RU2509883C1 - Способ гидравлического разрыва карбонатного пласта - Google Patents

Способ гидравлического разрыва карбонатного пласта Download PDF

Info

Publication number
RU2509883C1
RU2509883C1 RU2013107107/03A RU2013107107A RU2509883C1 RU 2509883 C1 RU2509883 C1 RU 2509883C1 RU 2013107107/03 A RU2013107107/03 A RU 2013107107/03A RU 2013107107 A RU2013107107 A RU 2013107107A RU 2509883 C1 RU2509883 C1 RU 2509883C1
Authority
RU
Russia
Prior art keywords
well
gel
pumped
stage
proppant
Prior art date
Application number
RU2013107107/03A
Other languages
English (en)
Inventor
Арслан Валерьевич Насыбуллин
Вячеслав Гайнанович Салимов
Олег Вячеславович Салимов
Original Assignee
Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Татнефть" имени В.Д. Шашина filed Critical Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority to RU2013107107/03A priority Critical patent/RU2509883C1/ru
Application granted granted Critical
Publication of RU2509883C1 publication Critical patent/RU2509883C1/ru

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к нефтяной промышленности и может найти применение при осуществлении гидравлического разрыва пласта преимущественно в карбонатных пластах. В способе гидравлического разрыва карбонатного пласта, включающем перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск в скважину колонны насосно-компрессорных труб - КНКТ с пакером, герметизацию межтрубного пространства пакером выше интервала перфорации, проведение гидравлического разрыва пласта путем закачки в скважину гелеобразной жидкости разрыва этапами и кислоты, гидравлический разрыв карбонатного пласта осуществляют последовательно в несколько этапов, причем на первом этапе закачивают гелеобразную жидкость разрыва в объеме не менее 6 м, на втором этапе закачивают гелеобразную жидкость разрыва в смеси с расклинивающим агентом, причем в качестве расклинивающего агента применяют металлические сферы фракционным составом 12/18, или 16/20, или 20/40 меш, изготовленные из металла магния, причем расклинивающий агент закачивают порционно с постепенным увеличением его концентрации в смеси с гелеобразной жидкостью разрыва, на третьем этапе закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину КНКТ, на четвертом этапе закачивают соляную кислоту в объеме не менее 0,6-0,7 от общего объема гелеобразной жидкости разрыва, на пятом этапе закачивают продавочную жидкость - техническую воду в объеме, равном объему спущенной в скважину КНКТ плюс 0,2 м. Технический результат - повышение эффекти�

Description

Изобретение относится к нефтяной промышленности и может найти применение при осуществлении гидравлического разрыва пласта преимущественно в карбонатных пластах.
Известен способ гидроразрыва пластов в скважинах (патент RU №2219335, МПК Е21В 43/26, опубл. 20.12.2003 г.), включающий спуск заливочной колонны труб в зону гидроразрыва, вытеснение газом скважинной жидкости из внутреннего пространства заливочной колонны и ее заколонного пространства. По способу помещают в заливочную колонну разделительную пробку, закачивают жидкость разрыва в заливочную колонну совместно с расклинивающим агентом, закачивают дополнительную жидкость в заколонное пространство с расходом Q2, определяемым из соотношения:
Q 2 = Q 1 S 2 S 1
Figure 00000001
,
где Q2 - расход жидкости, закачиваемой в заколонное пространство;
Q1 - расход жидкости разрыва, закачиваемой в заливочную колонну;
S2 - площадь проходного сечения заколонного пространства скважины;
S1 - площадь проходного сечения колонны.
Затем осуществляют герметизацию заколонного пространства скважины на устье после заполнения заколонного пространства дополнительной жидкостью и прекращения ее излива во время закачки жидкости разрыва.
Недостатками данного способа являются:
- во-первых, сложность осуществления технологического процесса, связанная с необходимостью закачки инертного газа, причем газ и жидкость закачиваются раздельно с использованием разделительной пробки;
- во-вторых, незащищенность эксплуатационной колонны от вредного воздействия высоких давлений при осуществлении технологического процесса, обусловленная отсутствием пакера.
Также известен способ осуществления импульсного гидроразрыва карбонатного пласта (патент RU №2460876, МПК Е21В 43/26, опубл. 10.09.2012 г., бюл. №25), включающий спуск в скважину колонны насосно-компрессорных труб - НКТ, закачивание жидкости разрыва насосным агрегатом по нагнетательной линии в колонну НКТ, формирование перепадов давления между затрубным пространством, призабойной зоной и полостью колонны НКТ путем периодических импульсов давления в призабойной зоне в виде перемещающейся волны движения массы жидкости. Причем перед спуском колонны НКТ в скважину на ее нижнем конце размещают генератор импульсов, а выше - пакер, причем ниже пакера, но выше генератора импульсов в составе колонны НКТ устанавливают сбивной клапан, затрубное пространство скважины герметизируют пакером, устанавливаемым над кровлей пласта, подлежащего гидроразрыву, на устье нагнетательной линии скважины с целью защиты насосного агрегата от скачков высокого давления устанавливают компенсатор гидропульсаций, гидравлический разрыв пласта производят импульсной закачкой жидкости разрыва под давлением, превышающим давление раскрытия трещин на 20-25% в течение 20-30 мин, после чего производят закачку в импульсном режиме кислотного раствора, в качестве которого применяют 10-15%-ный раствор соляной кислоты в количестве, равном 1,3-2 м3 на 1 м перфорированной толщины пласта, но не менее 10 м3, после чего скважину закрывают на ожидание спада давления и реагирование кислоты, разрушают сбивной клапан и производят освоение скважины свабированием по колонне НКТ, после чего производят распакеровку пакера и извлекают колонну НКТ из скважины.
Недостатками данного способа являются низкая технологическая эффективность способа, связанная с неконтролируемым развитием трещин гидроразрыва из-за повышенных гидропульсаций жидкости на забое, а также опасность прорыва создаваемых трещин гидроразрыва в водоносную часть пласта.
Наиболее близким по технической сущности является способ гидравлического разрыва карбонатного пласта (патент RU №2455478, МПК Е21В 43/26, опубл. 10.07.2012 г., бюл. №19), включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск в скважину колонны насосно-компрессорных труб с пакером, герметизацию межтрубного пространства пакером выше интервала перфорации, заполнение скважины технологической жидкостью на 0,2-0,4 объема ствола скважины, закачку в скважину гелеобразной жидкости разрыва равными порциями в 3-5 циклов с закачкой после них порций кислоты объемом 0,7-0,75 объема гелеобразной жидкости разрыва, по завершении последнего цикла закачку товарной нефти или пресной воды в полуторакратном объеме колонны труб с последующей выдержкой 1-2 ч, удаление продуктов реакции кислоты с породой, снятие пакера и извлечение его с колонной труб из скважины.
Недостатком данного изобретения является низкая эффективность способа в карбонатных пластах, содержащих труднорастворимые асфальтено-смолистые парафиновые отложения (АСПО).
Задачами изобретения являются:
- повышение технологической эффективности способа в карбонатных пластах, содержащих труднорастворимые АСПО;
- защита эксплуатационной колонны от вредных воздействий высоких давлений в процессе закачки жидкости гидроразрыва;
- упрощение технологического процесса проведения гидравлического разрыва карбонатного пласта.
Поставленные задачи решаются способом гидравлического разрыва карбонатного пласта, включающим перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск в скважину колонны насосно-компрессорных труб с пакером, герметизацию межтрубного пространства пакером выше интервала перфорации, проведение гидравлического разрыва пласта путем закачки в скважину гелеобразной жидкости разрыва этапами и кислоты.
Новым является то, что гидравлический разрыв карбонатного пласта осуществляют последовательно в несколько этапов, причем на первом этапе закачивают гелеобразную жидкость разрыва в объеме не менее 6 м3, на втором этапе закачивают гелеобразную жидкость разрыва в смеси с расклинивающим агентом, причем в качестве расклинивающего агента применяют металлические сферы фракционным составом 12/18, или 16/20, или 20/40 меш, изготовленные из металла магния, причем расклинивающий агент закачивают порционно с постепенным увеличением его концентрации в смеси с гелеобразной жидкостью разрыва, на третьем этапе закачивают продавочную жидкость -техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны насосно-компрессорных труб, на четвертом этапе закачивают соляную кислоту в объеме не менее 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва, на пятом этапе закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны насосно-компрессорных труб, плюс 0,2 м3.
Сущность способа заключается в комплексном воздействии на карбонатный пласт гидромеханическим, химическим и тепловым методами. Сначала карбонатный пласт подвергают гидравлическому разрыву с закреплением созданной трещины расклинивающим агентом, в качестве которого используют металлические сферы, изготовленные из металла магния, фракционным составом 12/18, или 16/20, или 20/40 меш.
Затем в созданную и закрепленную трещину гидроразрыва закачивают соляную кислоту, например кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г.Стерлитамак, Республика Башкортостан). Соляная кислота вступает в реакцию с расклинивающим агентом (магнием) и породой пласта. При контакте соляной кислоты с магнием возникает термохимическая реакция с выделением тепла: 2HCl+Mg=MgCl22+Т°, кроме того, соляная кислота растворяет породы карбонатного пласта. В результате данного воздействия кислота, двигаясь по созданной трещине гидроразрыва, проникает вглубь карбонатного пласта и растворяет дальние невыработанные зоны пласта. А выделившаяся в результате реакции соляной кислоты с магнием тепловая энергия разогревает призабойную зону пласта (ПЗП), что способствует разжижению нефти и АСПО.
Расклинивающий агент в виде металлических сфер изготавливается из магнезитовых каустических порошков следующих марок: МПК-90, МПК-87, МПК-83 по ГОСТ 1216-87 путем их спекания.
Выбор фракционного состава расклинивающего агента зависит от геомеханических свойств карбонатного пласта. Опытным путем было установлено, что в карбонатных пластах с высокими значениями модуля Юнга - свыше 50000 МПа - целесообразно применять расклинивающий агент мелкой фракции - 20/40 меш, в карбонатных пластах со средними значениями модуля Юнга - от 25000 до 50000 МПа - 16/20 меш, в карбонатных пластах с низкими значениями модуля Юнга - до 25000 МПа - 12/18 меш.
Предлагаемый способ осуществляют следующим образом.
Производят перфорацию стенок скважины в необходимом интервале каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины.
Далее в скважину на насосно-компрессорных трубах (НКТ) марки "К" или "Е" диаметром 89 мм по ГОСТ 633-80 спускают пакер (например, пакер с механической осевой установкой ПРО-ЯМ02-ЯГ1(Ф) или ПРО-ЯМО3-ЯГ2(Ф), производства ООО НПФ «Пакер», г.Октябрьский, Республика Башкортостан). Путем осевых перемещений колонны НКТ устанавливают пакер выше интервала перфорации, тем самым герметизируют заколонное пространство, защищая его от воздействия высоких давлений в процессе проведения гидравлического разрыва пласта.
Устье скважины оборудуют краном высокого давления, расставляют технику, участвующую в процессе гидроразрыва, и соединяют узлы и агрегаты техники между собой гидравлическими нагнетательной и вспомогательными линиями.
В качестве гелеобразной жидкости разрыва применяют известные составы, например, разработанные ЗАО «Химеко-ГАНГ», имеющие торговые наименования «Химеко-Н» (ТУ2481-053-17197708), «Химеко-Т» (ТУ2481-077-17197708-03), «Химеко-В» (ТУ 2499-038-17197708-98).
Порядок приготовления гелеобразной жидкости разрыва описан в патенте RU №2358100, МПК Е21В 43/26, опубл. в бюл. №16 от 10.06.2009 г.
Гидравлический разрыв осуществляют последовательно в несколько этапов.
На первом этапе для создания первоначальной трещины гидроразрыва закачивают гелеобразную жидкость разрыва в объеме не менее 6 м3.
Непосредственно сразу за первым этапом следует второй этап, в котором закачивают гелеобразную жидкость разрыва в смеси с расклинивающим агентом, в качестве которого применяют металлические сферы фракционным составом 12/18, или 16/20, или 20/40 меш, причем металлические сферы изготовлены из металла магния (Mg), причем расклинивающий агент закачивают с постепенным увеличением его концентрации в смеси с гелеобразной жидкостью разрыва.
Опытным путем было установлено что общее количество закачиваемого расклинивающего агента на 1 м вскрытой толщины карбонатного пласта должно быть не менее 3000 кг. Причем закачивать расклинивающий агент необходимо порционно с постепенным увеличением концентрации его в смеси с гелеобразной жидкостью разрыва. Начальная концентрация должна составлять не менее 200 кг/м3, конечная не более 900-1000 кг/м3.
Непосредственно сразу за вторым этапом следует третий этап, в котором закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны НКТ.
Непосредственно сразу за третьим этапом следует четвертый этап, в котором закачивают кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г.Стерлитамак, Республика Башкортостан) в объеме не менее 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва.
Непосредственно сразу за четвертым этапом следует пятый этап, в котором закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны НКТ, плюс 0,2 м3.
После выдержки технологической паузы, необходимой для спада давления и полного реагирования соляной кислоты с породой пласта и расклинивающим агентом (магнием), извлекают колонну НКТ с пакером из скважины, спускают технологические НКТ диаметром 73 мм и производят освоение пласта любым известным способом.
После освоения карбонатного пласта и получения стабильного притока в скважину спускают насос и запускают в работу.
Примеры практического выполнения способа.
Пример 1.
Толщина карбонатного пласта, в котором предполагается проведение гидравлического разрыва, 3,5 м. Глубина залегания карбонатного пласта: верх - 1640 м, низ - 1643,5 м. Модуль Юнга для данного карбонатного пласта составляет 67000 МПа.
С целью предотвращения возникновения осложнений при прохождении расклинивающего агента через интервал перфорации, а именно возникновения больших гидравлических сопротивлений и забивания расклинивающим агентом существующих перфорационных отверстий, произвели перфорацию карбонатного пласта кумулятивными зарядами ЗПКО 89 по ТУ 84-7513607.020-2001 (производства ФКП «Чапаевский механический завод», г.Чапаевск, Российская Федерация).
Далее в скважину на НКТ марки "К" диаметром 89 мм по ГОСТ 633-80 спустили пакер ПРО-ЯМ02-ЯГ1(Ф) (производства ООО НПФ «Пакер», г. Октябрьский, Республика Башкортостан) с механической осевой установкой.
Путем осевых перемещений колонны НКТ установили пакер выше интервала перфорации на глубине 1635 м. При этом внутренний объем спущенной в скважину колонны НКТ составил 7,4 м3. Объем поверхностных трубопроводов - 0,2 м3.
Устье скважины оборудовали краном высокого давления, расставили технику, участвующую в процессе гидроразрыва, и соединили узлы и агрегаты техники между собой гидравлическими нагнетательной и вспомогательными линиями.
Объем гелеобразной жидкости разрыва рассчитали исходя из эффективности гелеобразной жидкости разрыва, начальной и конечной концентраций и общей массы закачиваемого расклинивающего агента по следующей формуле:
Figure 00000002
где М - общая масса закачиваемого расклинивающего агента, кг;
Смин - минимальная концентрация расклинивающего агента, кг/м3;
Смакс - максимальная концентрация расклинивающего агента, кг/м3;
η - эффективность гелеобразной жидкости разрыва.
Эффективность гелеобразной жидкости разрыва - это отношение объема созданной трещины гидроразрыва к общему закачанному объему гелеобразной жидкости разрыва. Исходя из промыслового опыта проведения гидроразрыва, эффективность гелеобразной жидкости разрыва составляет η=0,43.
Исходные данные для расчета общего объема гелеобразной жидкости разрыва. Толщина карбонатного пласта 3,5 м. Следовательно, общая масса закачиваемого расклинивающего агента М, исходя из условия 3000 кг на 1 м вскрытой толщины карбонатного пласта, должна быть не менее 10500 кг. Приняли общую массу расклинивающего агента 10500 кг.
Исходя из промыслового опыта приняли минимальную концентрацию закачки расклинивающего агента в смеси с гелеобразной жидкостью разрыва 200 кг/м3 максимальную концентрацию 900 кг/м3.
По формуле (1) определили общий объем гелеобразной жидкости разрыва:
V i = 11000 200 + 900 1,43 0,43 33  м 2
Figure 00000003
.
Исходя из условия объем буфера Vбуф должен быть не менее 6 м3. Приняли объем буфера равным 6 м3. Следовательно, Vраскл.агент=Vi-Vбуф=32-6=26 м3.
Процесс гидравлического разрыва карбонатного пласта провели в следующей последовательности.
На первом этапе для инициирования развития трещины гидроразрыва закачали буфер - гелеобразную жидкость разрыва без добавления расклинивающего агента в объеме 6 м3.
На втором этапе последовательно закачивали порции гелеобразной жидкости разрыва в смеси с расклинивающим агентом, в качестве которого применяли металлические сферы, изготовленные из магния фракционным составом 20/40 меш, при этом постепенно увеличивали концентрацию расклинивающего агента в смеси, начиная с 100 кг/м3 и заканчивая 300 кг/м3, а именно:
- последовательно закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 200 кг/м, следовательно, количество закачанного расклинивающего агента составило 1000 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 250 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 2250 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 320 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 3850 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 400 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 5850 кг. Затем закачали 3 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 650 кг/м, следовательно, накопленное количество закачанного расклинивающего агента составило 7800 кг. Затем закачали 3 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 900 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента достигло принятой величины - 10500 кг.
На третьем этапе с целью продавки гелеобразной жидкости гидроразрыва в смеси с расклинивающим агентом в карбонатный пласт закачали продавочную жидкость - техническую воду в объеме 7,4 м.
На четвертом этапе закачали кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г.Стерлитамак, Республика Башкортостан) в объеме 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва, а именно 0,6 Vi=19,2 м.
На пятом этапе закачали продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны НКТ плюс 0,2 м3, т.е. 7,6 м3.
Среднее давление закачки на устье скважины при проведении всего процесса гидравлического разрыва составило 29,5 МПа.
После выдержки технологической паузы, необходимой для спада давления и полного реагирования соляной кислоты с породой пласта и расклинивающим агентом (металлическими сферами, изготовленными из магния), извлекли колонну НКТ с пакером из скважины, спустили технологические НКТ диаметром 73 мм и произвели освоение пласта свабированием по колонне НКТ.
Пример 2.
Толщина карбонатного пласта, в котором предполагается проведение гидравлического разрыва, 4 м. Глубина залегания карбонатного пласта: верх - 1640 м, низ - 1644 м. Модуль Юнга для данного карбонатного пласта составляет 32000 МПа.
С целью предотвращения возникновения осложнений при прохождении расклинивающего агента через интервал перфорации, а именно возникновения больших гидравлических сопротивлений и забивания расклинивающим агентом существующих перфорационных отверстий, произвели перфорацию карбонатного пласта кумулятивными зарядами ЗПКО 89 по ТУ 84-7513607.020-2001 (производства ФКП «Чапаевский механический завод», г.Чапаевск, Российская Федерация).
Далее в скважину на НКТ марки "К" диаметром 89 мм по ГОСТ 633-80 спустили пакер ПРО-ЯМ02-ЯГ1(Ф) (производства ООО НПФ «Пакер», г.Октябрьский, РБ) с механической осевой установкой.
Путем осевых перемещений колонны НКТ установили пакер выше интервала перфорации на глубине 1635 м. При этом внутренний объем спущенной в скважину колонны НКТ составил 7,4 м3. Объем поверхностных трубопроводов - 0,2 м3.
Устье скважины оборудовали краном высокого давления, расставили технику, участвующую в процессе гидроразрыва, и соединили узлы и агрегаты техники между собой гидравлическими нагнетательной и вспомогательными линиями.
Объем гелеобразной жидкости разрыва рассчитали исходя из эффективности гелеобразной жидкости разрыва, начальной и конечной концентраций и общей массы закачиваемого расклинивающего агента по формуле (1).
Исходные данные для расчета общего объема гелеобразной жидкости разрыва. Толщина карбонатного пласта 4 м. Следовательно, общая масса закачиваемого расклинивающего агента М, исходя из условия 3000 кг на 1 м вскрытой толщины карбонатного пласта, должна быть не менее 12000 кг. Приняли общую массу расклинивающего агента 12000 кг. Исходя из промыслового опыта приняли минимальную концентрацию закачки расклинивающего агента в смеси с гелеобразной жидкостью разрыва 200 кг/м3, максимальную концентрацию 900 кг/м3.
По формуле (1) определили общий объем гелеобразной жидкости разрыва:
V i = 12000 200 + 900 1,43 0,43 36  м 2
Figure 00000004
.
Исходя из условия объем буфера Vбуф должен составлять не менее 6 м3. Приняли минимальный объем равным 7 м3. Следовательно, Vраскл.агент=Vi-Vбуф=36-7=29 м3.
Процесс гидравлического разрыва карбонатного пласта провели в следующей последовательности.
На первом этапе для инициирования развития трещины гидроразрыва закачали буфер - гелеобразную жидкость разрыва без добавления расклинивающего агента в объеме 7 м3.
На втором этапе последовательно закачивали порции гелеобразной жидкости разрыва в смеси с расклинивающим агентом, в качестве которого применяли металлические сферы, изготовленные из магния, фракционным составом 16/20 меш, при этом постепенно увеличивали концентрацию расклинивающего агента в смеси, начиная с 200 кг/м3 и заканчивая 900 кг/м3, а именно:
- последовательно закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 200 кг/м, следовательно, количество закачанного расклинивающего агента составило 1000 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 240 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 2200 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом также с концентрацией 300 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 3700 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 540 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 6400 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 400 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 8400 кг. Затем закачали 4 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 900 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента достигло принятой величины - 12000 кг.
На третьем этапе с целью продавки гелеобразной жидкости гидроразрыва в смеси с расклинивающим агентом в карбонатный пласт закачали продавочную жидкость - техническую воду в объеме 7,4 м3.
На четвертом этапе закачали кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г.Стерлитамак, Республика Башкортостан) в объеме 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва, а именно 0,7 Vi=25,2 м.
На пятом этапе закачали продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны НКТ, плюс 0,2 м3, т.е. 7,6 м3.
Среднее давление закачки на устье скважины при проведении всего процесса гидравлического разрыва составило 31 МПа.
После выдержки технологической паузы, необходимой для спада давления и полного реагирования соляной кислоты с породой пласта и расклинивающим агентом (металлическими сферами, изготовленными из магния), извлекли колонну НКТ с пакером из скважины, спустили технологические НКТ диаметром 73 мм и произвели освоение пласта свабированием по колонне НКТ.
Пример 3.
Толщина карбонатного пласта, в котором предполагается проведение гидравлического разрыва, - 5 м. Глубина залегания карбонатного пласта: верх - 1640 м низ - 1643,5 м. Модуль Юнга для данного карбонатного пласта составляет 17000 МПа.
С целью предотвращения возникновения осложнений при прохождении расклинивающего агента через интервал перфорации, а именно возникновения больших гидравлических сопротивлений и забивания расклинивающим агентом существующих перфорационных отверстий, произвели перфорацию карбонатного пласта кумулятивными зарядами ЗПКО 89 по ТУ 84-7513607.020-2001 (производства ФКП «Чапаевский механический завод», г.Чапаевск, Российская Федерация).
Далее в скважину на НКТ марки "К" диаметром 89 мм по ГОСТ 633-80 спустили пакер ПРО-ЯМ02-ЯГ1(Ф) (производства ООО НПФ «Пакер», г.Октябрьский, Республика Башкортостан) с механической осевой установкой.
Путем осевых перемещений колонны НКТ установили пакер выше интервала перфорации на глубине 1635 м. При этом внутренний объем спущенной в скважину колонны НКТ составил 7,4 м. Объем поверхностных трубопроводов - 0,2 м3.
Устье скважины оборудовали краном высокого давления, расставили технику, участвующую в процессе гидроразрыва, и соединили узлы и агрегаты техники между собой гидравлическими нагнетательной и вспомогательными линиями.
Объем гелеобразной жидкости разрыва рассчитали исходя из эффективности гелеобразной жидкости разрыва, начальной и конечной концентраций и общей массы закачиваемого расклинивающего агента по формуле (1).
Исходные данные для расчета общего объема гелеобразной жидкости разрыва.
Толщина карбонатного пласта 5 м. Следовательно, общая масса закачиваемого расклинивающего агента М, исходя из условия 3000 кг на 1 м вскрытой толщины карбонатного пласта, должна быть не менее 15000 кг. Приняли общую массу расклинивающего агента 15000 кг. Исходя из промыслового опыта приняли минимальную концентрацию закачки расклинивающего агента в смеси с гелеобразной жидкостью разрыва 200 кг/м3, максимальную концентрацию 1000 кг/м3.
По формуле (1) определили общий объем гелеобразной жидкости разрыва:
V i = 15000 200 + 1000 1,43 0,43 42  м 2 .
Figure 00000005
Исходя из условия объем буфера Vбуф должен составлять не менее 6 м3. Приняли минимальный объем буфера равным 10 м3. Следовательно Vраскл.агент=Vi-Vбуф=42-10=32 м3.
Процесс гидравлического разрыва карбонатного пласта провели в следующей последовательности.
На первом этапе для инициирования развития трещины гидроразрыва закачали буфер - гелеобразную жидкость разрыва без добавления расклинивающего агента в объеме 10 м3.
На втором этапе последовательно закачивали порции гелеобразной жидкости разрыва в смеси с расклинивающим агентом, в качестве которого применяли металлические сферы, изготовленные из магния, фракционным составом 12/18 меш, при этом постепенно увеличивали концентрацию расклинивающего агента в смеси, начиная с 200 кг/м3 и заканчивая 1000 кг/м3, а именно:
- последовательно закачали 7 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 200 кг/м3, следовательно, количество закачанного расклинивающего агента составило 1400 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 250 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 2650 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 280 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 4050 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 500 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 6550 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 690 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента составило 6550 кг. Затем закачали 5 м3 гелеобразной жидкости разрыва в смеси с расклинивающим агентом с концентрацией 1000 кг/м3, следовательно, накопленное количество закачанного расклинивающего агента достигло принятой величины - 15000 кг.
На третьем этапе с целью продавки гелеобразной жидкости гидроразрыва в смеси с расклинивающим агентом в карбонатный пласт закачали продавочную жидкость - техническую воду в объеме 7,4 м.
На четвертом этапе закачали кислоту соляную ингибированную по ТУ 2122-205-00203312-2000 (производитель ОАО «Каустик», г.Стерлитамак, Республика Башкортостан) в объеме 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва, а именно 0,65- Vi=27,3 м.
На пятом этапе закачали продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны НКТ, плюс 0,2 м3, т.е. 7,6 м3.
Среднее давление закачки на устье скважины при проведении всего процесса гидравлического разрыва составило 29,5 МПа.
После выдержки технологической паузы, необходимой для спада давления и полного реагирования соляной кислоты с породой пласта и расклинивающим агентом (металлическими сферами, изготовленными из магния), извлекли колонну НКТ с пакером из скважины, спустили технологические НКТ диаметром 73 мм и произвели освоение пласта свабированием по колонне НКТ.
После освоения карбонатного пласта и получения стабильного притока в скважину спустили насос 25-175-ТНМ-14-4-2-2 производства ОАО «Ижевский завод нефтяного машиностроения» и запустили в работу.
Применение предлагаемого способа позволяет повысить технологическую эффективность процесса гидроразрыва карбонатного пласта, содержащего труднорастворимые АСПО, за счет термохимической реакции взаимодействия соляной кислоты и расклинивающего агента,изготовленного из магния. Простой и надежный алгоритм расчета объемов используемой жидкости позволяет упростить технологический процесс проведения гидравлического разрыва карбонатного пласта.

Claims (1)

  1. Способ гидравлического разрыва карбонатного пласта, включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск в скважину колонны насосно-компрессорных труб с пакером, герметизацию межтрубного пространства пакером выше интервала перфорации, проведение гидравлического разрыва пласта путем закачки в скважину гелеобразной жидкости разрыва этапами и кислоты, отличающийся тем, что гидравлический разрыв карбонатного пласта осуществляют последовательно в несколько этапов, причем на первом этапе закачивают гелеобразную жидкость разрыва в объеме не менее 6 м3, на втором этапе закачивают гелеобразную жидкость разрыва в смеси с расклинивающим агентом, причем в качестве расклинивающего агента применяют металлические сферы фракционным составом 12/18, или 16/20, или 20/40 меш, изготовленные из металла магния, причем расклинивающий агент закачивают порционно с постепенным увеличением его концентрации в смеси с гелеобразной жидкостью разрыва, на третьем этапе закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны насосно-компрессорных труб, на четвертом этапе закачивают соляную кислоту в объеме не менее 0,6-0,7 от общего объема приготовленной гелеобразной жидкости разрыва, на пятом этапе закачивают продавочную жидкость - техническую воду в объеме, равном внутреннему объему спущенной в скважину колонны насосно-компрессорных труб, плюс 0,2 м3.
RU2013107107/03A 2013-02-18 2013-02-18 Способ гидравлического разрыва карбонатного пласта RU2509883C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013107107/03A RU2509883C1 (ru) 2013-02-18 2013-02-18 Способ гидравлического разрыва карбонатного пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013107107/03A RU2509883C1 (ru) 2013-02-18 2013-02-18 Способ гидравлического разрыва карбонатного пласта

Publications (1)

Publication Number Publication Date
RU2509883C1 true RU2509883C1 (ru) 2014-03-20

Family

ID=50279696

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013107107/03A RU2509883C1 (ru) 2013-02-18 2013-02-18 Способ гидравлического разрыва карбонатного пласта

Country Status (1)

Country Link
RU (1) RU2509883C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733869C1 (ru) * 2019-12-26 2020-10-07 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ разработки доманикового нефтяного пласта
CN113530509A (zh) * 2020-04-15 2021-10-22 中国石油天然气股份有限公司 小井眼连续分层压裂方法及压裂管柱

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687061A (en) * 1986-12-08 1987-08-18 Mobil Oil Corporation Stimulation of earth formations surrounding a deviated wellbore by sequential hydraulic fracturing
RU2183739C2 (ru) * 2000-07-12 2002-06-20 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ гидроразрыва пласта
RU2219335C2 (ru) * 2000-10-17 2003-12-20 Иванников Владимир Иванович Способ гидроразрыва пластов в скважинах
US20060278389A1 (en) * 2005-06-10 2006-12-14 Joseph Ayoub Fluid loss additive for enhanced fracture clean-up
RU2358100C2 (ru) * 2007-06-28 2009-06-10 Олег Евдокимович Васильев Способ гидравлического разрыва пласта в скважине
RU2401381C1 (ru) * 2009-02-25 2010-10-10 Закрытое акционерное общество "ИНФРЭК" Способ обработки пласта
RU2455478C1 (ru) * 2011-02-04 2012-07-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва карбонатного пласта
RU2460876C1 (ru) * 2011-04-26 2012-09-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ осуществления импульсного гидроразрыва карбонатного пласта

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687061A (en) * 1986-12-08 1987-08-18 Mobil Oil Corporation Stimulation of earth formations surrounding a deviated wellbore by sequential hydraulic fracturing
RU2183739C2 (ru) * 2000-07-12 2002-06-20 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ гидроразрыва пласта
RU2219335C2 (ru) * 2000-10-17 2003-12-20 Иванников Владимир Иванович Способ гидроразрыва пластов в скважинах
US20060278389A1 (en) * 2005-06-10 2006-12-14 Joseph Ayoub Fluid loss additive for enhanced fracture clean-up
RU2358100C2 (ru) * 2007-06-28 2009-06-10 Олег Евдокимович Васильев Способ гидравлического разрыва пласта в скважине
RU2401381C1 (ru) * 2009-02-25 2010-10-10 Закрытое акционерное общество "ИНФРЭК" Способ обработки пласта
RU2455478C1 (ru) * 2011-02-04 2012-07-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ гидравлического разрыва карбонатного пласта
RU2460876C1 (ru) * 2011-04-26 2012-09-10 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ осуществления импульсного гидроразрыва карбонатного пласта

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733869C1 (ru) * 2019-12-26 2020-10-07 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ разработки доманикового нефтяного пласта
CN113530509A (zh) * 2020-04-15 2021-10-22 中国石油天然气股份有限公司 小井眼连续分层压裂方法及压裂管柱

Similar Documents

Publication Publication Date Title
RU2460876C1 (ru) Способ осуществления импульсного гидроразрыва карбонатного пласта
RU2358100C2 (ru) Способ гидравлического разрыва пласта в скважине
RU2566542C1 (ru) Способ гидравлического разрыва продуктивного пласта с глинистым прослоем и подошвенной водой
US10865630B2 (en) Fracturing utilizing an air/fuel mixture
RU2531775C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2544931C1 (ru) Способ разработки карбонатной нефтяной залежи
RU2455478C1 (ru) Способ гидравлического разрыва карбонатного пласта
WO2015023726A2 (en) Method of improving hydraulic fracturing by decreasing formation temperature
RU2483209C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2485306C1 (ru) Способ гидравлического разрыва пласта в скважине
NO20120814A1 (no) System og metode for dynamisk underbalansert perforering ved bruk av en isoleringsvaeske
RU2509883C1 (ru) Способ гидравлического разрыва карбонатного пласта
US11346198B2 (en) Fracturing of a wet well utilizing an air/fuel mixture
RU2540713C1 (ru) Способ разработки нефтяной залежи
RU2564312C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2571964C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2547191C1 (ru) Способ гидроразрыва карбонатного пласта
RU2526081C1 (ru) Способ гидравлического разрыва пласта в скважине
US20180371887A1 (en) Plasma-pulsed hydraulic fracture with carbonaceous slurry
RU2705643C1 (ru) Способ интенсификации работы скважины после её строительства
RU2392426C1 (ru) Способ вскрытия пласта
RU2527437C2 (ru) Способ термохимического разрыва пласта
US11761319B2 (en) Fracturing of a deep or wet well utilizing an air/fuel mixture and multiple stage restriction orifice assembly
RU2395679C1 (ru) Способ разработки месторождений трудноизвлекаемых углеводородов
RU2534373C1 (ru) Способ изоляции притока пластовых вод