 пр.
Description
Изобретение относится к способу разработки нефтяных месторождений, а именно к способу обработки призабойной зоны пласта, в частности к способу снижения обводненности скважинной продукции нефтяных добывающих скважин, и может быть применено на карбонатных и терригенных коллекторах.
Из уровня техники известны следующие решения.
Известен способ добычи нефти с предварительной усиленной пропиткой пласта (Патент США N 5247993, 28.09.1993). Известный способ применяется для повышения степени извлечения нефти из искусственно перфорированного и естественно трещиноватого (тектонического) пласта. Согласно способу производят скважинное нагнетание в продуктивный пласт порции флюида, содержащего агент, изменяющий тип смачиваемости скелета породы. Затем в скважину и перфорированный нефтеносный пласт нагнетают порцию промывочной жидкости, которая увеличивает подвижность нефти и уменьшает текучесть воды в пласте. После указанной обработки приступают к эксплуатации нефтяной добывающей скважины.
Недостатком известного способа является недостаточная эффективность, связанная с тем, что из-за неоднородностей вскрытого продуктивного горизонта значительно затруднен процесс контроля закачки порции флюида, содержащего агент, изменяющий тип смачиваемости скелета породы, а также промывочной жидкости. Необходим индивидуальный подбор достаточно дорогих закачиваемых флюидов для каждого конкретного случая. Известный способ не препятствует накоплению в интервале продуктивного горизонта воды.
Из описания к патенту РФ №2515675 (опубликован 20.05.2014) известен способ изоляции водопритока в нефтедобывающую скважину, включающий циклическую закачку в обводнившийся продуктивный пласт через скважину водоизоляционного состава и технологическую выдержку, при этом каждый последующий цикл закачки водоизоляционного состава относительно предыдущего осуществляют с увеличением давления закачки и увеличением объема водоизоляционного состава при соотношении давлений и объемов как 1:1, 2:2, 3:3, 4:4 и т.д. соответственно в циклах 1, 2, 3, 4 и т.д., время технологической выдержки в циклах выбирают из расчета наступления полного гелеобразования водоизоляционного состава, закаченного в первом цикле, не ранее завершения закачки водоизоляционного состава в последнем цикле. При этом продавку водоизоляционного состава в каждом цикле осуществляют технической водой с водородным показателем рН=6,0-6,5. После технологической выдержки в последнем цикле проводят стравливание давления до атмосферного.
Недостатком известного способа является его продолжительность, связанная с достаточно долгой технологической выдержкой, необходимой для завершения процесса гелеобразования, и трудоемкость процесса. В предложенном способе не происходит гелеобразование водоизоляционного состава, закачанного в первом цикле, вследствие этого нет необходимости подбирать время закачек при всех последующих циклах в зависимости от времени полного гелеобразования. Таким образом, время обработки скважины в предложенном способе существенно меньше, чем в выявленном.
Наиболее близким аналогом к патентуемому решению является способ добычи нефти и снижения обводненности продукции нефтяных добывающих скважин (патент РФ №2161246, опубликован 27.12.2000), включающий создание условий в стволе скважины, способствующих притоку нефти из нефтеносных пропластков и препятствующих притоку воды из водоносных пропластков, для чего последовательно осуществляют промывку ствола скважины, спуск насосного оборудования, обеспечивающего отбор жидкости ниже подошвы перфорированного пласта, закачку в затрубное пространство нефти до полной замены в стволе скважины и насосном оборудовании воды на нефть, выдержку под давлением для создания перепада давления 0,3-1,2 кгс/см2 на границе раздела фаз нефть-вода и пуск скважины в работу. Предпочтительно после замены в стволе скважины и насосном оборудовании воды на нефть дополнительно провести толуольно-бензольную ванну.
Недостатками известного способа является то, что он, по умолчанию, предполагает естественный водонапорный режим эксплуатации нефтяной залежи. Это следует из того, что основными эффектами, препятствующими притоку нефти из пласта является действие сил Лапласа и появление структурированного слоя на поверхности пор. Однако в настоящее время основным методом разработки месторождений нефти после прохождения первой стадии разработки нефтяного месторождения - фонтанной добычи и перехода к механизированной добыче, является организация системы принудительного поддержания пластового давления. При этом вода с поверхности закачивается в систему нагнетательных скважин, гидродинамически связанных с рядом добывающих нефтяных скважин, вследствие чего закачиваемая с поверхности вода вытесняет нефть из пласта. Однако нефтяные пласты редко бывают однородными по своим литологическим и петрографическим характеристикам и являются пластами с неоднородными фильтрационными свойствами, т.е. имеют различные пропластки, обладающие различной проницаемостью, вследствие чего происходит прорыв закачиваемой с поверхности воды по наиболее проницаемым слоям (пропласткам) в добывающие нефтяные скважины, следствием чего и является рост обводненности скважинной продукции по мере увеличения коэффициента извлечения нефти из пласта.
Таким образом, найденные решения не могут эффективно решить задачу снижения обводненности скважин при эксплуатации системы принудительного поддержания пластового давления.
Задачей патентуемого решения является устранение указанных недостатков.
Техническим результатом патентуемого решения является повышение нефтеотдачи пластов за счет создания внутри крупных водонасыщенных пор сети более мелких гидрофобных пор, создающих препятствие на пути протекающей через указанные поры воды и, таким образом, приводящих к снижению обводненности скважинной продукции нефтяных добывающих скважин, увеличение зоны охвата пласта заводнением и модификация фазовых проницаемостей в поровой поверхности пласта - уменьшение фазовой проницаемости по воде и увеличение фазовой проницаемости по нефти без предварительного останова скважины на ремонт и ее глушения.
Технический результат достигается за счет осуществления способа снижения обводненности скважинной продукции нефтяных добывающих скважин, согласно патентуемому решению, в затрубное пространство скважины осуществляют закачку водного раствора модификатора коллекторских свойств пласта известного на рынке под товарной маркой «Компонекс-21», содержащего хлористые соли щелочных металлов, ингибиторы солеотложения, ПАВ и гидрофобизатор, объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины, но не менее 80% от объема затрубного пространства скважины, измеряют давление закачки на забое скважины, выдерживают от 10 до 12 часов, осуществляют порционную продавку водного раствора модификатора коллекторских свойств пласта водой в пласт с выдержкой между продавками от 10 до 12 часов и измерением давления на забое скважины в начале и в конце каждой продавки, после достижения давления на забое скважины, превышающего давление закачки не менее чем на 1,0 МПа, но не превышающего давление опрессовки эксплуатационной колонны, проводят окончательную продавку в пласт оставшегося в затрубном пространстве водного раствора модификатора коллекторских свойств пласта.
В качестве хлористых солей щелочных металлов могут использоваться хлорид натрия, хлорид калия, хлорид аммония, содержание которых в модификаторе выбирают в пределах от 10 до 90 мас. %. Применяемый в композиции хлорид калия предназначен для обработки терригенных заглинизированных коллекторов. В случае обработки пластов карбонатного типа в качестве утяжелителя водного раствора для лучшего его проникновения в пласт вместо хлорида калия используют хлорид натрия. Соль аммония, в частности хлорид аммония применяют в качестве носителя для поверхностно-активных веществ, соли аммония, в частности хлорид аммония, эффективно впитывают ПАВ.
В качестве ингибиторов солеотложения могут использоваться Трилон А, Трилон Б, этилендиамин, нитрилотриметилфосфоновая, оксиэтилидендифосфоновая кислоты в пределах от 5 до 85 мас. %. Использование в качестве ингибиторов упомянутых веществ в указанных пределах позволяет повысить эффективность ингибирования солеотложений и их удаление из пор пласта с подземного глубиннонасосного оборудования.
В качестве поверхностно-активного вещества (ПАВ) выбирают любое вещество из ряда, например, Нефтенол К, МЛ-Супер, Дон-96 и используют в модификаторе в пределах от 5 до 70 мас. %. Использование в качестве ПАВ упомянутых веществ в указанных пределах позволяет снизить межфазное натяжение на границе раздела сред и облегчить проникновение водного раствора модификатора коллекторских свойств пласта, известного на рынке под товарной маркой «Компонекс-21» в мелкие поры пласта.
Гидрофобизатор присутствует в модификаторе в пределах от 8 до 85 мас. % и содержит в качестве активного вещества алкилированные третичные амины, либо их соли, четвертичные аммониевые соединения, например хлорид алкилтриметиламмония, и приводит к устойчивой гидрофобизации пористой поверхности пласта и изменяет фазовую проницаемость по воде и нефти.
Использование в модификаторе всех перечисленных компонентов, в любой их комбинации и в любом количестве в пределах указанных диапазонов согласно способу снижения обводненности нефтяных добывающих скважин, приводит к достижению одного и того же указанного технического результата, что подтверждено примерами.
Осуществление порционной закачки в затрубное пространство скважины, преимущественно 4-20% водного раствора модификатора коллекторских свойств пласта «Компонекс-21» объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины и не менее 80% от объема затрубного пространства скважины, содержащего хлористые соли щелочных металлов, ингибиторы солеотложения, ПАВ и гидрофобизатор, измерение давления закачки на забое скважины, выдержку от 10 до 12 часов, осуществление порционной продавки водного раствора модификатора коллекторских свойств пласта водой в пласт с выдержкой между продавками от 10 до 12 часов и измерением давления на забое скважины в начале и в конце каждой продавки и окончательную продавку в пласт оставшегося в затрубном пространстве водного раствора модификатора коллекторских свойств пласта после достижения давления на забое скважины, превышающего давление закачки не менее чем на 0,8 МПа, но не превышающего давление опрессовки эксплуатационной колонны, позволяет сформировать в порах пласта пространственную ячеистую структуру, позволяющую уменьшить фазовую проницаемость по воде вследствие формирования в промытых водных интервалах пространственной гидрофобной структуры с изменением характера смачиваемости поровой поверхности с гидрофильного на гидрофобный и с делением существующих пор на множество более мелких гидрофобных пор, что позволяет за счет перераспределения энергии пласта подключить к разработке заблокированные нефтеносные пропластки. Описанный эффект основан на том, что модификатор коллекторских свойств пласта «Компонекс-21» представляет собой органоминеральный состав, молекулы которого за счет хемосорбции активно взаимодействуют с поверхностью порового пространства и формируют устойчивую структурированную гидрофобную ячеистую структуру. Взаимодействие реагента с породой пласта и/или капиллярно связанной водой определяется наличием в их кристаллических решетках атомов щелочноземельных (кальция, магния), либо щелочных металлов (натрия, калия), то есть характерно для карбонатных пластов или терригенных с карбонатным типом цемента, либо терригенных пластов с глинистым типом цемента, но имеющих высокую степень содержания щелочных либо щелочноземельных элементов в пластовых водах хлоркальциевого либо гидрокарбонатнонатриевого типа. Формирование такой структуры существенным образом меняет взаимодействие молекул фильтрующихся флюидов с поровыми поверхностями таким образом, что протекание воды через сеть модифицированных гидрофобных пор значительно затруднено, а фазовая проницаемость породы относительно нефти изменяется незначительно. Данный эффект подтвержден керновыми испытаниями в лаборатории при моделировании протекания через керн воды-газа (см. фигуру 1).
Время выдержки водного раствора модификатора коллекторских свойств пласта указанного состава от 10 до 12 часов было установлено опытным путем в лабораторных условиях при моделировании эксперимента на керне. Оно определялось как минимальное время, необходимое для прохождения реакции водного раствора модификатора указанного состава при любом соотношении компонентов с породой керна и структурирования ячеистой структуры.
Объем закачки в затрубное пространство водного раствора модификатора коллекторских свойств пласта указанного состава объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации и не менее 80% от объема затрубного пространства скважины определяется исходя из минимально необходимой величины объема раствора для протекания реакции и обработки максимальной зоны вокруг скважины в зависимости от конфигурации скважины, ее размеров, глубины залегания продуктивного пласта и его толщины.
Объем закачки в затрубное пространство водного раствора модификатора коллекторских свойств пласта указанного состава в диапазоне от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины определяется исходя из минимально необходимой величины объема раствора в зависимости от пористости пласта. Так, если пористость пласта равна 7% (пласт считается продуктивным, если его пористость равна или больше 7%), то минимальный объем водного раствора модификатора указанного состава составит 2 м3 на 1 метр перфорации скважины, с увеличением пористости пласта, необходимо увеличивать объем водного раствора модификатора. Максимальный объем равен 15,0 м3 на 1 метр перфорации скважины и определяется исходя из минимально необходимой величины объема раствора для протекания реакции в пласте большей пористости.
В таблице 1 приведена эффективность снижения фазовой проницаемости по воде в зависимости от объема закачанного реагента в % от порового объема образца.
В третьем столбце таблицы приведены объемы закачанного 6% водного раствора модификатора в зависимости от объема пор кернового образца. В шестом столбце таблицы приведены результаты уменьшения фазовой проницаемости по воде в зависимости от приведенных данных в третьем столбце таблицы. Из данных таблицы хорошо видна зависимость: чем выше объем пор, в которые проникает модификатор, тем больше снижение фазовой проницаемости по воде.
Кроме того, объем закачки в затрубное пространство водного раствора модификатора коллекторских свойств пласта указанного состава не менее 80% от объема затрубного пространства скважины определяется минимальной концентрацией раствора модификатора в затрубном пространстве, необходимой для протекания реакции. Так как затрубное пространство скважины заполнено водой вследствие процесса добычи, то при закачке водного раствора модификатора происходит его активное перемешивание с водой, в результате чего может значительно уменьшаться концентрация модификатора в затрубном пространстве, что приводит к недостаточно эффективному протеканию реакции. Таким образом, опытным путем определено, что требуется закачивать не менее 80% всего затрубного объема водного раствора модификатора коллекторских свойств пласта.
Благодаря порционной продавки в пласт из затрубного пространства скважины водного раствора модификатора коллекторских свойств пласта указанного состава происходит уплотнение ячеистой структуры, созданной при закачке первой порции упомянутого раствора модификатора, и придание ей некоторой прочности. С каждой последующей продавкой упомянутого раствора в пласт размер пор в созданной структуре будет уменьшаться, что будет приводить к уменьшению фазовой проницаемости по воде, однако это же будет приводить и к небольшому уменьшению проницаемости по нефти. Поэтому было принято оптимальное давление продавки на забое скважины, превышающее начальное давление закачки не менее чем на 1,0 МПа, по достижении которого прекращают продавку в пласт водного раствора модификатора коллекторских свойств пласта. Прекращение продавки упомянутого раствора в пласт при указанном давлении позволяет создать структуру с оптимальным размером пор, максимально препятствующим проницаемости воды через них и незначительно препятствующим проникновению нефти. При этом указанное давление не должно превышать давление опрессовки эксплуатационной колонны, чтобы не нарушать целостность и герметичность колонны.
Обработку скважины завершают продавливанием водой оставшегося водного раствора модификатора из затрубного пространства в пласт, что позволяет эффективно использовать весь объем упомянутого раствора.
Как показали проведенные испытания, наилучший эффект достигается при закачке 4-20% водного раствора модификатора коллекторских свойств пласта «Компонекс-21».
Сущность изобретения заключается в следующем.
В предложенном способе снижения обводненности скважинной продукции добывающих скважин на карбонатных или терригенных коллекторах, оборудованных установкой электрического центробежного насоса или штангового глубинного насоса, достигается путем проведения обработки призабойной зоны пласта через затрубное пространство скважины без предварительного останова скважины на ремонт и ее глушения.
Предварительно проводят опрессовку эксплуатационной колонны.
Готовят водный, предпочтительно 4-20%, раствор модификатора коллекторских свойств пласта на основе пресной или минерализованной воды объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины и не менее 80% от объема затрубного пространства.
Перемешивают в смесительной емкости указанный раствор до полного растворения модификатора коллекторских свойств пласта с помощью ЦА-320 и ППУ.
Проводят герметизацию устья скважины. Опрессовывают задвижки на герметичность. Закрывают скважину до начала проведения работ.
Опрессовывают нагнетательную линию агрегатов на рабочее давление, равное 1,5 давления опрессовки эксплуатационной колонны. В случае возникновения течи - устраняют путем замены участка линии.
Через затрубное пространство скважины осуществляют закачку водного раствора модификатора коллекторских свойств пласта, содержащего хлористые соли щелочных металлов, ингибиторы солеотложения, ПАВ и гидрофобизатор.
Измеряют начальное давление закачки.
Осуществляют выдержку водного раствора на реакцию в обрабатываемой зоне пласта в течение 10-12 часов.
Затем осуществляют порционную продавку водного раствора модификатора в пласт водой с выдержкой между продавками от 10 до 12 часов.
Фиксируют давление в начале и в конце каждой продавки водного раствора модификатора.
Продавку водного раствора модификатора и выдержку повторяют до достижения давления на забое скважины, превышающего начальное давление закачки не менее чем на 1,0 МПа, но не превышающего давление опрессовки эксплуатационной колонны.
При достижении давления на забое скважины, превышающего начальное давление закачки не менее чем на 1,0 МПа, или давления опрессовки эксплуатационной колонны продавку водного раствора модификатора в пласт прекращают.
Обработку скважины завершают окончательным продавливанием водой оставшегося раствора в затрубном пространстве в пласт с минимальной скоростью, не превышая давления оперессовки колонны, и оставляют скважину на реагирование на 72 часа.
Проводят демонтаж линий обвязки спецтехники со скважиной. Запускают насосное оборудование в работу.
Предлагаемый способ снижения обводненности в настоящее время испытан уже более чем на 30 скважинах в различных коллекторах, достаточно дешев и технологичен, может быть применен в любое время по мере необходимости в проведении подобных работ, без привязки к плановым ремонтам и остановам скважин.
Далее изобретение поясняется с помощью примеров.
Пример 1.
Опытно-промысловые испытания описанного способа снижения обводненности скважинной продукции были проведены на нефтяном месторождении республики Удмуртия на добывающей скважине в верейском пласте.
Устройство скважины
Эксплуатационная колонна 146 мм, текущий забой (глубина скважины) 1209 метров, пласт верейский, интервал перфорации 5 метров, оборудована штанговым глубинным насосом НГН-2-44, спущенным на НКТ 73 мм на глубину 1040 м. Давление опрессовки эксплуатационной колонны 100 атм. Объем затрубного пространства скважины 9,58 м3.
Режим работы скважины до обработки: суточный дебит 20 м3. Обводненность 98% и дебит по нефти 0,4 тн в сутки.
Приготовили 6% водный раствор модификатора коллекторских свойств пласта «Компонекс-21», содержащего, мас. %: хлориды натрия и калия - 20%, смесь нитрилотриметилфосфоновой и оксиэтилидендифосфоновой кислот - 5%. Нефтенол-К - 50% и хлорид алкилтриметиламмония - 25%, общим объемом 10,0 м3, и аккумулировали его в автоцистерне.
Минимальный объем 6% водного раствора модификатора - 10,0 м3.
Закачали в затрубное пространство скважины 6% водный раствор модификатора коллекторских свойств пласта в объеме 10 м3. Измерили давление закачки - 0 атм.
Закачали в затрубное пространство скважины 5 м3 пресной воды удельным весом 1,00 г/см3 с целью продавки части рабочего раствора модификатора в пласт. Измерили давление, давление 20 атм (2 МПа).
Выдержали модификатор в пласте 10-12 часов для протекания реакции.
Окончательно продавили раствор модификатора в пласт, пресной водой в объеме 6,6 м3 и выдержали его в течение 72 часов. В начале продавки давление на забое скважины составляло 10 атм (1 МПа), при окончании продавки пресной водой давление выросло до 22 атм (2,2 МПа).
Результаты обработки
Режим работы скважины после обработки: суточный дебит 20 м3, обводненность 88% и дебит по нефти 2,4 тн в сутки.
Пример 2
Опытно-промысловые испытания описанного способа снижения обводненности скважинной продукции были проведены на нефтяном месторождении республики Удмуртия на добывающей скважине в турнейском ярусе.
Устройство скважины
Эксплуатационная колонна 168 мм, текущий забой 1723,5 метров, турнейский ярус, пробурен боковой горизонтальный ствол, оборудованный хвостовиком диаметром 102 мм и толщиной стенки 6,5 мм: интервал перфорации хвостовика 1697,3-1723,4 (26,1 метров), скважина оборудована штанговым глубинным насосом НГН-57, спущенным на НКТ 73 мм на глубину 968 м. Давление опрессовки эксплуатационной колонны 10,1 МПа. Объем затрубного пространства скважины 20,7 м3.
Режим работы скважины до обработки: суточный дебит 29 м3. Обводненность 98% и дебит по нефти 0,53 тн в сутки.
Приготовили 10% рабочий раствор модификатора коллекторских свойств пласта «Компонекс-21», содержащего, мас. %: хлорид калия - 15, смесь нитрилотриметилфосфоновой кислоты и Трилон-Б - 20, третичные амины - 30, хлорид триметиламмония - 30, объемом 52,0 м3, и аккумулировали его в емкости.
Закачали в затрубное пространство скважины рабочий раствор модификатора «Компонекс-21» в объеме 52,0 м3. Измерили давление закачки - 0 атм (0 МПа).
Выдержали модификатор в пласте 12 часов для протекания реакции с пластом.
Закачали в затрубное пространство скважины минерализированную воду объемом 12 м3с целью продавки раствора модификатора в пласт. Измерили давление на забое, давление 10 атм (1,0МПа).
Окончательно продавили раствор модификатора в пласт минерализованной водой в объеме 9,0 м3 и выдержали в течение 72 часов. В начале продавки давление на забое скважины составляло 10 атм (1 МПа), при окончании продавки минерализованной водой давление выросло до 15 атм (1,5 МПа).
Результаты обработки
Режим работы скважины после обработки: суточный дебит 31 м3, обводненность 89% и дебит по нефти 3,14 тн в сутки.
Таким образом, заявленный способ позволит повысить нефтеотдачу пластов за счет создания внутри крупных водонасыщенных пор сети гидрофобных пор, создающих препятствие на пути протекающей через указанные поры воды и, таким образом, приводящих к снижению обводненности скважинной продукции нефтяных добывающих скважин, увеличить зону охвата пласта заводнением и обеспечить модификацию фазовых проницаемостей в поровой поверхности пласта - уменьшить фазовую проницаемость по воде и увеличить фазовую проницаемость по нефти без предварительного останова скважины на ремонт и ее глушения.
Claims (2)
1. Способ снижения обводненности скважинной продукции нефтяных добывающих скважин, характеризующийся тем, что в затрубное пространство скважины осуществляют закачку водного раствора модификатора коллекторских свойств пласта «Компонекс-21», содержащего хлористые соли щелочных металлов, ингибиторы солеотложения, ПАВ и гидрофобизатор, объемом от 2,0 м3 до 15,0 м3 на 1 метр перфорации скважины, но не менее 80% от объема затрубного пространства скважины, измеряют давление закачки на забое скважины, выдерживают от 10 до 12 часов, осуществляют порционную продавку водного раствора модификатора коллекторских свойств пласта водой в пласт с выдержкой между продавками от 10 до 12 часов и измерением давления на забое скважины в начале и в конце каждой продавки, после достижения давления на забое скважины, превышающего давление закачки не менее чем на 1,0 МПа, но не превышающего давление опрессовки эксплуатационной колонны, проводят окончательную продавку в пласт оставшегося в затрубном пространстве водного раствора модификатора коллекторских свойств пласта.
2. Способ по п. 1, характеризующийся тем, что используют 4-12% водный раствор модификатора коллекторских свойств пласта.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016107281A RU2618543C1 (ru) | 2016-03-01 | 2016-03-01 | Способ снижения обводненности нефтяных добывающих скважин |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016107281A RU2618543C1 (ru) | 2016-03-01 | 2016-03-01 | Способ снижения обводненности нефтяных добывающих скважин |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2618543C1 true RU2618543C1 (ru) | 2017-05-04 |
Family
ID=58697841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016107281A RU2618543C1 (ru) | 2016-03-01 | 2016-03-01 | Способ снижения обводненности нефтяных добывающих скважин |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2618543C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2737597C1 (ru) * | 2019-06-20 | 2020-12-01 | Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") | Состав для приготовления тяжелой технологической жидкости для глушения скважин |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2161246C1 (ru) * | 1999-06-01 | 2000-12-27 | Закрытое акционерное общество ЗАО "Инжиниринговый Центр ЮКОС" | Способ снижения обводненности продукции нефтяных добывающих скважин |
RU2176723C1 (ru) * | 2001-04-09 | 2001-12-10 | Общество с ограниченной ответственностью "Технонефтеотдача" | Способ изоляции водопритока, зоны поглощения и отключения пласта скважины |
US7762329B1 (en) * | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
RU2506298C1 (ru) * | 2012-09-25 | 2014-02-10 | Дмитрий Григорьевич Ашигян | Модификатор фильтрационных свойств продуктивного пласта |
RU2515675C1 (ru) * | 2013-04-11 | 2014-05-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ изоляции водопритока в нефтедобывающую скважину |
-
2016
- 2016-03-01 RU RU2016107281A patent/RU2618543C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2161246C1 (ru) * | 1999-06-01 | 2000-12-27 | Закрытое акционерное общество ЗАО "Инжиниринговый Центр ЮКОС" | Способ снижения обводненности продукции нефтяных добывающих скважин |
RU2176723C1 (ru) * | 2001-04-09 | 2001-12-10 | Общество с ограниченной ответственностью "Технонефтеотдача" | Способ изоляции водопритока, зоны поглощения и отключения пласта скважины |
US7762329B1 (en) * | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
RU2506298C1 (ru) * | 2012-09-25 | 2014-02-10 | Дмитрий Григорьевич Ашигян | Модификатор фильтрационных свойств продуктивного пласта |
RU2515675C1 (ru) * | 2013-04-11 | 2014-05-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ изоляции водопритока в нефтедобывающую скважину |
Non-Patent Citations (1)
Title |
---|
КОРПОРАТИВНАЯ ГАЗЕТА ОАО "УДМУРТНЕФТЬ" N 4 [1795], 08.02.2013. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2737597C1 (ru) * | 2019-06-20 | 2020-12-01 | Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") | Состав для приготовления тяжелой технологической жидкости для глушения скважин |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7559373B2 (en) | Process for fracturing a subterranean formation | |
US8061427B2 (en) | Well product recovery process | |
US20100096129A1 (en) | Method of hydrocarbon recovery | |
RU2460875C1 (ru) | Способ гидравлического разрыва карбонатного пласта | |
US8733441B2 (en) | Sealing of thief zones | |
RU2455478C1 (ru) | Способ гидравлического разрыва карбонатного пласта | |
RU2312212C1 (ru) | Способ разработки залежи нефти с карбонатным коллектором | |
RU2478164C1 (ru) | Способ разработки залежи нефти, расположенной над газовой залежью и отделенной от нее непроницаемым пропластком | |
US8235113B2 (en) | Method of improving recovery from hydrocarbon reservoirs | |
RU2618543C1 (ru) | Способ снижения обводненности нефтяных добывающих скважин | |
RU2610967C1 (ru) | Способ селективной обработки продуктивного карбонатного пласта | |
RU2616893C1 (ru) | Способ ограничения водопритока в добывающих нефтяных скважинах | |
US11920446B2 (en) | Methods for foam and gel injections into a well and enhanced foaming and gelations techniques | |
RU2569941C2 (ru) | Способ изоляции подошвенной воды | |
CA2517497C (en) | Well product recovery process | |
EP2716731A1 (en) | Method for the recovery of hydrocarbons from an oil reservoir | |
RU2740986C1 (ru) | Способ восстановления обводненной газовой или газоконденсатной скважины после гидравлического разрыва пласта | |
RU2638668C1 (ru) | Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора | |
RU2733561C2 (ru) | Способ гидравлического разрыва пласта на поздней стадии выработки | |
RU2059788C1 (ru) | Способ заканчиваний нефтяных скважин | |
RU2196885C1 (ru) | Способ разработки нефтяного месторождения в карбонатных коллекторах трещиноватого типа | |
RU2597596C1 (ru) | Способ равномерной выработки слоистого коллектора | |
RU2261981C1 (ru) | Способ ликвидации заколонных перетоков газа в нефтедобывающей скважине | |
RU2757456C1 (ru) | Способ обработки призабойной зоны продуктивного пласта, насыщенного углеводородами с остаточной высокоминерализованной поровой водой | |
RU2150578C1 (ru) | Способ разработки литологически экранированных нефтенасыщенных линз одной скважиной |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180302 |