RU2637621C1 - Способ определения термоокислительной стабильности смазочных материалов - Google Patents
Способ определения термоокислительной стабильности смазочных материалов Download PDFInfo
- Publication number
- RU2637621C1 RU2637621C1 RU2017117809A RU2017117809A RU2637621C1 RU 2637621 C1 RU2637621 C1 RU 2637621C1 RU 2017117809 A RU2017117809 A RU 2017117809A RU 2017117809 A RU2017117809 A RU 2017117809A RU 2637621 C1 RU2637621 C1 RU 2637621C1
- Authority
- RU
- Russia
- Prior art keywords
- lubricant
- oxidative stability
- determined
- thermal
- sample
- Prior art date
Links
- 239000000314 lubricant Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 230000003647 oxidation Effects 0.000 claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 20
- 238000005375 photometry Methods 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 19
- 230000015556 catabolic process Effects 0.000 claims description 6
- 238000006731 degradation reaction Methods 0.000 claims description 6
- 239000010687 lubricating oil Substances 0.000 claims description 3
- 238000002835 absorbance Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 230000006378 damage Effects 0.000 abstract description 2
- 238000013019 agitation Methods 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010705 motor oil Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/30—Oils, i.e. hydrocarbon liquids for lubricating properties
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Lubricants (AREA)
Abstract
Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. При этом пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности. Достигается повышение информативности способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики.1 табл., 4 ил.
Description
Изобретение относится к технологии оценки качества жидких смазочных материалов.
Известен способ определения термоокислительной стабильности смазочных материалов, который включает испытание пробы смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, вязкость и коэффициент термоокислительной стабильности КТОС из соотношения КТОС=КП⋅μО/μИСХ, где КП - коэффициент поглощения светового потока окисленным смазочным материалом; μО, μИСХ - соответственно вязкость окисленного и исходного смазочного материалов, строят графическую зависимость коэффициента термоокислительной стабильности от коэффициента поглощения светового потока окисленным смазочным материалом и по тангенсу угла наклона этой зависимости к оси абсцисс на участке до точки перегиба определяют скорость образования промежуточных продуктов окисления, по тангенсу угла наклона зависимости к оси абсцисс после точки перегиба определяют скорость образования конечных продуктов окисления и их влияние на увеличение вязкости испытуемого смазочного материала, а по координатам точки перегиба зависимости определяют начало образования конечных продуктов окисления (Патент РФ №2247971 С1, дата приоритета 17.02.2004, дата публикации 10.03.2005, авторы: Ковальский Б.И. и др., RU).
Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянной массы в присутствии воздуха с перемешиванием, при оптимальных как минимум трех температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного материалов, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы: Ковальский Б.И. и др., RU, прототип).
Общим недостатком известного аналога и прототипа является то, что известные способы обладают недостаточной информативностью о качестве товарных смазочных материалов, так как не учитывают изменение противоизносных свойств в процессе их термостатирования и их связь с оптическими свойствами и вязкостно-температурными характеристиками.
Технической проблемой, решаемой изобретением, является повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета процессов окисления и температурной деструкции и влияния их продуктов на противоизносные свойства и индекс вязкости.
Для решения технической проблемы предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. Согласно изобретению пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.
На фиг. 1 приведены зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел различной базовой основы без перемешивания при температуре 180°C: 1 - минеральное Zic HIFLO 10W-40 SL; 2 - частично-синтетическое Castrol Magnatec 10W-40 R SL/CF; 3 - синтетическое ALPHA'S 5W-30 SN; на фиг. 2 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 180°C (обозначения те же); на фиг. 3 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел без перемешивания при температуре 170°C (обозначения те же); на фиг. 4 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 170°C (обозначения те же).
Способ определения термоокислительной стабильности смазочных материалов осуществляется следующим образом. Пробы исследуемого смазочного материала постоянной массы, например 100±0,1 г, нагревают до температуры ниже критической, например 180°C, и испытывают в двух вариантах: первый вариант с перемешиванием механической мешалкой для смешивания с кислородом воздуха и исследованием процессов окисления, а второй вариант - испытание без перемешивания, что позволяет исследовать процессы температурной деструкции. Температура термостатирования и частота вращения мешалки в процессе испытания поддерживались автоматически.
Через равные промежутки времени испытания отбирают часть пробы термостатированного смазочного материала для прямого фотометрирования и определения оптической плотности D, часть пробы используют для определения кинематической вязкости при температурах 40 и 100°C и вычисления индекса вязкости (ГОСТ 25371-97, ИСО 2909-81), а часть пробы используют для определения противоизносных свойств термостатированных масел на трехшариковой машине трения со схемой «шар-цилиндр» с параметрами: нагрузка 13 Н, скорость скольжения 0,68 м/с, температура смазочного материала в объеме 80°C, время испытания 2 часа. Противоизносные свойства термостатированных смазочных материалов оценивались по среднеарифметическому значению диаметра пятна износа на трех шарах с двух параллельных опытов. Термостатирование смазочных масел прекращалось после достижения оптической плотности значений равных 0,4-0,5.
Для выявления влияния температуры на оптическую плотность, индекс вязкости и противоизносные свойства испытания моторных масел проводили также при температуре 170°C с перемешиванием и без перемешивания. По полученным данным оптической плотности, индекса вязкости и противоизносным свойствам вычислялся показатель термоокислительной стабильности ПТОС
где D - оптическая плотность термостатированного смазочного материала; lgИВ - десятичный логарифм индекса вязкости; И - среднеарифметическое значение диаметра пятна износа, мм.
Результаты испытания моторных масел различной базовой основы сведены в таблицу. По полученным экспериментальным данным строились графические зависимости показателя термоокислительной стабильности ПТОС от оптической плотности для минерального масла Zic HIFLO 10W-40 SL (1), частично-синтетического Castrol Magnatec 10W-40 R SL/CF (2) и синтетического ALPHA'S 5W-30 SN (3) для температур 180°C (фиг. 1, фиг. 2) и 170°C (фиг. 3, фиг. 4), причем на фиг. 1 и фиг. 3 моторные масла исследовались без перемешивания, а на фиг. 2 и фиг. 4 - с перемешиванием, что позволило оценить влияние продуктов окисления и температурной деструкции на оптические свойства, индекс вязкости, противоизносные свойства и в целом на значение показателя термоокислительной стабильности.
Согласно данным (фиг. 1-4) зависимости показателя термоокислительной стабильности от оптической плотности независимо от температуры термостатирования и наличия или отсутствия перемешивания пробы испытуемого смазочного материала описываются линейными уравнениями вида
где α - коэффициент, характеризующий скорость изменения показателя термоокислительной стабильности.
Согласно данным таблицы показано, что скорость изменения показателя термоокислительной стабильности зависит от базовой основы смазочного материала, температуры термостатирования и степени перемешивания во время испытания.
Согласно данным (фиг. 1) при температуре испытания 180°C без перемешивания при одном и том же значении оптической плотности самое высокое значение показателя ПТОС установлено для минерального масла (1), а самое низкое для синтетического масла (3), однако при испытании моторных масел при температуре 180°C с перемешиванием установлен обратный результат, самое высокое значение показателя ПТОС установлено для синтетического масла (3), а самое низкое для минерального (1). Таким образом, продукты температурной деструкции (при отсутствии перемешивания масел) оказывают положительное влияние на минеральное масло (фиг. 1), а продукты окисления (фиг. 2) положительное влияние оказывают на синтетическое моторное масло.
При понижении температуры термостатирования до 170°C продукты температурной деструкции и окисление отрицательно влияют на синтетическое моторное масло (3) как с перемешиванием его при испытании, так и без перемешивания (фиг. 3, фиг. 4). Эти продукты оказывают положительное влияние на частично-синтетическое моторное масло (2) (фиг. 3, фиг. 4). Полученная информация имеет практическое значение при выборе моторных масел двигателей внутреннего сгорания.
Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики и промышленно применимо.
Claims (1)
- Способ определения термоокислительной стабильности смазочных масел, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления, отличающийся тем, что пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017117809A RU2637621C1 (ru) | 2017-05-22 | 2017-05-22 | Способ определения термоокислительной стабильности смазочных материалов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017117809A RU2637621C1 (ru) | 2017-05-22 | 2017-05-22 | Способ определения термоокислительной стабильности смазочных материалов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2637621C1 true RU2637621C1 (ru) | 2017-12-05 |
Family
ID=60581227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017117809A RU2637621C1 (ru) | 2017-05-22 | 2017-05-22 | Способ определения термоокислительной стабильности смазочных материалов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2637621C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2722119C1 (ru) * | 2019-12-04 | 2020-05-26 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов |
RU2741242C1 (ru) * | 2020-08-11 | 2021-01-22 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения соотношения между продуктами температурной деструкции и испарения смазочных масел при термостатировании |
RU2754096C1 (ru) * | 2021-01-29 | 2021-08-26 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения влияния температуры и базовой основы смазочных материалов на концентрацию продуктов термостатирования |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157963A (en) * | 1990-05-22 | 1992-10-27 | Eaton Corporation | Procedure for qualifying synthetic base gear lubricant |
RU2057326C1 (ru) * | 1992-06-04 | 1996-03-27 | Государственный проектный научно-исследовательский и конструкторский институт "Красноярский ПромстройНИИпроект" | Способ определения термоокислительной стабильности смазочных материалов |
RU2219530C1 (ru) * | 2002-04-11 | 2003-12-20 | Красноярский государственный технический университет | Способ определения термоокислительной стабильности смазочных материалов |
RU2247971C1 (ru) * | 2004-02-17 | 2005-03-10 | Красноярский государственный технический университет (КГТУ) | Способ определения термоокислительной стабильности смазочных материалов |
RU2334976C1 (ru) * | 2006-12-26 | 2008-09-27 | Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ ) | Способ определения термоокислительной стабильности смазочных материалов |
RU2618581C1 (ru) * | 2016-02-18 | 2017-05-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения термоокислительной стабильности смазочных материалов |
-
2017
- 2017-05-22 RU RU2017117809A patent/RU2637621C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157963A (en) * | 1990-05-22 | 1992-10-27 | Eaton Corporation | Procedure for qualifying synthetic base gear lubricant |
RU2057326C1 (ru) * | 1992-06-04 | 1996-03-27 | Государственный проектный научно-исследовательский и конструкторский институт "Красноярский ПромстройНИИпроект" | Способ определения термоокислительной стабильности смазочных материалов |
RU2219530C1 (ru) * | 2002-04-11 | 2003-12-20 | Красноярский государственный технический университет | Способ определения термоокислительной стабильности смазочных материалов |
RU2247971C1 (ru) * | 2004-02-17 | 2005-03-10 | Красноярский государственный технический университет (КГТУ) | Способ определения термоокислительной стабильности смазочных материалов |
RU2334976C1 (ru) * | 2006-12-26 | 2008-09-27 | Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ ) | Способ определения термоокислительной стабильности смазочных материалов |
RU2618581C1 (ru) * | 2016-02-18 | 2017-05-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения термоокислительной стабильности смазочных материалов |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2722119C1 (ru) * | 2019-12-04 | 2020-05-26 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов |
RU2741242C1 (ru) * | 2020-08-11 | 2021-01-22 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения соотношения между продуктами температурной деструкции и испарения смазочных масел при термостатировании |
RU2754096C1 (ru) * | 2021-01-29 | 2021-08-26 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Способ определения влияния температуры и базовой основы смазочных материалов на концентрацию продуктов термостатирования |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2334976C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2637621C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2618581C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2247971C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2627562C1 (ru) | Способ определения термоокислительной стойкости смазочных материалов | |
RU2649660C1 (ru) | Способ прогнозирования показателей термоокислительной стабильности смазочных материалов | |
RU2219530C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2685582C1 (ru) | Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов | |
RU2625037C1 (ru) | Способ классификации смазочных материалов по параметрам термоокислительной стабильности | |
RU2528083C1 (ru) | Способ определения качества смазочных масел | |
RU2318206C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2057326C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2408866C1 (ru) | Способ определения смазывающей способности масел | |
RU2406087C1 (ru) | Способ определения температурной стойкости смазочных масел | |
RU2745699C1 (ru) | Способ определения соотношения между продуктами окисления и испарения смазочных масел при термостатировании | |
RU2453832C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2754096C1 (ru) | Способ определения влияния температуры и базовой основы смазочных материалов на концентрацию продуктов термостатирования | |
RU2408886C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2274850C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов | |
RU2186386C1 (ru) | Способ определения смазывающей способности масел | |
RU2705942C1 (ru) | Способ определения предельно допустимых показателей работоспособности смазочных материалов | |
RU2722119C1 (ru) | Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов | |
RU2222012C1 (ru) | Способ определения работоспособности смазочных масел | |
RU2696357C1 (ru) | Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов | |
RU2598624C1 (ru) | Способ определения термоокислительной стабильности смазочных материалов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190523 |